|
"""C4 dataset based on Common Crawl.""" |
|
|
|
|
|
import gzip |
|
import json |
|
import warnings |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
A colossal, cleaned version of Common Crawl's web crawl corpus. |
|
|
|
Based on Common Crawl dataset: "https://commoncrawl.org". |
|
|
|
This is the processed version of Google's C4 dataset by AllenAI. |
|
""" |
|
|
|
_CITATION = """ |
|
@article{2019t5, |
|
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, |
|
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, |
|
journal = {arXiv e-prints}, |
|
year = {2019}, |
|
archivePrefix = {arXiv}, |
|
eprint = {1910.10683}, |
|
} |
|
""" |
|
|
|
_URL = "https://github.com/allenai/allennlp/discussions/5056" |
|
|
|
_VARIANTS = ["en", "realnewslike", "en.noblocklist", "en.noclean"] |
|
|
|
_N_SHARDS_PER_SPLIT = { |
|
"en": {"train": 1024, "validation": 8}, |
|
"realnewslike": {"train": 512, "validation": 1}, |
|
"en.noblocklist": {"train": 1024, "validation": 8}, |
|
"en.noclean": {"train": 7168, "validation": 64}, |
|
} |
|
|
|
_DATA_URL = "https://huggingface.co./datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz" |
|
|
|
|
|
class C4(datasets.GeneratorBasedBuilder): |
|
"""C4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS] |
|
|
|
def _info(self): |
|
warnings.warn( |
|
"Dataset 'c4' is deprecated and will be deleted. Use 'allenai/c4' instead.", |
|
FutureWarning, |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"timestamp": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_urls = {} |
|
for split in ["train", "validation"]: |
|
n_shards = _N_SHARDS_PER_SPLIT[self.config.name][split] |
|
data_urls[split] = [ |
|
_DATA_URL.format(name=self.config.name, split=split, index=index, n_shards=n_shards) |
|
for index in range(n_shards) |
|
] |
|
train_downloaded_files = dl_manager.download(data_urls["train"]) |
|
validation_downloaded_files = dl_manager.download(data_urls["validation"]) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("generating examples from = %s", filepath) |
|
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |
|
|