File size: 20,620 Bytes
76c3dad be1b4ba 76c3dad 5384587 76c3dad 5384587 76c3dad 5384587 76c3dad 5384587 76c3dad 5384587 76c3dad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
---
license: cc-by-4.0
dataset_info:
- config_name: alzheimers
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 99043326.6
num_examples: 6400
download_size: 96727581
dataset_size: 99043326.6
- config_name: brain_tumor_classification
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 401417456.808
num_examples: 3264
download_size: 409873384
dataset_size: 401417456.808
- config_name: brain_tumor_detection
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 54944533.0
num_examples: 502
download_size: 26330695
dataset_size: 54944533.0
- config_name: brain_with_intracranial_hemorrhage
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: image
- name: labels
dtype: string
splits:
- name: train
num_bytes: 257983789.214
num_examples: 5001
download_size: 344778754
dataset_size: 257983789.214
- config_name: chest_xray14
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 45415592858.28
num_examples: 112120
download_size: 45065386546
dataset_size: 45415592858.28
- config_name: coronahack
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 1880047016.73
num_examples: 5910
download_size: 1272987706
dataset_size: 1880047016.73
- config_name: covid19_detection
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 1596155812.031
num_examples: 5073
download_size: 1181673460
dataset_size: 1596155812.031
- config_name: finding_and_measuring_lungs
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: image
- name: labels
dtype: string
splits:
- name: train
num_bytes: 17951746.0
num_examples: 267
download_size: 17843713
dataset_size: 17951746.0
- config_name: kits23
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: image
- name: labels
dtype: string
splits:
- name: train
num_bytes: 3497667100.483
num_examples: 32989
download_size: 3597493874
dataset_size: 3497667100.483
- config_name: knee_osteoarthritis
features:
- name: image
dtype: image
- name: dataset_name
dtype: string
- name: dataset_uid
dtype: string
- name: phase_name
dtype: string
- name: comparative
dtype: string
- name: study_id
dtype: string
- name: umie_id
dtype: string
- name: mask
dtype: 'null'
- name: labels
dtype: string
splits:
- name: train
num_bytes: 212468967.388
num_examples: 9786
download_size: 202960658
dataset_size: 212468967.388
configs:
- config_name: alzheimers
data_files:
- split: train
path: alzheimers/train-*
- config_name: brain_tumor_classification
data_files:
- split: train
path: brain_tumor_classification/train-*
- config_name: brain_tumor_detection
data_files:
- split: train
path: brain_tumor_detection/train-*
- config_name: brain_with_intracranial_hemorrhage
data_files:
- split: train
path: brain_with_intracranial_hemorrhage/train-*
- config_name: chest_xray14
data_files:
- split: train
path: chest_xray14/train-*
- config_name: coronahack
data_files:
- split: train
path: coronahack/train-*
- config_name: covid19_detection
data_files:
- split: train
path: covid19_detection/train-*
- config_name: finding_and_measuring_lungs
data_files:
- split: train
path: finding_and_measuring_lungs/train-*
- config_name: kits23
data_files:
- split: train
path: kits23/train-*
- config_name: knee_osteoarthritis
data_files:
- split: train
path: knee_osteoarthritis/train-*
---
# Dataset Card for Dataset Name
<!-- Provide a quick summary of the dataset. -->
UMIE (Unified Medical Imaging Ensemble) is currently the largest publicly available dataset of annotated radiological imaging, combining over 20 open-source datasets into a unified collection with standardized formatting and labeling based on the RadLex ontology.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
UMIE datasets combine more than 20 open-source medical imaging datasets, containing over 1 million radiological images across multiple modalities (CT, MRI, and X-ray). The dataset is unique in its standardized approach to medical image data organization, using unified preprocessing pipelines and the RadLex ontology for consistent labeling across all included datasets.
This resource combines images from 12 open-source datasets, spanning X-ray, CT, and MRI modalities. The dataset
includes images for both classification and segmentation tasks, with 40+ standardized labels and 15 annotation masks. We mapped all labels
and masks to the RadLex ontology, ensuring consistency across datasets. UMIE datasets aim to facilitate the development of more robust and generalizable medical foundation
models akin to those in general-purpose computer vision.
Due to redistribution restrictions of some opensource datasets, we release only a subset of UMIE datasets on Hugging Face. To reproduce our entire datasets,
go to our repo on GitHub. In our repo, we collect the unified preprocessing pipeline that standardizes the heterogeneous source datasets into a common UMIE
format, addressing challenges such as diverse file types, annotation styles, and labeling ontologies. The preprocessing scripts are modular and
extensible, so that you can use existing preprocessing steps to easily incorporate new datasets.
- **Curated by:** TheLion.AI
<!-- - **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed] -->
- **Language(s) (NLP):** English
- **License:** cc-by-4.0
Please refer to the source dataset licencing.
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** https://github.com/TheLion-ai/UMIE_datasets
- **Paper [optional]:** https://medium.com/thelion-ai/umie-datasets-83c04305b069
- **Demo [optional]:** TBA
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
- Training and evaluation of medical imaging AI models
- Development of foundation models for medical imaging
- Medical image classification and segmentation tasks
- Research in medical computer vision
- Benchmark dataset for medical imaging tasks
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
Clinical diagnosis or medical decision-making without proper validation
Applications requiring real-time processing without proper testing
Use cases requiring additional modalities not included in the dataset
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
- Standardized file organization
- Consistent image formats (converted from various sources including DICOM)
- Unified mask formats
- Labels following RadLex ontology
- Unique identifiers across all datasets
The dataset comprises of several opensource datasets. Each sub dataset is treated as a separate split.
The dataset file tree looks as follows:
[sub dataset ID]_[sub dataset name]->[phase name e.g."CT arterial"]->Images / Masks directory
The information about individual imgs, such as whether it has a mask or labels is stored in a jsonl file. Each sub dataset has its own .jsonl file.
You can check the json file to find which images come from the same study.
Each image in the dataset has a unique identifier. If an image has a mask, mask has the same file name as its respective image.
For a complete list of labels in UMIE check labels.py
For a complete list of masks with their encoding check masks.py
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
The dataset was created to address several key challenges in medical AI:
- Lack of large-scale, standardized medical imaging datasets
- Inconsistent formatting across existing datasets
- Absence of common ontology for medical image annotation
- Need for foundation models in medical imaging
Although the number of opensource medical datasets is growing, we are lacking data formating and labeling standards.
Due to the plethora of formating in the available data and lack of a common ontology for labeling, it used to be difficult to create a large-scale dataset of medical imaging.
To fascilitate this process we created pipelines with reusable preprocessing steps to convert the data to a common format and a common labeling and masks ontology.
This dataset collects the results of these pipelines. The pipelines are also available as opensource on our GitHub.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
The source data in UMIE datasets comes from opensource datasets. We provide a complete list of source datasets with links to their original source below.
We did not collect any data ourselves.
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
The dataset combines images from 20+ open-source medical imaging datasets. Processing includes:
- Standardized preprocessing pipelines
- Conversion of various image formats (DICOM, PNG, etc.)
- Mask extraction from various formats (XML, etc.)
- Label standardization using RadLex ontology
- Unique identifier assignment
- Optional steps for handling missing annotations
For preprocessing, we created custom pipelines with reusable steps, allowing to simplify the process to drag and drop.
Refer to our GitHub repo for the exact code of the preprocessing pipelines.
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
The source data comes from various medical institutions and public medical imaging repositories, including:
- The Cancer Imaging Archive
- Stanford AIMI
- [The Cancer Imaging Archive](https://www.cancerimagingarchive.net/)
- [Grand Challenge](https://grand-challenge.org/)
Below you can find citations and links to the original sources of the datasets. We list only the datasets present on HuggingFace. Since not all source datasets in UMIE allow redistribution, some datasets requires downloading the data from source location and then use our pipelines on GitHub to preprocess it to UMIE format.
0. [KITS 23](https://github.com/neheller/kits23)
```
@misc{heller2023kits21,
title={The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT},
author={Nicholas Heller and Fabian Isensee and Dasha Trofimova and Resha Tejpaul and Zhongchen Zhao and Huai Chen and Lisheng Wang and Alex Golts and Daniel Khapun and Daniel Shats and Yoel Shoshan and Flora Gilboa-Solomon and Yasmeen George and Xi Yang and Jianpeng Zhang and Jing Zhang and Yong Xia and Mengran Wu and Zhiyang Liu and Ed Walczak and Sean McSweeney and Ranveer Vasdev and Chris Hornung and Rafat Solaiman and Jamee Schoephoerster and Bailey Abernathy and David Wu and Safa Abdulkadir and Ben Byun and Justice Spriggs and Griffin Struyk and Alexandra Austin and Ben Simpson and Michael Hagstrom and Sierra Virnig and John French and Nitin Venkatesh and Sarah Chan and Keenan Moore and Anna Jacobsen and Susan Austin and Mark Austin and Subodh Regmi and Nikolaos Papanikolopoulos and Christopher Weight},
year={2023},
eprint={2307.01984},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
1. [CoronaHack](https://www.kaggle.com/datasets/praveengovi/coronahack-chest-xraydataset)
3. [Alzheimers Dataset](https://www.kaggle.com/datasets/tourist55/alzheimers-dataset-4-class-of-images)
4. [Brain Tumor Classification](https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri)
5. [COVID-19 Detection X-Ray](https://www.kaggle.com/datasets/darshan1504/covid19-detection-xray-dataset)
6. [Finding and Measuring Lungs in CT Data](https://www.kaggle.com/datasets/kmader/finding-lungs-in-ct-data)
7. [Brain CT Images with Intracranial Hemorrhage Masks](https://www.kaggle.com/datasets/vbookshelf/computed-tomography-ct-images)
8. [Liver and Liver Tumor Segmentation](https://www.kaggle.com/datasets/andrewmvd/lits-png)
9. [Brain MRI Images for Brain Tumor Detection](https://www.kaggle.com/datasets/jjprotube/brain-mri-images-for-brain-tumor-detection)
10. [Knee Osteoarthritis Dataset with Severity Grading](https://www.kaggle.com/datasets/shashwatwork/knee-osteoarthritis-dataset-with-severity)
11. [Chest X-ray 14](https://nihcc.app.box.com/v/ChestXray-NIHCC/folder/36938765345)
```
@inproceedings{wang2017chestx,
title={Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases},
author={Wang, Xiaosong and Peng, Yifan and Lu, Le and Lu, Zhiyong and Bagheri, Mohammadhadi and Summers, Ronald M},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2097--2106},
year={2017}
}
```
Due to the licencing restrictions, we were not able to publish on Hugging Face all the datasets that UMIE supports.
Some datasets do not allow for redistributing tghe data in the modified format.
To replicate our complete dataset, go to our GitHub Repo and use the preprocessing pipelines for the datasets listed below:
10. [Brain Tumor Progression](https://www.cancerimagingarchive.net/collection/brain-tumor-progression/)
```
@article{schmainda2018data,
title={Data from brain-tumor-progression},
author={Schmainda, Kathleen and Prah, Melissa},
journal={The Cancer Imaging Archive},
volume={21},
year={2018}
}
```
12. [COCA- Coronary Calcium and chest CTs](https://stanfordaimi.azurewebsites.net/datasets/e8ca74dc-8dd4-4340-815a-60b41f6cb2aa)
13. [BrainMetShare](https://aimi.stanford.edu/brainmetshare)
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
- Original annotations from source datasets are preserved
- Labels and masks are mapped to RadLex ontology IDs
- Consultation with radiologists for proper ontology mapping
- Multi-label classification approach where necessary
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
Original annotations come from the source datasets' creators. The mapping to RadLex ontology was performed by the UMIE team in consultation with radiologists.
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
The dataset follows the distribution model of ImageNet — instead of redistributing the data directly, it provides:
- Instructions for downloading from original sources
- Preprocessing scripts for standardization
- Direct distribution only for datasets that allow redistribution
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
- Dataset quality depends on original source data quality
- Potential biases from source dataset collections
- Some labels may use more general RadLex IDs due to ontology limitations
- Varying levels of annotation detail across source datasets
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
- Validate model performance on independent test sets before clinical use
- Consider potential biases in source datasets
- Review RadLex ID mappings for specific use cases
- Check original dataset licenses for usage restrictions
## Citation [optional]
If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
<!-- **BibTeX:**
```
@software{Klaudel_Towards_Medical_Foundational_2024,
author = {Klaudel, Barbara and Obuchowski, Aleksander and Frąckowski, Piotr and Komor, Andrzej and Bober, Kacper and Badyra, Wasyl},
month = jun,
title = {{Towards Medical Foundational Model -- a Unified Dataset for Pretraining Medical Imaging Models}},
url = {https://github.com/TheLion-ai/UMIE_datasets},
version = {0.0.0},
year = {2024}
}
```
**APA:**
Klaudel, B., Obuchowski, A., Frąckowski, P., Komor, A., Bober, K., & Badyra, W. (2024). Towards Medical Foundational Model -- a Unified Dataset for Pretraining Medical Imaging Models (Version 0.0.0) [Computer software]. https://github.com/TheLion-ai/UMIE_datasets
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
<!-- ## More Information [optional]
[More Information Needed]
-->
## Dataset Card Authors
Barbara Klaudel, Aleksander Obuchowski, Andrzej Komor, Piotr Frąckowski, Kacper Rogala, Kacper Knitter
## Dataset Card Contact
Barbara Klaudel (team leader)
[LinkedIn](https://www.linkedin.com/in/barbara-klaudel/) |