Datasets:
File size: 13,349 Bytes
e16adeb f94a939 e16adeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
"""GovReport: The Government Report Hierarchical Question-summary Generation Dataset."""
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{cao-wang-2022-hibrids,
title = "{HIBRIDS}: Attention with Hierarchical Biases for Structure-aware Long Document Summarization",
author = "Cao, Shuyang and
Wang, Lu",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.58",
pages = "786--807",
abstract = "Document structure is critical for efficient information consumption. However, it is challenging to encode it efficiently into the modern Transformer architecture. In this work, we present HIBRIDS, which injects Hierarchical Biases foR Incorporating Document Structure into attention score calculation. We further present a new task, hierarchical question-summary generation, for summarizing salient content in the source document into a hierarchy of questions and summaries, where each follow-up question inquires about the content of its parent question-summary pair. We also annotate a new dataset with 6,153 question-summary hierarchies labeled on government reports. Experiment results show that our model produces better question-summary hierarchies than comparisons on both hierarchy quality and content coverage, a finding also echoed by human judges. Additionally, our model improves the generation of long-form summaries from long government reports and Wikipedia articles, as measured by ROUGE scores.",
}
"""
_DESCRIPTION = """\
GovReport-QS hierarchical question-summary generation dataset.
There are two configs:
- paragraph: paragraph-level annotated data
- document: aggregated paragraph-level annotated data for the same document
"""
_URL = "https://huggingface.co./datasets/launch/gov_report_qs/resolve/main/data/"
_URLS = {
"train": _URL + "train.jsonl",
"valid": _URL + "valid.jsonl",
"test": _URL + "test.jsonl",
}
def _recursive_load(section, keep_letter=False, depth=0, section_title_list=None, aligned_section_titles=None):
aligned_hierarchies = set()
alignment = set()
sections = []
if section["section_title"] != "Letter" or (section["section_title"] == "Letter" and keep_letter):
section_title = " ".join(section["section_title"].strip().split())
section_paragraphs = "\n".join([" ".join(paragraph.strip().split()) for paragraph in section["paragraphs"]])
if section_title:
section_title_list = section_title_list + (section_title,)
child_sections = []
for subsection in section["subsections"]:
child_section, child_aligned_hierarchies = _recursive_load(subsection, keep_letter, depth + 1, section_title_list, aligned_section_titles)
child_sections.extend(child_section)
aligned_hierarchies.update(child_aligned_hierarchies)
for hierarchy_id, aligned_section_title in enumerate(aligned_section_titles):
if section_title_list in aligned_section_title:
aligned_hierarchies.add(hierarchy_id)
alignment.add(f'h{hierarchy_id}_full')
for hierarchy_id in aligned_hierarchies:
if f'h{hierarchy_id}_full' not in alignment:
alignment.add(f'h{hierarchy_id}_title')
sections.append({
"title": section_title,
"paragraphs": section_paragraphs,
"depth": depth,
"alignment": " ".join(alignment),
})
sections.extend(child_sections)
else:
for subsection in section["subsections"]:
child_sections, child_aligned_hierarchies = _recursive_load(subsection, keep_letter, depth, section_title_list, aligned_section_titles)
sections.extend(child_sections)
aligned_hierarchies.update(child_aligned_hierarchies)
return sections, aligned_hierarchies
def _recursive_load_qs_pairs(qs_pair, current_id=0, parent_id=-1):
qs_pairs = []
qs_pairs.append({
"question": qs_pair["question"],
"summary": qs_pair["answer"],
"parent_pair_index": parent_id,
})
child_id = current_id + 1
for child_qs_pair in qs_pair["child_questions"]:
child_qs_pairs, current_child_id = _recursive_load_qs_pairs(child_qs_pair, child_id, current_id)
qs_pairs.extend(child_qs_pairs)
child_id = current_child_id
return qs_pairs, child_id
class GovReportQSConfig(datasets.BuilderConfig):
"""BuilderConfig for GovReport."""
def __init__(self, **kwargs):
"""BuilderConfig for GovReport.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(GovReportQSConfig, self).__init__(**kwargs)
class GovReportQS(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
DEFAULT_CONFIG_NAME = "paragraph"
BUILDER_CONFIGS = [
GovReportQSConfig(
name="paragraph",
version=VERSION,
description="paragraph-level annotated data",
),
GovReportQSConfig(
name="document",
version=VERSION,
description="aggregated paragraph-level annotated data for the same document",
),
]
def _info(self):
if self.config.name == "paragraph":
features = datasets.Features(
{
"doc_id": datasets.Value("string"),
"summary_paragraph_index": datasets.Value("int32"),
"document_sections": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"paragraphs": datasets.Value("string"),
"depth": datasets.Value("int32"),
}
),
"question_summary_pairs": datasets.features.Sequence(
{
"question": datasets.Value("string"),
"summary": datasets.Value("string"),
"parent_pair_index": datasets.Value("int32"),
}
),
}
)
elif self.config.name == "document":
features = datasets.Features(
{
"doc_id": datasets.Value("string"),
"document_sections": datasets.features.Sequence(
{
"title": datasets.Value("string"),
"paragraphs": datasets.Value("string"),
"depth": datasets.Value("int32"),
"alignment": datasets.Value("string")
}
),
"question_summary_pairs": datasets.features.Sequence(
{
"question": datasets.Value("string"),
"summary": datasets.Value("string"),
"parent_pair_index": datasets.Value("int32"),
"summary_paragraph_index": datasets.Value("int32"),
}
),
}
)
else:
raise ValueError("Unsupported config name {}".format(self.config.name))
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
logger.info(f"generating examples from = {filepath}")
with open(filepath) as f:
key = 0
for line in f:
line = line.strip()
if not line:
continue
data = json.loads(line)
doc_id = data["id"]
annotated_hierarchies = data["annotated_hierarchies"]
aligned_section_titles = [set([tuple([" ".join(title.strip().split()) for title in section]) for section in hierarchy["aligned_sections"]]) for hierarchy in annotated_hierarchies]
if doc_id.startswith("GAO"):
document_sections = []
for lv1_section in data["report"]:
document_sections.extend(_recursive_load(lv1_section, keep_letter=False, depth=1, section_title_list=tuple(), aligned_section_titles=aligned_section_titles)[0])
elif doc_id.startswith("CRS"):
document_sections = _recursive_load(data["reports"], keep_letter=True, depth=0, section_title_list=tuple(), aligned_section_titles=aligned_section_titles)[0]
else:
raise ValueError("Invalid document id {}".format(doc_id))
annotated_qs_pairs = []
for hierarchy_id, annotated_hierarchy in enumerate(annotated_hierarchies):
summary_paragraph_index = annotated_hierarchy["paragraph_index"]
qs_pairs = []
current_id = 0
for lv1_qs_pair in annotated_hierarchy["questions"]:
child_qs_pairs, current_id = _recursive_load_qs_pairs(lv1_qs_pair, current_id=current_id, parent_id=-1)
qs_pairs.extend(child_qs_pairs)
annotated_qs_pairs.append({
"hierarchy_id": hierarchy_id,
"summary_paragraph_index": summary_paragraph_index,
"question_summary_pairs": qs_pairs,
})
if self.config.name == "paragraph":
for annotated_qs_pair in annotated_qs_pairs:
_id = f"{doc_id}_{annotated_qs_pair['summary_paragraph_index']}_{key}"
aligned_sections = []
for section in document_sections:
if f"h{annotated_qs_pair['hierarchy_id']}_full" in section["alignment"]: # both title and paragraphs
aligned_sections.append({
"title": section["title"],
"paragraphs": section["paragraphs"],
"depth": section["depth"],
})
elif f"f{annotated_qs_pair['hierarchy_id']}_title" in section["alignment"]: # only title
aligned_sections.append({
"title": section["title"],
"paragraphs": "",
"depth": section["depth"],
})
if aligned_sections:
yield _id, {
"doc_id": doc_id,
"summary_paragraph_index": annotated_qs_pair["summary_paragraph_index"],
"document_sections": aligned_sections,
"question_summary_pairs": annotated_qs_pair["question_summary_pairs"],
}
else:
print(f"{doc_id}_{key} has no aligned sections")
key += 1
elif self.config.name == "document":
_id = f"{doc_id}"
question_summary_pairs = []
for annotated_qs_pair in annotated_qs_pairs:
summary_paragraph_index = annotated_qs_pair["summary_paragraph_index"]
for qs_pair in annotated_qs_pair["question_summary_pairs"]:
question_summary_pairs.append({
"question": qs_pair["question"],
"summary": qs_pair["summary"],
"parent_pair_index": qs_pair["parent_pair_index"],
"summary_paragraph_index": summary_paragraph_index,
})
yield _id, {
"doc_id": doc_id,
"document_sections": document_sections,
"question_summary_pairs": question_summary_pairs,
}
else:
raise ValueError("Unsupported config name {}".format(self.config.name))
|