Datasets:
Tasks:
Text Generation
Modalities:
Text
Sub-tasks:
language-modeling
Languages:
Korean
Size:
10K - 100K
ArXiv:
Tags:
question-generation
License:
File size: 6,530 Bytes
bfd9fce 35a043f bfd9fce 4a0cc62 bfd9fce 2584161 bfd9fce 4486f16 bfd9fce 1113a5f bfd9fce 4486f16 1113a5f 4486f16 bfd9fce 4486f16 bfd9fce 4486f16 bfd9fce 4486f16 bfd9fce 4486f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: cc-by-4.0
pretty_name: KorQuAD for question generation
language: ko
multilinguality: monolingual
size_categories: 10K<n<100K
source_datasets: squad_es
task_categories:
- text-generation
task_ids:
- language-modeling
tags:
- question-generation
---
# Dataset Card for "lmqg/qg_korquad"
## Dataset Description
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
- **Paper:** [https://arxiv.org/abs/2210.03992](https://arxiv.org/abs/2210.03992)
- **Point of Contact:** [Asahi Ushio](http://asahiushio.com/)
### Dataset Summary
This is a subset of [QG-Bench](https://github.com/asahi417/lm-question-generation/blob/master/QG_BENCH.md#datasets), a unified question generation benchmark proposed in
["Generative Language Models for Paragraph-Level Question Generation: A Unified Benchmark and Evaluation, EMNLP 2022 main conference"](https://arxiv.org/abs/2210.03992).
This is a modified version of [KorQuAD](https://huggingface.co./datasets/squad_kor_v1) for question generation (QG) task.
Since the original dataset only contains training/validation set, we manually sample test set from training set, which
has no overlap in terms of the paragraph with the training set.
### Supported Tasks and Leaderboards
* `question-generation`: The dataset is assumed to be used to train a model for question generation.
Success on this task is typically measured by achieving a high BLEU4/METEOR/ROUGE-L/BERTScore/MoverScore (see our paper for more in detail).
### Languages
Korean (ko)
## Dataset Structure
An example of 'train' looks as follows.
```
{
"question": "ν¨μν΄μνμ΄ μ£Όλͺ©νλ νꡬλ?",
"paragraph": "λ³νμ λν μ΄ν΄μ λ¬μ¬λ μμ°κ³Όνμ μμ΄μ μΌλ°μ μΈ μ£Όμ μ΄λ©°, λ―Έμ λΆνμ λ³νλ₯Ό νꡬνλ κ°λ ₯ν λꡬλ‘μ λ°μ λμλ€. ν¨μλ λ³ννλ μμ λ¬μ¬ν¨μ μμ΄μ μ€μΆμ μΈ κ°λ
μΌλ‘μ¨ λ μ€λ₯΄κ² λλ€. μ€μμ μ€λ³μλ‘ κ΅¬μ±λ ν¨μμ μλ°ν νκ΅¬κ° μ€ν΄μνμ΄λΌλ λΆμΌλ‘ μλ €μ§κ² λμκ³ , 볡μμμ λν μ΄μ κ°μ νꡬλΆμΌλ 볡μν΄μνμ΄λΌκ³ νλ€. ν¨μν΄μνμ ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬμ μ£Όλͺ©νλ€. ν¨μν΄μνμ λ§μ μμ©λΆμΌ μ€ νλκ° μμμνμ΄λ€. λ§μ λ¬Έμ λ€μ΄ μμ°μ€λ½κ² μκ³Ό κ·Έ μμ λ³νμ¨μ κ΄κ³λ‘ κ·μ°©λκ³ , μ΄λ¬ν λ¬Έμ λ€μ΄ λ―ΈλΆλ°©μ μμΌλ‘ λ€λ£¨μ΄μ§λ€. μμ°μ λ§μ νμλ€μ΄ λμνκ³λ‘ κΈ°μ λ μ μλ€. νΌλ μ΄λ‘ μ μ΄λ¬ν μμΈ‘ λΆκ°λ₯ν νμμ νꡬνλ λ° μλΉν κΈ°μ¬λ₯Ό νλ€.",
"answer": "ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬ",
"sentence": "ν¨μν΄μνμ ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬ μ μ£Όλͺ©νλ€.",
"paragraph_sentence": 'λ³νμ λν μ΄ν΄μ λ¬μ¬λ μμ°κ³Όνμ μμ΄μ μΌλ°μ μΈ μ£Όμ μ΄λ©°, λ―Έμ λΆνμ λ³νλ₯Ό νꡬνλ κ°λ ₯ν λꡬλ‘μ λ°μ λμλ€. ν¨μλ λ³ννλ μμ λ¬μ¬ν¨μ μμ΄μ μ€μΆμ μΈ κ°λ
μΌλ‘μ¨ λ μ€λ₯΄κ² λλ€. μ€μμ μ€λ³μλ‘ κ΅¬μ±λ ν¨μμ μλ°ν νκ΅¬κ° μ€ν΄μνμ΄λΌλ λΆμΌλ‘ μλ €μ§κ² λμκ³ , 볡μμμ λν μ΄μ κ°μ νꡬ λΆμΌλ 볡μν΄μνμ΄λΌκ³ νλ€. <hl> ν¨μν΄μνμ ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬ μ μ£Όλͺ©νλ€. <hl> ν¨μν΄μνμ λ§μ μμ©λΆμΌ μ€ νλκ° μμμνμ΄λ€. λ§μ λ¬Έμ λ€μ΄ μμ°μ€λ½κ² μκ³Ό κ·Έ μμ λ³νμ¨μ κ΄κ³λ‘ κ·μ°©λκ³ , μ΄λ¬ν λ¬Έμ λ€μ΄ λ―ΈλΆλ°©μ μμΌλ‘ λ€λ£¨μ΄μ§λ€. μμ°μ λ§μ νμλ€μ΄ λμνκ³λ‘ κΈ°μ λ μ μλ€. νΌλ μ΄λ‘ μ μ΄λ¬ν μμΈ‘ λΆκ°λ₯ν νμμ νꡬνλ λ° μλΉν κΈ°μ¬λ₯Ό νλ€.',
"paragraph_answer": 'λ³νμ λν μ΄ν΄μ λ¬μ¬λ μμ°κ³Όνμ μμ΄μ μΌλ°μ μΈ μ£Όμ μ΄λ©°, λ―Έμ λΆνμ λ³νλ₯Ό νꡬνλ κ°λ ₯ν λꡬλ‘μ λ°μ λμλ€. ν¨μλ λ³ννλ μμ λ¬μ¬ν¨μ μμ΄μ μ€μΆμ μΈ κ°λ
μΌλ‘μ¨ λ μ€λ₯΄κ² λλ€. μ€μμ μ€λ³μλ‘ κ΅¬μ±λ ν¨μμ μλ°ν νκ΅¬κ° μ€ν΄μνμ΄λΌλ λΆμΌλ‘ μλ €μ§κ² λμκ³ , 볡μμμ λν μ΄μ κ°μ νꡬ λΆμΌλ 볡μν΄μνμ΄λΌκ³ νλ€. ν¨μν΄μνμ <hl> ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬ <hl>μ μ£Όλͺ©νλ€. ν¨μν΄μνμ λ§μ μμ©λΆμΌ μ€ νλκ° μμμνμ΄λ€. λ§μ λ¬Έμ λ€μ΄ μμ°μ€λ½κ² μκ³Ό κ·Έ μμ λ³νμ¨μ κ΄κ³λ‘ κ·μ°©λκ³ , μ΄λ¬ν λ¬Έμ λ€μ΄ λ―ΈλΆλ°©μ μμΌλ‘ λ€λ£¨μ΄μ§λ€. μμ°μ λ§μ νμλ€μ΄ λμνκ³λ‘ κΈ°μ λ μ μλ€. νΌλ μ΄λ‘ μ μ΄λ¬ν μμΈ‘ λΆκ°λ₯ν νμμ νꡬνλ λ° μλΉν κΈ°μ¬λ₯Ό νλ€.',
"sentence_answer": "ν¨μν΄μνμ <hl> ν¨μμ 곡κ°(νΉν 무νμ°¨μ)μ νꡬ <hl> μ μ£Όλͺ©νλ€."
}
```
The data fields are the same among all splits.
- `question`: a `string` feature.
- `paragraph`: a `string` feature.
- `answer`: a `string` feature.
- `sentence`: a `string` feature.
- `paragraph_answer`: a `string` feature, which is same as the paragraph but the answer is highlighted by a special token `<hl>`.
- `paragraph_sentence`: a `string` feature, which is same as the paragraph but a sentence containing the answer is highlighted by a special token `<hl>`.
- `sentence_answer`: a `string` feature, which is same as the sentence but the answer is highlighted by a special token `<hl>`.
Each of `paragraph_answer`, `paragraph_sentence`, and `sentence_answer` feature is assumed to be used to train a question generation model,
but with different information. The `paragraph_answer` and `sentence_answer` features are for answer-aware question generation and
`paragraph_sentence` feature is for sentence-aware question generation.
## Data Splits
|train|validation|test |
|----:|---------:|----:|
|54556| 5766 |5766 |
## Citation Information
```
@inproceedings{ushio-etal-2022-generative,
title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration: {A} {U}nified {B}enchmark and {E}valuation",
author = "Ushio, Asahi and
Alva-Manchego, Fernando and
Camacho-Collados, Jose",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, U.A.E.",
publisher = "Association for Computational Linguistics",
}
``` |