Commit
·
213288b
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- c4.py +331 -0
- c4_utils.py +489 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
c4.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""C4 dataset based on Common Crawl."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import json
|
22 |
+
import logging
|
23 |
+
import os
|
24 |
+
|
25 |
+
import datasets
|
26 |
+
|
27 |
+
from .c4_utils import (
|
28 |
+
dedupe_urls,
|
29 |
+
filter_by_webtextlike,
|
30 |
+
get_clean_page_fn,
|
31 |
+
get_counter_inc_fn,
|
32 |
+
get_hashed_url_filter_fn,
|
33 |
+
is_language,
|
34 |
+
is_realnews_domain,
|
35 |
+
is_valid_length,
|
36 |
+
normalize_url,
|
37 |
+
remove_duplicate_text,
|
38 |
+
split_wet_file,
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
_DESCRIPTION = """\
|
43 |
+
A colossal, cleaned version of Common Crawl's web crawl corpus.
|
44 |
+
|
45 |
+
Based on Common Crawl dataset: "https://commoncrawl.org"
|
46 |
+
|
47 |
+
Due to the overhead of cleaning the dataset, it is recommend you prepare it with
|
48 |
+
a distributed service like Cloud Dataflow. More info at
|
49 |
+
https://www.tensorflow.org/datasets/beam_datasets.
|
50 |
+
"""
|
51 |
+
_CITATION = """
|
52 |
+
@article{2019t5,
|
53 |
+
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
|
54 |
+
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
|
55 |
+
journal = {arXiv e-prints},
|
56 |
+
year = {2019},
|
57 |
+
archivePrefix = {arXiv},
|
58 |
+
eprint = {1910.10683},
|
59 |
+
}
|
60 |
+
"""
|
61 |
+
_VERSION = datasets.Version("2.3.0", "Deduplicate lines within a page.")
|
62 |
+
|
63 |
+
_DOWNLOAD_HOST = "https://commoncrawl.s3.amazonaws.com"
|
64 |
+
_WET_PATH_URL = "https://commoncrawl.s3.amazonaws.com/crawl-data/CC-MAIN-{cc_version}/wet.paths.gz"
|
65 |
+
_REALNEWS_DOMAINS_URL = "https://raw.githubusercontent.com/rowanz/grover/38f7184bd87237ae2d3bc330b99f1e2e246f6d51/realnews/domain_to_allowed_subdomains.json"
|
66 |
+
_BADWORDS_URL = "https://raw.githubusercontent.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words/25e679f03d96baa721cde20db9944649e8d0a844/{lang}"
|
67 |
+
_CHECKSUMS_URL = "https://storage.googleapis.com/tfds-data/manual_checksums/c4.txt"
|
68 |
+
_OPENWEBTEXT_URLS_ZIP = "OpenWebText.zip"
|
69 |
+
_OPENWEBTEXT_URLS_URL = "https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ"
|
70 |
+
_OPENWEBTEXT_URLS_FILE_PATTERN = "OpenWebText/Version 1/URLs/*.txt"
|
71 |
+
|
72 |
+
_DEFAULT_CC_VERSIONS = ("2019-18",) # April 2019
|
73 |
+
_DEFAULT_WEBTEXTLIKE_CC_VERSIONS = ( # August 2018 - July 2019
|
74 |
+
"2018-34",
|
75 |
+
"2018-39",
|
76 |
+
"2018-43",
|
77 |
+
"2018-47",
|
78 |
+
"2018-51",
|
79 |
+
"2019-04",
|
80 |
+
"2019-09",
|
81 |
+
"2019-13",
|
82 |
+
"2019-18",
|
83 |
+
"2019-22",
|
84 |
+
"2019-26",
|
85 |
+
"2019-30",
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
class C4Config(datasets.BuilderConfig):
|
90 |
+
"""BuilderConfig for C4 dataset."""
|
91 |
+
|
92 |
+
def __init__(self, language, cc_versions=None, clean=True, realnewslike=False, webtextlike=False, **kwargs):
|
93 |
+
"""BuilderConfig for C4.
|
94 |
+
|
95 |
+
Args:
|
96 |
+
language: string, the language code, or "all" to disable language
|
97 |
+
filtering.
|
98 |
+
cc_versions: tuple(string), a collection of versions of Common Crawl to
|
99 |
+
use as the raw source text. Set to None to use defaults.
|
100 |
+
clean: bool, whether to clean the dataset for badwords, duplications, etc.
|
101 |
+
realnewslike: bool, whether to limit to news domains as compiled by
|
102 |
+
RealNews.
|
103 |
+
webtextlike: bool, whether to limit to WebText-like URLs.
|
104 |
+
**kwargs: keyword arguments forwarded to super.
|
105 |
+
"""
|
106 |
+
name_parts = [language]
|
107 |
+
if cc_versions:
|
108 |
+
name_parts.append("_".join(cc_versions))
|
109 |
+
if not clean:
|
110 |
+
name_parts.append("noclean")
|
111 |
+
if realnewslike:
|
112 |
+
name_parts.append("realnewslike")
|
113 |
+
if webtextlike:
|
114 |
+
name_parts.append("webtextlike")
|
115 |
+
name = ".".join(name_parts)
|
116 |
+
super(C4Config, self).__init__(name=name, version=_VERSION, **kwargs)
|
117 |
+
self.lang = language
|
118 |
+
self.cc_versions = cc_versions or (_DEFAULT_WEBTEXTLIKE_CC_VERSIONS if webtextlike else _DEFAULT_CC_VERSIONS)
|
119 |
+
self.clean = clean
|
120 |
+
self.realnewslike = realnewslike
|
121 |
+
self.webtextlike = webtextlike
|
122 |
+
|
123 |
+
|
124 |
+
class C4(datasets.BeamBasedBuilder):
|
125 |
+
"""C4 dataset based on Common Crawl."""
|
126 |
+
|
127 |
+
BUILDER_CONFIGS = [
|
128 |
+
C4Config(language="en", description="English C4 dataset."),
|
129 |
+
C4Config(
|
130 |
+
language="en",
|
131 |
+
clean=False,
|
132 |
+
description="Disables all cleaning (deduplication, removal based on bad words, " "etc.)",
|
133 |
+
),
|
134 |
+
C4Config(
|
135 |
+
language="en",
|
136 |
+
realnewslike=True,
|
137 |
+
description="Filters from the default config to only include content from the "
|
138 |
+
"domains used in the 'RealNews' dataset (Zellers et al., 2019).",
|
139 |
+
),
|
140 |
+
C4Config(
|
141 |
+
language="en",
|
142 |
+
webtextlike=True,
|
143 |
+
description="Filters from the default config to only include content from the "
|
144 |
+
"URLs in OpenWebText (https://github.com/jcpeterson/openwebtext).",
|
145 |
+
),
|
146 |
+
]
|
147 |
+
|
148 |
+
def manual_download_instructions(self):
|
149 |
+
return """\
|
150 |
+
For the WebText-like config, you must manually download 'OpenWebText.zip'
|
151 |
+
(from https://mega.nz/#F!EZZD0YwJ!9_PlEQzdMVLaNdKv_ICNVQ) and the Common Crawl
|
152 |
+
WET files from August 2018 to July 2019
|
153 |
+
(https://commoncrawl.org/the-data/get-started/) and place them in the
|
154 |
+
`data_dir`.
|
155 |
+
"""
|
156 |
+
|
157 |
+
def _info(self):
|
158 |
+
features = {
|
159 |
+
"text": datasets.Value("string"),
|
160 |
+
"url": datasets.Value("string"),
|
161 |
+
"content-type": datasets.Value("string"),
|
162 |
+
"content-length": datasets.Value("string"),
|
163 |
+
"timestamp": datasets.Value("string"),
|
164 |
+
}
|
165 |
+
return datasets.DatasetInfo(
|
166 |
+
description=_DESCRIPTION,
|
167 |
+
features=datasets.Features(features),
|
168 |
+
citation=_CITATION,
|
169 |
+
homepage="https://github.com/google-research/text-to-text-transfer-transformer#datasets",
|
170 |
+
)
|
171 |
+
|
172 |
+
def _split_generators(self, dl_manager, pipeline):
|
173 |
+
import apache_beam as beam
|
174 |
+
|
175 |
+
# We will automatically down the default CC version(s), but others need to
|
176 |
+
# be manually downloaded.
|
177 |
+
cc_versions = set(self.config.cc_versions)
|
178 |
+
auto_cc_versions = cc_versions & set(_DEFAULT_CC_VERSIONS)
|
179 |
+
manual_cc_versions = cc_versions - set(_DEFAULT_CC_VERSIONS)
|
180 |
+
|
181 |
+
files_to_download = {}
|
182 |
+
files_to_download["wet_path_urls"] = [
|
183 |
+
_WET_PATH_URL.format(cc_version=cc_version) for cc_version in auto_cc_versions
|
184 |
+
]
|
185 |
+
if self.config.clean:
|
186 |
+
files_to_download["badwords"] = _BADWORDS_URL.format(lang=self.config.lang)
|
187 |
+
if self.config.realnewslike:
|
188 |
+
files_to_download["realnews_domains"] = _REALNEWS_DOMAINS_URL
|
189 |
+
file_paths = dl_manager.download_and_extract(files_to_download)
|
190 |
+
|
191 |
+
if self.config.webtextlike:
|
192 |
+
owt_path = os.path.join(dl_manager.manual_dir, _OPENWEBTEXT_URLS_ZIP)
|
193 |
+
if not os.path.exists(owt_path):
|
194 |
+
raise FileNotFoundError(
|
195 |
+
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes a file name {}. Manual download instructions: {})".format(
|
196 |
+
owt_path, _OPENWEBTEXT_URLS_ZIP, self.manual_download_instructions
|
197 |
+
)
|
198 |
+
)
|
199 |
+
file_paths["openwebtext_urls_zip"] = dl_manager.extract(owt_path)
|
200 |
+
|
201 |
+
wet_urls = []
|
202 |
+
for wet_path_url in file_paths["wet_path_urls"]:
|
203 |
+
with open(wet_path_url, "r", encoding="utf-8") as f:
|
204 |
+
wet_urls.extend(["%s/%s" % (_DOWNLOAD_HOST, l.strip()) for l in f])
|
205 |
+
file_paths["wet_urls"] = wet_urls
|
206 |
+
file_paths["wet_files"] = []
|
207 |
+
|
208 |
+
for cc_version in manual_cc_versions:
|
209 |
+
cc_dir = os.path.join(dl_manager.manual_dir, cc_version)
|
210 |
+
wet_files = beam.io.filesystems.FileSystems.match(os.path.join(cc_dir, "*.warc.wet.gz"))
|
211 |
+
if not os.path.exists(cc_dir):
|
212 |
+
raise FileNotFoundError(
|
213 |
+
"{} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('c4', data_dir=...)` that includes the files {}. Manual download instructions: {})".format(
|
214 |
+
cc_dir, "*.warc.wet.gz", self.manual_download_instructions
|
215 |
+
)
|
216 |
+
)
|
217 |
+
logging.info("Adding %d WET files for manually downloaded version %s.", len(wet_files), cc_version)
|
218 |
+
file_paths["wet_files"].extend(wet_files)
|
219 |
+
|
220 |
+
page_content_pcollection = self._get_page_content(pipeline, file_paths, dl_manager)
|
221 |
+
return [
|
222 |
+
datasets.SplitGenerator(
|
223 |
+
name=datasets.Split.TRAIN,
|
224 |
+
gen_kwargs=dict(
|
225 |
+
split="train",
|
226 |
+
page_content=page_content_pcollection,
|
227 |
+
hashed_url_predicate=lambda x: x % 1000 != 0, # 99.9%
|
228 |
+
),
|
229 |
+
),
|
230 |
+
datasets.SplitGenerator(
|
231 |
+
name=datasets.Split.VALIDATION,
|
232 |
+
gen_kwargs=dict(
|
233 |
+
split="validation",
|
234 |
+
page_content=page_content_pcollection,
|
235 |
+
hashed_url_predicate=lambda x: x % 1000 == 0, # 0.01%
|
236 |
+
),
|
237 |
+
),
|
238 |
+
]
|
239 |
+
|
240 |
+
def _get_page_content(self, pipeline, file_paths, dl_manager):
|
241 |
+
"""Build PCollection of un-split page content."""
|
242 |
+
import apache_beam as beam
|
243 |
+
|
244 |
+
wet_file_paths = pipeline | "create_wet_files" >> beam.Create(file_paths["wet_files"])
|
245 |
+
if "wet_urls" in file_paths:
|
246 |
+
|
247 |
+
def download_url(url, downloader, pipeline):
|
248 |
+
path = downloader.download(url)
|
249 |
+
if not pipeline.is_local():
|
250 |
+
path = downloader.ship_files_with_pipeline(path, pipeline)
|
251 |
+
return path
|
252 |
+
|
253 |
+
dl_wet_file_paths = (
|
254 |
+
pipeline
|
255 |
+
| "create_wet_urls" >> beam.Create(file_paths["wet_urls"])
|
256 |
+
| beam.Map(download_url, downloader=dl_manager, pipeline=pipeline)
|
257 |
+
)
|
258 |
+
wet_file_paths = (wet_file_paths, dl_wet_file_paths) | beam.Flatten()
|
259 |
+
|
260 |
+
# Parse WET files and filter by length.
|
261 |
+
# Output: url, text
|
262 |
+
page_content = wet_file_paths | beam.FlatMap(split_wet_file) | beam.Filter(is_valid_length)
|
263 |
+
|
264 |
+
# Optionally filter for RealNews domains.
|
265 |
+
# Output: url, text
|
266 |
+
if self.config.realnewslike:
|
267 |
+
with open(file_paths["realnews_domains"], "r", encoding="utf-8") as f:
|
268 |
+
realnews_domains = json.load(f)
|
269 |
+
page_content = page_content | beam.Filter(is_realnews_domain, realnews_domains)
|
270 |
+
|
271 |
+
# Normalize and deduplicate by URL.
|
272 |
+
# Output: url, text
|
273 |
+
page_content = (
|
274 |
+
page_content
|
275 |
+
| "normalize_url" >> beam.Map(normalize_url)
|
276 |
+
| "group_url" >> beam.GroupByKey()
|
277 |
+
| beam.Map(dedupe_urls)
|
278 |
+
)
|
279 |
+
|
280 |
+
# Optionally filter for WebText-like URLs.
|
281 |
+
# Output: url, text
|
282 |
+
if self.config.webtextlike:
|
283 |
+
webtextlike_urls = (
|
284 |
+
pipeline
|
285 |
+
| "read_webtextlike_urls"
|
286 |
+
>> beam.io.ReadFromText(
|
287 |
+
os.path.join(file_paths["openwebtext_urls_zip"], _OPENWEBTEXT_URLS_FILE_PATTERN)
|
288 |
+
)
|
289 |
+
| "add_dummy_page" >> beam.Map(lambda x: (x, ""))
|
290 |
+
| "normal_webtext_url" >> beam.Map(normalize_url)
|
291 |
+
)
|
292 |
+
page_content = (
|
293 |
+
{"text": page_content, "webtextlike_urls": webtextlike_urls}
|
294 |
+
| "group_webtextlike_urls" >> beam.CoGroupByKey()
|
295 |
+
| beam.FlatMap(filter_by_webtextlike)
|
296 |
+
)
|
297 |
+
|
298 |
+
# Optionally clean pages of badwords, boilerpolate text, and duplicate
|
299 |
+
# spans of sentences.
|
300 |
+
# Output: url, text
|
301 |
+
if self.config.clean:
|
302 |
+
with open(file_paths["badwords"], "r", encoding="utf-8") as f:
|
303 |
+
badwords = [l.strip() for l in f]
|
304 |
+
page_content = page_content | "clean_pages" >> beam.FlatMap(get_clean_page_fn(badwords))
|
305 |
+
page_content = remove_duplicate_text(page_content)
|
306 |
+
|
307 |
+
# Optionally filter out non-`language` pages. We do this after cleaning
|
308 |
+
# since it may change the predominate language.
|
309 |
+
if self.config.lang != "all":
|
310 |
+
page_content |= beam.Filter(is_language, language=self.config.lang)
|
311 |
+
|
312 |
+
return page_content
|
313 |
+
|
314 |
+
def _build_pcollection(self, unused_pipeline, split, page_content, hashed_url_predicate):
|
315 |
+
import apache_beam as beam
|
316 |
+
|
317 |
+
def _emit_examples(el):
|
318 |
+
get_counter_inc_fn(split)("examples")
|
319 |
+
_, features = el
|
320 |
+
return (
|
321 |
+
features["url"],
|
322 |
+
{
|
323 |
+
"url": features["url"],
|
324 |
+
"text": features["text"],
|
325 |
+
"content-type": features["content-type"],
|
326 |
+
"content-length": features["content-length"],
|
327 |
+
"timestamp": features["timestamp"],
|
328 |
+
},
|
329 |
+
)
|
330 |
+
|
331 |
+
return page_content | beam.Filter(get_hashed_url_filter_fn(hashed_url_predicate)) | beam.Map(_emit_examples)
|
c4_utils.py
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
# Lint as: python3
|
17 |
+
"""Utilities for generating the C4 dataset."""
|
18 |
+
|
19 |
+
from __future__ import absolute_import, division, print_function
|
20 |
+
|
21 |
+
import functools
|
22 |
+
import gzip
|
23 |
+
import hashlib
|
24 |
+
import io
|
25 |
+
import re
|
26 |
+
import threading
|
27 |
+
|
28 |
+
|
29 |
+
# WET file constants
|
30 |
+
_PAGE_DELIMITER = "WARC/1.0"
|
31 |
+
_URL_KEY = "WARC-Target-URI:"
|
32 |
+
_URL_DATE = "WARC-Date:"
|
33 |
+
_CONTENT_TYPE = "Content-Type:"
|
34 |
+
_CONTENT_LEN = "Content-Length:"
|
35 |
+
_METADATA_PREFIXES = ("WARC", "CONTENT-", "Content-")
|
36 |
+
|
37 |
+
# Filters
|
38 |
+
_MIN_WORDS_PER_LINE = 5
|
39 |
+
_MIN_NUM_SENTENCES = 3
|
40 |
+
_MAX_WORD_LENGTH = 1000
|
41 |
+
_END_MARKS = (".", "?", "!", '"')
|
42 |
+
_ELLIPSIS = "..."
|
43 |
+
_POLICY_SUBSTRINGS = [
|
44 |
+
"terms of use",
|
45 |
+
"privacy policy",
|
46 |
+
"cookie policy",
|
47 |
+
"uses cookies",
|
48 |
+
"use of cookies",
|
49 |
+
"use cookies",
|
50 |
+
]
|
51 |
+
|
52 |
+
# Memoized sentence tokenizer.
|
53 |
+
_SENTENCE_TOKENIZER = None
|
54 |
+
|
55 |
+
|
56 |
+
def get_counter_inc_fn(namespace):
|
57 |
+
import apache_beam as beam
|
58 |
+
|
59 |
+
def counter_inc_fn(counter, amt=1):
|
60 |
+
beam.metrics.Metrics.counter(namespace, counter).inc(amt)
|
61 |
+
|
62 |
+
return counter_inc_fn
|
63 |
+
|
64 |
+
|
65 |
+
def get_hashed_url_filter_fn(predicate_fn):
|
66 |
+
import tensorflow.compat.v2 as tf
|
67 |
+
|
68 |
+
def filter_fn(el):
|
69 |
+
url, _ = el
|
70 |
+
val = int(hashlib.md5(tf.compat.as_text(url).encode("utf-8")).hexdigest(), 16)
|
71 |
+
return predicate_fn(val)
|
72 |
+
|
73 |
+
return filter_fn
|
74 |
+
|
75 |
+
|
76 |
+
def _load_sentence_tokenizer():
|
77 |
+
"""Returns a sentence tokenization function."""
|
78 |
+
# Lock to avoid a race-condition in the creation of the download directory.
|
79 |
+
with threading.Lock():
|
80 |
+
import nltk
|
81 |
+
|
82 |
+
nltk.download("punkt")
|
83 |
+
return nltk.data.load("nltk:tokenizers/punkt/english.pickle")
|
84 |
+
|
85 |
+
|
86 |
+
def _get_sentences(text):
|
87 |
+
import tensorflow.compat.v2 as tf
|
88 |
+
|
89 |
+
global _SENTENCE_TOKENIZER
|
90 |
+
if not _SENTENCE_TOKENIZER:
|
91 |
+
_SENTENCE_TOKENIZER = _load_sentence_tokenizer()
|
92 |
+
return list(_SENTENCE_TOKENIZER.tokenize(tf.compat.as_text(text)))
|
93 |
+
|
94 |
+
|
95 |
+
def _get_sentences_by_line(text, lower=False):
|
96 |
+
sentences = []
|
97 |
+
for line in text.splitlines():
|
98 |
+
sentences.append([s.lower() if lower else s for s in _get_sentences(line)])
|
99 |
+
return sentences
|
100 |
+
|
101 |
+
|
102 |
+
def is_language(page, language, min_probability=0.99):
|
103 |
+
"""Returns True iff text is in `language` with at least `min_probability`."""
|
104 |
+
unused_url, features = page
|
105 |
+
text = features["text"]
|
106 |
+
|
107 |
+
counter_inc_fn = get_counter_inc_fn("detected-lang")
|
108 |
+
|
109 |
+
# Make langdetect predictions deterministic.
|
110 |
+
import langdetect
|
111 |
+
|
112 |
+
langdetect.DetectorFactory.seed = 0
|
113 |
+
try:
|
114 |
+
predictions = langdetect.detect_langs(text)
|
115 |
+
except langdetect.lang_detect_exception.LangDetectException:
|
116 |
+
counter_inc_fn("langdetect-exception")
|
117 |
+
return False
|
118 |
+
if not predictions:
|
119 |
+
counter_inc_fn("page-filtered-nolangpredictions")
|
120 |
+
return False
|
121 |
+
best_prediction = predictions[0]
|
122 |
+
if best_prediction.prob < min_probability:
|
123 |
+
counter_inc_fn("page-filtered-lowlangdetectconf")
|
124 |
+
return False
|
125 |
+
if best_prediction.lang != language:
|
126 |
+
counter_inc_fn("page-filtered-ignoredlang")
|
127 |
+
counter_inc_fn("page-filtered-ignoredlang-%s" % (best_prediction.lang))
|
128 |
+
return False
|
129 |
+
counter_inc_fn("page-emited-%s" % best_prediction.lang)
|
130 |
+
return True
|
131 |
+
|
132 |
+
|
133 |
+
def get_clean_page_fn(badwords=None):
|
134 |
+
"""Returns `clean_page` with pre-compiled badword and citation regexes."""
|
135 |
+
# Used to filter citation from Wikipedia pages (among others).
|
136 |
+
citation_regex = re.compile(r"\[\d*\]|\[edit\]|\[citation needed\]")
|
137 |
+
if badwords:
|
138 |
+
badwords_regex = re.compile("[^a-z]({})[^a-z]".format("|".join(badwords or [])))
|
139 |
+
else:
|
140 |
+
badwords_regex = None
|
141 |
+
return functools.partial(clean_page, citation_regex=citation_regex, badwords_regex=badwords_regex)
|
142 |
+
|
143 |
+
|
144 |
+
def clean_page(
|
145 |
+
url_and_features,
|
146 |
+
citation_regex,
|
147 |
+
badwords_regex=None,
|
148 |
+
counter_inc_fn=None,
|
149 |
+
min_words_per_line=_MIN_WORDS_PER_LINE,
|
150 |
+
min_num_sentences=_MIN_NUM_SENTENCES,
|
151 |
+
max_word_length=_MAX_WORD_LENGTH,
|
152 |
+
):
|
153 |
+
"""Cleans a CommonCrawl page, yielding nothing if it should be skipped.
|
154 |
+
|
155 |
+
Cleaning removes lines with no end marks or with too few words. After line
|
156 |
+
filtering, pages are filtered out if they have too few sentences based on a
|
157 |
+
simple count of end marks.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
url_and_features: tuple(string, dict), the url and features of the page.
|
161 |
+
citation_regex: Regex to use for finding Wikipedia-like citations to filter.
|
162 |
+
badwords_regex: Regex to use for finding badwords. Default None, which means
|
163 |
+
don't apply badwords filtering.
|
164 |
+
counter_inc_fn: function, a function taking the name of a counter to be
|
165 |
+
incremented and the (optional) amount. Defaults to a beam Metric counter.
|
166 |
+
min_words_per_line: int, the minimum number of words a line needs to not be
|
167 |
+
removed.
|
168 |
+
min_num_sentences: int, the minimum number of sentences a page needs to not
|
169 |
+
be skipped.
|
170 |
+
max_word_length: int, the maximum number of characters allowed in a word.
|
171 |
+
Lines containing a word with too many characters are removed.
|
172 |
+
Yields:
|
173 |
+
The url and cleaned text for the page.
|
174 |
+
"""
|
175 |
+
url, features = url_and_features
|
176 |
+
text = features["text"]
|
177 |
+
|
178 |
+
if not counter_inc_fn:
|
179 |
+
counter_inc_fn = get_counter_inc_fn("clean-page")
|
180 |
+
|
181 |
+
lines = text.splitlines()
|
182 |
+
valid_lines = []
|
183 |
+
num_sentences = 0
|
184 |
+
|
185 |
+
def line_has_too_long_word(line):
|
186 |
+
for word in line.split():
|
187 |
+
if len(word) > max_word_length:
|
188 |
+
return True
|
189 |
+
return False
|
190 |
+
|
191 |
+
for line in lines:
|
192 |
+
line = line.strip()
|
193 |
+
if line_has_too_long_word(line):
|
194 |
+
counter_inc_fn("lines-with-too-long-word")
|
195 |
+
continue
|
196 |
+
line = citation_regex.sub("", line)
|
197 |
+
if not line.endswith(_END_MARKS) or line.endswith(_ELLIPSIS):
|
198 |
+
counter_inc_fn("lines-no-endmark")
|
199 |
+
continue
|
200 |
+
if len(line.split()) < min_words_per_line:
|
201 |
+
counter_inc_fn("lines-too-short")
|
202 |
+
continue
|
203 |
+
line_lower = line.lower()
|
204 |
+
# Remove documents which contain lorem ipsum
|
205 |
+
if "lorem ipsum" in line_lower:
|
206 |
+
counter_inc_fn("filtered-page-loremipsum")
|
207 |
+
return
|
208 |
+
# Remove "javascript must be enabled" notices
|
209 |
+
if "javascript" in line_lower:
|
210 |
+
counter_inc_fn("lines-javascript")
|
211 |
+
continue
|
212 |
+
# Remove docs which probably contain javascript code
|
213 |
+
if "{" in line:
|
214 |
+
counter_inc_fn("filtered-page-squigglybracket")
|
215 |
+
return
|
216 |
+
# Remove policy lines
|
217 |
+
if any(p in line_lower for p in _POLICY_SUBSTRINGS):
|
218 |
+
counter_inc_fn("lines-policy")
|
219 |
+
continue
|
220 |
+
# If any badword appears on its own in the line, skip this doc
|
221 |
+
if badwords_regex:
|
222 |
+
badwords_found = badwords_regex.search(line_lower)
|
223 |
+
if badwords_found is not None:
|
224 |
+
counter_inc_fn("filtered-page-badword")
|
225 |
+
return
|
226 |
+
num_sentences += len(_get_sentences(line))
|
227 |
+
valid_lines.append(line)
|
228 |
+
counter_inc_fn("lines-valid")
|
229 |
+
|
230 |
+
if num_sentences < min_num_sentences:
|
231 |
+
counter_inc_fn("filtered-page-toofewsentences")
|
232 |
+
return
|
233 |
+
counter_inc_fn("emitted-clean-pages")
|
234 |
+
features["text"] = "\n".join(valid_lines).strip()
|
235 |
+
yield url, features
|
236 |
+
|
237 |
+
|
238 |
+
def _hash_line(line):
|
239 |
+
import tensorflow.compat.v2 as tf
|
240 |
+
|
241 |
+
m = hashlib.md5()
|
242 |
+
m.update(tf.compat.as_text(line).encode("utf-8").strip().lower())
|
243 |
+
return m.hexdigest()
|
244 |
+
|
245 |
+
|
246 |
+
def _emit_url_to_lines(page):
|
247 |
+
"""Emits url to all (lower-cased, hashed) lines."""
|
248 |
+
url, features = page
|
249 |
+
text = features["text"]
|
250 |
+
for line in text.split("\n"):
|
251 |
+
yield _hash_line(line), url
|
252 |
+
|
253 |
+
|
254 |
+
def _emit_line_to_urls(el, counter_inc_fn):
|
255 |
+
"""Emits (hashed) line to all but one url."""
|
256 |
+
import tensorflow.compat.v2 as tf
|
257 |
+
|
258 |
+
line, urls = el
|
259 |
+
# Materialize urls as a list.
|
260 |
+
urls = list(urls)
|
261 |
+
# Hash urls and sort to have a consistent, but unbiased, selection when the
|
262 |
+
# same urls exist for multiple lines.
|
263 |
+
skip_url = min(urls, key=lambda x: hashlib.md5(tf.compat.as_text(x).encode("utf-8")).hexdigest())
|
264 |
+
for url in urls:
|
265 |
+
if url != skip_url:
|
266 |
+
yield url, line
|
267 |
+
counter_inc_fn("emitted-line-duplicate", amt=len(urls) - 1)
|
268 |
+
|
269 |
+
|
270 |
+
def _remove_lines_from_text(el, counter_inc_fn, min_num_sentences=_MIN_NUM_SENTENCES):
|
271 |
+
"""Removes matching lines from the page.
|
272 |
+
|
273 |
+
Process the result of a join containing a single value for 'features' and zero
|
274 |
+
or more values for 'lines'. Each value in 'lines' is a lower-cased, hashed
|
275 |
+
line.
|
276 |
+
|
277 |
+
If a line has fewer sentences than `max_window_size`, the full line is
|
278 |
+
compared for a match.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
el: `(string, {'features': features_dict, 'lines': [string]})`,
|
282 |
+
element containing the result of a join on key with both the page text
|
283 |
+
and lower-cased, hashed lines to remove.
|
284 |
+
counter_inc_fn: function, a function taking the name of a counter to be
|
285 |
+
incremented and the (optional) amount.
|
286 |
+
min_num_sentences: int, the minimum number of sentences a page needs to not
|
287 |
+
be skipped.
|
288 |
+
|
289 |
+
Yields:
|
290 |
+
url: The URL of the page.
|
291 |
+
features: The page features with lines removed from text.
|
292 |
+
"""
|
293 |
+
url, join_values = el
|
294 |
+
features = join_values["features"]
|
295 |
+
|
296 |
+
assert len(features) == 1, "Invalid page count (%d) for %s" % (len(features), url)
|
297 |
+
features = features[0]
|
298 |
+
text = features["text"]
|
299 |
+
lines_to_remove = set(join_values["lines"])
|
300 |
+
new_lines = []
|
301 |
+
hashed_lines = set()
|
302 |
+
for line in text.split("\n"):
|
303 |
+
hashed_line = _hash_line(line)
|
304 |
+
if hashed_line in lines_to_remove:
|
305 |
+
counter_inc_fn("filtered-lines-duplicate")
|
306 |
+
elif hashed_line not in hashed_lines:
|
307 |
+
new_lines.append(line)
|
308 |
+
hashed_lines.add(hashed_line)
|
309 |
+
new_text = "\n".join(new_lines)
|
310 |
+
if len(_get_sentences(new_text)) < min_num_sentences:
|
311 |
+
counter_inc_fn("filtered-doc-toofewsentences")
|
312 |
+
return
|
313 |
+
new_features = features.copy()
|
314 |
+
new_features["text"] = new_text
|
315 |
+
yield (url, new_features)
|
316 |
+
|
317 |
+
|
318 |
+
def remove_duplicate_text(pages):
|
319 |
+
"""Utility to remove duplicate lines across text documents."""
|
320 |
+
# Output: url, lines
|
321 |
+
import apache_beam as beam
|
322 |
+
|
323 |
+
counter_inc_fn = get_counter_inc_fn("dedupe-lines")
|
324 |
+
lines_to_remove = (
|
325 |
+
pages
|
326 |
+
| beam.FlatMap(_emit_url_to_lines)
|
327 |
+
| "group_sentences" >> beam.GroupByKey()
|
328 |
+
| beam.FlatMap(_emit_line_to_urls, counter_inc_fn=counter_inc_fn)
|
329 |
+
)
|
330 |
+
|
331 |
+
# Output: url, text
|
332 |
+
final_docs = (
|
333 |
+
{"features": pages, "lines": lines_to_remove}
|
334 |
+
| "group_features_and_lines_by_url" >> beam.CoGroupByKey()
|
335 |
+
| beam.FlatMap(_remove_lines_from_text, counter_inc_fn=counter_inc_fn)
|
336 |
+
)
|
337 |
+
|
338 |
+
return final_docs
|
339 |
+
|
340 |
+
|
341 |
+
def split_wet_file(wet_file_path, counter_inc_fn=None):
|
342 |
+
"""Split a WET file into separate pages."""
|
343 |
+
from absl import logging
|
344 |
+
|
345 |
+
logging.info("Splitting file: %s", wet_file_path)
|
346 |
+
if not counter_inc_fn:
|
347 |
+
counter_inc_fn = get_counter_inc_fn("split-wet-file")
|
348 |
+
counter_inc_fn("wet-file")
|
349 |
+
|
350 |
+
import apache_beam as beam
|
351 |
+
|
352 |
+
with beam.io.filesystems.FileSystems.open(wet_file_path) as f, gzip.GzipFile(fileobj=f) as g:
|
353 |
+
url = None
|
354 |
+
content = None
|
355 |
+
content_len = None
|
356 |
+
content_type = None
|
357 |
+
timestamp = None
|
358 |
+
|
359 |
+
def _maybe_get_page():
|
360 |
+
"""Generate a (url, {features}) page."""
|
361 |
+
if not url and url is not None:
|
362 |
+
counter_inc_fn("page-filtered-nourl")
|
363 |
+
if not content and content is not None:
|
364 |
+
counter_inc_fn("page-filtered-nocontent")
|
365 |
+
if not content_type and content_type is not None:
|
366 |
+
counter_inc_fn("page-nocontenttype")
|
367 |
+
if not content_len and content_len is not None:
|
368 |
+
counter_inc_fn("page-nocontentlen")
|
369 |
+
if not timestamp and timestamp is not None:
|
370 |
+
counter_inc_fn("page-notimestamp")
|
371 |
+
if content and url:
|
372 |
+
counter_inc_fn("page-emitted")
|
373 |
+
return (
|
374 |
+
url,
|
375 |
+
{
|
376 |
+
"text": "\n".join(content),
|
377 |
+
"content-type": content_type,
|
378 |
+
"content-length": content_len,
|
379 |
+
"timestamp": timestamp,
|
380 |
+
"url": url,
|
381 |
+
},
|
382 |
+
)
|
383 |
+
return None
|
384 |
+
|
385 |
+
for line in io.TextIOWrapper(g, encoding="utf-8"):
|
386 |
+
line = line.strip()
|
387 |
+
if not line:
|
388 |
+
continue
|
389 |
+
if line == _PAGE_DELIMITER:
|
390 |
+
page = _maybe_get_page()
|
391 |
+
if page:
|
392 |
+
yield page
|
393 |
+
url = ""
|
394 |
+
content = []
|
395 |
+
content_len = ""
|
396 |
+
content_type = ""
|
397 |
+
timestamp = ""
|
398 |
+
|
399 |
+
if line.startswith(_URL_KEY):
|
400 |
+
url = line[len(_URL_KEY) :].strip()
|
401 |
+
|
402 |
+
if line.startswith(_URL_DATE):
|
403 |
+
timestamp = line[len(_URL_DATE) :].strip()
|
404 |
+
|
405 |
+
if line.startswith(_CONTENT_TYPE):
|
406 |
+
content_type = line[len(_CONTENT_TYPE) :].strip()
|
407 |
+
|
408 |
+
if line.startswith(_CONTENT_LEN):
|
409 |
+
content_len = line[len(_CONTENT_LEN) :].strip()
|
410 |
+
|
411 |
+
if line.startswith(_METADATA_PREFIXES):
|
412 |
+
continue
|
413 |
+
|
414 |
+
content.append(line)
|
415 |
+
|
416 |
+
page = _maybe_get_page()
|
417 |
+
if page:
|
418 |
+
yield page
|
419 |
+
|
420 |
+
|
421 |
+
def dedupe_urls(el):
|
422 |
+
"""Returns the first value for a given URL."""
|
423 |
+
counter_inc_fn = get_counter_inc_fn("dedupe-urls")
|
424 |
+
url, vals = el
|
425 |
+
cnt = 0
|
426 |
+
v = None
|
427 |
+
for v in vals:
|
428 |
+
cnt += 1
|
429 |
+
counter_inc_fn("filtered-url-duplicate", cnt - 1)
|
430 |
+
counter_inc_fn("unique-url")
|
431 |
+
return url, v
|
432 |
+
|
433 |
+
|
434 |
+
def is_valid_length(el, max_length=1.9e5):
|
435 |
+
"""Returns False iff page's text is too long."""
|
436 |
+
counter_inc_fn = get_counter_inc_fn("is-valid-length")
|
437 |
+
_, page = el
|
438 |
+
if len(page["text"]) > max_length:
|
439 |
+
counter_inc_fn("filtered-page-contenttoolong")
|
440 |
+
return False
|
441 |
+
counter_inc_fn("valid-length")
|
442 |
+
return True
|
443 |
+
|
444 |
+
|
445 |
+
def is_realnews_domain(el, realnews_domains):
|
446 |
+
"""Returns False iff page's (sub)domain is not allowed."""
|
447 |
+
import tldextract
|
448 |
+
|
449 |
+
counter_inc_fn = get_counter_inc_fn("is-realnews-domain")
|
450 |
+
url, _ = el
|
451 |
+
ext = tldextract.extract(url)
|
452 |
+
main_domain = ext.domain + "." + ext.suffix
|
453 |
+
if main_domain not in realnews_domains:
|
454 |
+
counter_inc_fn("filtered-url-invaliddomain")
|
455 |
+
return False
|
456 |
+
allowed_subdomains = realnews_domains[main_domain]
|
457 |
+
if isinstance(allowed_subdomains, list) and ext.subdomain not in allowed_subdomains:
|
458 |
+
counter_inc_fn("filtered-url-invalidsubdomain")
|
459 |
+
return False
|
460 |
+
counter_inc_fn("realnews-domain")
|
461 |
+
return True
|
462 |
+
|
463 |
+
|
464 |
+
def filter_by_webtextlike(el):
|
465 |
+
"""Yields only pages with a matching WebText-like URL."""
|
466 |
+
counter_inc_fn = get_counter_inc_fn("filter-by-webtextlike")
|
467 |
+
url, join_values = el
|
468 |
+
text = join_values["text"]
|
469 |
+
webtextlike = join_values["webtextlike_urls"]
|
470 |
+
if not webtextlike:
|
471 |
+
counter_inc_fn("filtered-url-notwebtextlike")
|
472 |
+
return
|
473 |
+
if not text:
|
474 |
+
counter_inc_fn("missing-webtextlike")
|
475 |
+
return
|
476 |
+
assert len(text) == 1
|
477 |
+
counter_inc_fn("found-webtextlike")
|
478 |
+
yield url, text[0]
|
479 |
+
|
480 |
+
|
481 |
+
def normalize_url(el):
|
482 |
+
import tensorflow.compat.v2 as tf
|
483 |
+
|
484 |
+
url, val = el
|
485 |
+
url = tf.compat.as_text(url)
|
486 |
+
url = re.sub(r"https?:\/\/(www\.)?", "", url)
|
487 |
+
url = re.sub(r"\?(utm_|ref|feed).*", "", url)
|
488 |
+
url = url.rstrip("/")
|
489 |
+
return url, val
|