Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 20,620 Bytes
76c3dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be1b4ba
 
76c3dad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5384587
76c3dad
5384587
 
 
 
 
 
 
 
 
 
 
76c3dad
 
5384587
76c3dad
 
 
 
 
 
5384587
76c3dad
 
5384587
 
76c3dad
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
---
license: cc-by-4.0
dataset_info:
- config_name: alzheimers
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 99043326.6
    num_examples: 6400
  download_size: 96727581
  dataset_size: 99043326.6
- config_name: brain_tumor_classification
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 401417456.808
    num_examples: 3264
  download_size: 409873384
  dataset_size: 401417456.808
- config_name: brain_tumor_detection
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 54944533.0
    num_examples: 502
  download_size: 26330695
  dataset_size: 54944533.0
- config_name: brain_with_intracranial_hemorrhage
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: image
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 257983789.214
    num_examples: 5001
  download_size: 344778754
  dataset_size: 257983789.214
- config_name: chest_xray14
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 45415592858.28
    num_examples: 112120
  download_size: 45065386546
  dataset_size: 45415592858.28
- config_name: coronahack
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 1880047016.73
    num_examples: 5910
  download_size: 1272987706
  dataset_size: 1880047016.73
- config_name: covid19_detection
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 1596155812.031
    num_examples: 5073
  download_size: 1181673460
  dataset_size: 1596155812.031
- config_name: finding_and_measuring_lungs
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: image
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 17951746.0
    num_examples: 267
  download_size: 17843713
  dataset_size: 17951746.0
- config_name: kits23
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: image
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 3497667100.483
    num_examples: 32989
  download_size: 3597493874
  dataset_size: 3497667100.483
- config_name: knee_osteoarthritis
  features:
  - name: image
    dtype: image
  - name: dataset_name
    dtype: string
  - name: dataset_uid
    dtype: string
  - name: phase_name
    dtype: string
  - name: comparative
    dtype: string
  - name: study_id
    dtype: string
  - name: umie_id
    dtype: string
  - name: mask
    dtype: 'null'
  - name: labels
    dtype: string
  splits:
  - name: train
    num_bytes: 212468967.388
    num_examples: 9786
  download_size: 202960658
  dataset_size: 212468967.388
configs:
- config_name: alzheimers
  data_files:
  - split: train
    path: alzheimers/train-*
- config_name: brain_tumor_classification
  data_files:
  - split: train
    path: brain_tumor_classification/train-*
- config_name: brain_tumor_detection
  data_files:
  - split: train
    path: brain_tumor_detection/train-*
- config_name: brain_with_intracranial_hemorrhage
  data_files:
  - split: train
    path: brain_with_intracranial_hemorrhage/train-*
- config_name: chest_xray14
  data_files:
  - split: train
    path: chest_xray14/train-*
- config_name: coronahack
  data_files:
  - split: train
    path: coronahack/train-*
- config_name: covid19_detection
  data_files:
  - split: train
    path: covid19_detection/train-*
- config_name: finding_and_measuring_lungs
  data_files:
  - split: train
    path: finding_and_measuring_lungs/train-*
- config_name: kits23
  data_files:
  - split: train
    path: kits23/train-*
- config_name: knee_osteoarthritis
  data_files:
  - split: train
    path: knee_osteoarthritis/train-*
---

# Dataset Card for Dataset Name

<!-- Provide a quick summary of the dataset. -->
UMIE (Unified Medical Imaging Ensemble) is currently the largest publicly available dataset of annotated radiological imaging, combining over 20 open-source datasets into a unified collection with standardized formatting and labeling based on the RadLex ontology.

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->
UMIE datasets combine more than 20 open-source medical imaging datasets, containing over 1 million radiological images across multiple modalities (CT, MRI, and X-ray). The dataset is unique in its standardized approach to medical image data organization, using unified preprocessing pipelines and the RadLex ontology for consistent labeling across all included datasets.

This resource combines images from 12 open-source datasets, spanning X-ray, CT, and MRI modalities. The dataset
includes images for both classification and segmentation tasks, with 40+ standardized labels and 15 annotation masks. We mapped all labels
and masks to the RadLex ontology, ensuring consistency across datasets. UMIE datasets aim to facilitate the development of more robust and generalizable medical foundation
models akin to those in general-purpose computer vision.

Due to redistribution restrictions of some opensource datasets, we release only a subset of UMIE datasets on Hugging Face. To reproduce our entire datasets,
go to our repo on GitHub. In our repo, we collect the unified preprocessing pipeline that standardizes the heterogeneous source datasets into a common UMIE
format, addressing challenges such as diverse file types, annotation styles, and labeling ontologies. The preprocessing scripts are modular and
extensible, so that you can use existing preprocessing steps to easily incorporate new datasets.

- **Curated by:** TheLion.AI
<!-- - **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed] -->
- **Language(s) (NLP):** English
- **License:** cc-by-4.0

Please refer to the source dataset licencing.

### Dataset Sources [optional]

<!-- Provide the basic links for the dataset. -->

- **Repository:** https://github.com/TheLion-ai/UMIE_datasets
- **Paper [optional]:** https://medium.com/thelion-ai/umie-datasets-83c04305b069
- **Demo [optional]:** TBA

## Uses

<!-- Address questions around how the dataset is intended to be used. -->

### Direct Use

<!-- This section describes suitable use cases for the dataset. -->
- Training and evaluation of medical imaging AI models
- Development of foundation models for medical imaging
- Medical image classification and segmentation tasks
- Research in medical computer vision
- Benchmark dataset for medical imaging tasks

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
Clinical diagnosis or medical decision-making without proper validation
Applications requiring real-time processing without proper testing
Use cases requiring additional modalities not included in the dataset


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
- Standardized file organization
- Consistent image formats (converted from various sources including DICOM)
- Unified mask formats
- Labels following RadLex ontology
- Unique identifiers across all datasets

The dataset comprises of several opensource datasets. Each sub dataset is treated as a separate split.
The dataset file tree looks as follows:
[sub dataset ID]_[sub dataset name]->[phase name e.g."CT arterial"]->Images / Masks directory

The information about individual imgs, such as whether it has a mask or labels is stored in a jsonl file. Each sub dataset has its own .jsonl file.
You can check the json file to find which images come from the same study.

Each image in the dataset has a unique identifier. If an image has a mask, mask has the same file name as its respective image.

For a complete list of labels in UMIE check labels.py
For a complete list of masks with their encoding check masks.py

## Dataset Creation

### Curation Rationale

<!-- Motivation for the creation of this dataset. -->

The dataset was created to address several key challenges in medical AI:

- Lack of large-scale, standardized medical imaging datasets
- Inconsistent formatting across existing datasets
- Absence of common ontology for medical image annotation
- Need for foundation models in medical imaging

Although the number of opensource medical datasets is growing, we are lacking data formating and labeling standards.
Due to the plethora of formating in the available data and lack of a common ontology for labeling, it used to be difficult to create a large-scale dataset of medical imaging.
To fascilitate this process we created pipelines with reusable preprocessing steps to convert the data to a common format and a common labeling and masks ontology.
This dataset collects the results of these pipelines. The pipelines are also available as opensource on our GitHub.


### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

The source data in UMIE datasets comes from opensource datasets. We provide a complete list of source datasets with links to their original source below.
We did not collect any data ourselves.

#### Data Collection and Processing

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
The dataset combines images from 20+ open-source medical imaging datasets. Processing includes:

- Standardized preprocessing pipelines
- Conversion of various image formats (DICOM, PNG, etc.)
- Mask extraction from various formats (XML, etc.)
- Label standardization using RadLex ontology
- Unique identifier assignment
- Optional steps for handling missing annotations

For preprocessing, we created custom pipelines with reusable steps, allowing to simplify the process to drag and drop.
Refer to our GitHub repo for the exact code of the preprocessing pipelines.

#### Who are the source data producers?

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
The source data comes from various medical institutions and public medical imaging repositories, including:

- The Cancer Imaging Archive
- Stanford AIMI
- [The Cancer Imaging Archive](https://www.cancerimagingarchive.net/)
- [Grand Challenge](https://grand-challenge.org/)

Below you can find citations and links to the original sources of the datasets. We list only the datasets present on HuggingFace. Since not all source datasets in UMIE allow redistribution, some datasets requires downloading the data from source location and then use our pipelines on GitHub to preprocess it to UMIE format.
0. [KITS 23](https://github.com/neheller/kits23)
```
@misc{heller2023kits21,
      title={The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT}, 
      author={Nicholas Heller and Fabian Isensee and Dasha Trofimova and Resha Tejpaul and Zhongchen Zhao and Huai Chen and Lisheng Wang and Alex Golts and Daniel Khapun and Daniel Shats and Yoel Shoshan and Flora Gilboa-Solomon and Yasmeen George and Xi Yang and Jianpeng Zhang and Jing Zhang and Yong Xia and Mengran Wu and Zhiyang Liu and Ed Walczak and Sean McSweeney and Ranveer Vasdev and Chris Hornung and Rafat Solaiman and Jamee Schoephoerster and Bailey Abernathy and David Wu and Safa Abdulkadir and Ben Byun and Justice Spriggs and Griffin Struyk and Alexandra Austin and Ben Simpson and Michael Hagstrom and Sierra Virnig and John French and Nitin Venkatesh and Sarah Chan and Keenan Moore and Anna Jacobsen and Susan Austin and Mark Austin and Subodh Regmi and Nikolaos Papanikolopoulos and Christopher Weight},
      year={2023},
      eprint={2307.01984},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```
1. [CoronaHack](https://www.kaggle.com/datasets/praveengovi/coronahack-chest-xraydataset)
3. [Alzheimers Dataset](https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images)
4. [Brain Tumor Classification](https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri)
5. [COVID-19 Detection X-Ray](https://www.kaggle.com/datasets/darshan1504/covid19-detection-xray-dataset)
6. [Finding and Measuring Lungs in CT Data](https://www.kaggle.com/datasets/kmader/finding-lungs-in-ct-data)
7. [Brain CT Images with Intracranial Hemorrhage Masks](https://www.kaggle.com/datasets/vbookshelf/computed-tomography-ct-images)
8. [Liver and Liver Tumor Segmentation](https://www.kaggle.com/datasets/andrewmvd/lits-png)
9. [Brain MRI Images for Brain Tumor Detection](https://www.kaggle.com/datasets/jjprotube/brain-mri-images-for-brain-tumor-detection)
10. [Knee Osteoarthritis Dataset with Severity Grading](https://www.kaggle.com/datasets/shashwatwork/knee-osteoarthritis-dataset-with-severity)
11. [Chest X-ray 14](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
```
@inproceedings{wang2017chestx,
  title={Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases},
  author={Wang, Xiaosong and Peng, Yifan and Lu, Le and Lu, Zhiyong and Bagheri, Mohammadhadi and Summers, Ronald M},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2097--2106},
  year={2017}
}
```

Due to the licencing restrictions, we were not able to publish on Hugging Face all the datasets that UMIE supports.
Some datasets do not allow for redistributing tghe data in the modified format.
To replicate our complete dataset, go to our GitHub Repo and use the preprocessing pipelines for the datasets listed below:
10. [Brain Tumor Progression](https://www.cancerimagingarchive.net/collection/brain-tumor-progression/)
```
@article{schmainda2018data,
  title={Data from brain-tumor-progression},
  author={Schmainda, Kathleen and Prah, Melissa},
  journal={The Cancer Imaging Archive},
  volume={21},
  year={2018}
}
```
12. [COCA- Coronary Calcium and chest CTs](https://stanfordaimi.azurewebsites.net/datasets/e8ca74dc-8dd4-4340-815a-60b41f6cb2aa)
13. [BrainMetShare](https://aimi.stanford.edu/brainmetshare)



### Annotations [optional]

<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->

#### Annotation process

<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->

- Original annotations from source datasets are preserved
- Labels and masks are mapped to RadLex ontology IDs
- Consultation with radiologists for proper ontology mapping
- Multi-label classification approach where necessary

#### Who are the annotators?

<!-- This section describes the people or systems who created the annotations. -->

Original annotations come from the source datasets' creators. The mapping to RadLex ontology was performed by the UMIE team in consultation with radiologists.

#### Personal and Sensitive Information

<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
The dataset follows the distribution model of ImageNet — instead of redistributing the data directly, it provides:

- Instructions for downloading from original sources
- Preprocessing scripts for standardization
- Direct distribution only for datasets that allow redistribution

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

- Dataset quality depends on original source data quality
- Potential biases from source dataset collections
- Some labels may use more general RadLex IDs due to ontology limitations
- Varying levels of annotation detail across source datasets
### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

- Validate model performance on independent test sets before clinical use
- Consider potential biases in source datasets
- Review RadLex ID mappings for specific use cases
- Check original dataset licenses for usage restrictions

## Citation [optional]

If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

<!-- **BibTeX:**
```
@software{Klaudel_Towards_Medical_Foundational_2024,
author = {Klaudel, Barbara and Obuchowski, Aleksander and Frąckowski, Piotr and Komor, Andrzej and Bober, Kacper and Badyra, Wasyl},
month = jun,
title = {{Towards Medical Foundational Model -- a Unified Dataset for Pretraining Medical Imaging Models}},
url = {https://github.com/TheLion-ai/UMIE_datasets},
version = {0.0.0},
year = {2024}
}
```
**APA:**

Klaudel, B., Obuchowski, A., Frąckowski, P., Komor, A., Bober, K., & Badyra, W. (2024). Towards Medical Foundational Model -- a Unified Dataset for Pretraining Medical Imaging Models (Version 0.0.0) [Computer software]. https://github.com/TheLion-ai/UMIE_datasets

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->


<!-- ## More Information [optional]

[More Information Needed]
 -->
## Dataset Card Authors

Barbara Klaudel, Aleksander Obuchowski, Andrzej Komor, Piotr Frąckowski, Kacper Rogala, Kacper Knitter

## Dataset Card Contact
Barbara Klaudel (team leader)
[LinkedIn](https://www.linkedin.com/in/barbara-klaudel/)