from datasets import load_dataset dataset = load_dataset("allenai/s2orc", split="train[:1%]", num_proc=20) import spacy import spacy_fastlang nlp = spacy.load("en_core_web_sm") nlp.disable_pipes(nlp.pipe_names) nlp.add_pipe("language_detector") def has_abstract(example): if "paperAbstract" in example.keys() and example["paperAbstract"] is not None \ and len(example["paperAbstract"].split())>5: doc = nlp(example["paperAbstract"]) if doc._.language == 'en' and doc._.language_score >= 0.8: return True return False dataset_sub = dataset.filter(has_abstract) dataset_sub.push_to_hub("leminda-ai/s2orc_small",split='train',token='XXXXXXXXXXXX')