""" gsplit -l 1500 -d --additional-suffix=.jsonl test.jsonl test gsplit -l 1500 -d --additional-suffix=.jsonl train.jsonl train gsplit -l 1500 -d --additional-suffix=.jsonl validation.jsonl validation rm -rf test.jsonl rm -rf train.jsonl rm -rf validation.jsonl """ import json import os import re import spacy from random import seed, shuffle from tqdm import tqdm from datasets import load_dataset DATASET_NAME = "squad_es" DATASET_TYPES = 'v1.1.0' HIGHLIGHT_TOKEN = '' GENERATE_TEST_SPLIT = True SPLITTER = spacy.load('es_core_news_sm') def get_sentence(document: str): return [str(sent) for sent in SPLITTER(document).sents] def process_single_data(question: str, paragraph: str, answer: str): """ Convert single raw json data into QG format """ example = {'question': question, 'paragraph': paragraph, 'answer': answer} start = example['paragraph'].find(example['answer']) end = start + len(answer) assert paragraph[start:end] == answer # get sentence before_tmp = get_sentence(example['paragraph'][:start]) if len(before_tmp) == 0: before = '' before_sentence = '' else: if before_tmp[-1].endswith('.'): before = ' '.join(before_tmp) before_sentence = '' else: before = ' '.join(before_tmp[:-1]) before_sentence = before_tmp[-1] before_sentence = before_sentence if before_sentence.endswith(' ') else f'{before_sentence} ' after_tmp = get_sentence(example['paragraph'][start + len(example['answer']):]) if len(after_tmp) == 0: after = '' after_sentence = '' else: after = ' '.join(after_tmp[1:]) after_sentence = after_tmp[0] after_sentence = after_sentence if after_sentence.startswith(' ') else f' {after_sentence}' example['sentence'] = f"{before_sentence}{example['answer']}{after_sentence}" # get paragraph_sentence before = '' if before == '' else f'{before} ' after = '' if after == '' else f' {after}' source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['sentence'], after) example['paragraph_sentence'] = re.sub(r'\s+', ' ', source_text) # get paragraph_answer source_text = '{0}{1} {2} {1}{3}'.format( example['paragraph'][:start], HIGHLIGHT_TOKEN, example['answer'], example['paragraph'][start + len(example['answer']):]) example['paragraph_answer'] = re.sub(r'\s+', ' ', source_text) # get sentence_answer if len(before_tmp) == 0 or before_tmp[-1].endswith('.'): before = '' else: before = before_tmp[-1] if before_tmp[-1].endswith(' ') else f'{before_tmp[-1]} ' if len(after_tmp) == 0: after = '' else: after = after_tmp[0] if after_tmp[0].startswith(' ') else f' {after_tmp[0]}' source_text = '{0}{1} {2} {1}{3}'.format(before, HIGHLIGHT_TOKEN, example['answer'], after) example['sentence_answer'] = re.sub(r'\s+', ' ', source_text) return example if __name__ == '__main__': output = './data/processed' os.makedirs(output, exist_ok=True) if DATASET_TYPES is not None: dataset = load_dataset(DATASET_NAME, DATASET_TYPES) else: dataset = load_dataset(DATASET_NAME) for _split in dataset.keys(): tmp_dataset = dataset[_split] with open(f'{output}/{_split}.jsonl', 'w') as f: for single_data in tqdm(tmp_dataset): question_str = single_data['question'] paragraph_str = single_data['context'] answer_str = single_data['answers']['text'] if type(answer_str) == list: answer_str = answer_str[0] assert type(answer_str) is str, answer_str assert type(question_str) is str, question_str assert type(paragraph_str) is str, paragraph_str tmp_data = process_single_data(question=question_str, paragraph=paragraph_str, answer=answer_str) tmp_data['paragraph_id'] = single_data['id'] f.write(json.dumps(tmp_data) + '\n') if GENERATE_TEST_SPLIT: # randomly sample for test set with open(f'{output}/train.jsonl') as f: lines_train = [json.loads(i) for i in f.read().split('\n') if len(i) > 0] with open(f'{output}/validation.jsonl') as f: size = len([i for i in f.read().split('\n') if len(i) > 0]) paragraph_ids = sorted(list(set([i['paragraph_id'] for i in lines_train]))) data_train = {p: [i for i in lines_train if i['paragraph_id'] == p] for p in paragraph_ids} seed(0) shuffle(paragraph_ids) data_test = [] data_train_new = [] for i in tqdm(paragraph_ids): if len(data_test) < size: data_test += data_train[i] else: data_train_new += data_train[i] print(size, len(data_test), len(data_train_new), len(data_train)) # input() with open(f'{output}/train.jsonl', 'w') as f: f.write('\n'.join([json.dumps(i) for i in data_train_new])) with open(f'{output}/test.jsonl', 'w') as f: f.write('\n'.join([json.dumps(i) for i in data_test]))