File size: 8,808 Bytes
6d3278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ContractNLI: A Benchmark Dataset for ContractNLI in English."""
import json
import os
import textwrap
import datasets
MAIN_PATH = 'https://huggingface.co./datasets/cognitivplus/contract-nli/resolve/main'
MAIN_CITATION = """\
@inproceedings{koreeda-manning-2021-contractnli-dataset,
title = "{C}ontract{NLI}: A Dataset for Document-level Natural Language Inference for Contracts",
author = "Koreeda, Yuta and
Manning, Christopher",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.164",
doi = "10.18653/v1/2021.findings-emnlp.164",
pages = "1907--1919",
}"""
_DESCRIPTION = """\
ContractNLI: A Benchmark Dataset for ContractNLI in English
"""
CONTRACTNLI_LABELS = ["contradiction", "entailment", "neutral"]
class ContractNLIConfig(datasets.BuilderConfig):
"""BuilderConfig for ContractNLI."""
def __init__(
self,
url,
data_url,
data_file,
citation,
label_classes=None,
**kwargs,
):
"""BuilderConfig for ContractNLI.
Args:
url: `string`, url for the original project
data_url: `string`, url to download the zip file from
data_file: `string`, filename for data set
citation: `string`, citation for the data set
url: `string`, url for information about the data set
label_classes: `list[string]`, the list of classes if the label is
categorical. If not provided, then the label will be of type
`datasets.Value('float32')`.
**kwargs: keyword arguments forwarded to super.
"""
super(ContractNLIConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.label_classes = label_classes
self.url = url
self.data_url = data_url
self.data_file = data_file
self.citation = citation
class ContractNLI(datasets.GeneratorBasedBuilder):
"""ContractNLI: A Benchmark Dataset for ContractNLI in English. Version 1.0"""
BUILDER_CONFIGS = [
ContractNLIConfig(
name="contractnli_a",
description=textwrap.dedent(
"""\
The ContractNLI dataset consists of Non-Disclosure Agreements (NDAs). All NDAs have been labeled based
on several hypothesis templates as entailment, neutral or contradiction. In this version of the task
(Task A), the input consists of the relevant part of the document w.r.t. to the hypothesis.
"""
),
label_classes=CONTRACTNLI_LABELS,
data_url=f"{MAIN_PATH}/contract_nli.zip",
data_file="contract_nli_v1.jsonl",
url="https://stanfordnlp.github.io/ contract- nli/",
citation=textwrap.dedent(
"""\
@inproceedings{koreeda-manning-2021-contractnli-dataset,
title = "{C}ontract{NLI}: A Dataset for Document-level Natural Language Inference for Contracts",
author = "Koreeda, Yuta and
Manning, Christopher",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.164",
doi = "10.18653/v1/2021.findings-emnlp.164",
pages = "1907--1919",
}
}"""
),
),
ContractNLIConfig(
name="contractnli_b",
description=textwrap.dedent(
"""\
The ContractNLI dataset consists of Non-Disclosure Agreements (NDAs). All NDAs have been labeled based
on several hypothesis templates as entailment, neutral or contradiction. In this version of the task
(Task B), the input consists of the full document.
"""
),
label_classes=CONTRACTNLI_LABELS,
data_url=f"{MAIN_PATH}/contract_nli_long.zip",
data_file="contract_nli_long.jsonl",
url="https://stanfordnlp.github.io/ contract- nli/",
citation=textwrap.dedent(
"""\
@inproceedings{koreeda-manning-2021-contractnli-dataset,
title = "{C}ontract{NLI}: A Dataset for Document-level Natural Language Inference for Contracts",
author = "Koreeda, Yuta and
Manning, Christopher",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.164",
doi = "10.18653/v1/2021.findings-emnlp.164",
pages = "1907--1919",
}
}"""
),
),
]
def _info(self):
features = {
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.ClassLabel(names=CONTRACTNLI_LABELS)
}
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(features),
homepage=self.config.url,
citation=self.config.citation + "\n" + MAIN_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(self.config.data_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "train"},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(data_dir, self.config.data_file), "split": "test"},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": os.path.join(data_dir, self.config.data_file),
"split": "dev",
},
),
]
def _generate_examples(self, filepath, split):
"""This function returns the examples in the raw (text) form."""
if self.config.name == "contractnli_a":
with open(filepath, "r", encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
if data["subset"] == split:
yield id_, {
"premise": data["premise"],
"hypothesis": data["hypothesis"],
"label": data["label"],
}
elif self.config.name == "contractnli_b":
with open(filepath, "r", encoding="utf-8") as f:
sid = -1
for id_, row in enumerate(f):
data = json.loads(row)
if data["subset"] == split:
for sample in data['hypothesises/labels']:
sid += 1
yield sid, {
"premise": data["premise"],
"hypothesis": sample['hypothesis'],
"label": sample['label'],
}
|