import os import datasets from datasets.tasks import ImageClassification _HOMEPAGE = "https://universe.roboflow.com/robert-demo-qvail/pokedex/dataset/14" _LICENSE = "Public Domain" _CITATION = """\ @misc{ pokedex_dataset, title = { Pokedex Dataset }, type = { Open Source Dataset }, author = { Lance Zhang }, howpublished = { \\url{ https://universe.roboflow.com/robert-demo-qvail/pokedex } }, url = { https://universe.roboflow.com/robert-demo-qvail/pokedex }, journal = { Roboflow Universe }, publisher = { Roboflow }, year = { 2022 }, month = { dec }, note = { visited on 2023-01-14 }, } """ _CATEGORIES = ['Porygon', 'Goldeen', 'Hitmonlee', 'Hitmonchan', 'Gloom', 'Aerodactyl', 'Mankey', 'Seadra', 'Gengar', 'Venonat', 'Articuno', 'Seaking', 'Dugtrio', 'Machop', 'Jynx', 'Oddish', 'Dodrio', 'Dragonair', 'Weedle', 'Golduck', 'Flareon', 'Krabby', 'Parasect', 'Ninetales', 'Nidoqueen', 'Kabutops', 'Drowzee', 'Caterpie', 'Jigglypuff', 'Machamp', 'Clefairy', 'Kangaskhan', 'Dragonite', 'Weepinbell', 'Fearow', 'Bellsprout', 'Grimer', 'Nidorina', 'Staryu', 'Horsea', 'Electabuzz', 'Dratini', 'Machoke', 'Magnemite', 'Squirtle', 'Gyarados', 'Pidgeot', 'Bulbasaur', 'Nidoking', 'Golem', 'Dewgong', 'Moltres', 'Zapdos', 'Poliwrath', 'Vulpix', 'Beedrill', 'Charmander', 'Abra', 'Zubat', 'Golbat', 'Wigglytuff', 'Charizard', 'Slowpoke', 'Poliwag', 'Tentacruel', 'Rhyhorn', 'Onix', 'Butterfree', 'Exeggcute', 'Sandslash', 'Pinsir', 'Rattata', 'Growlithe', 'Haunter', 'Pidgey', 'Ditto', 'Farfetchd', 'Pikachu', 'Raticate', 'Wartortle', 'Vaporeon', 'Cloyster', 'Hypno', 'Arbok', 'Metapod', 'Tangela', 'Kingler', 'Exeggutor', 'Kadabra', 'Seel', 'Voltorb', 'Chansey', 'Venomoth', 'Ponyta', 'Vileplume', 'Koffing', 'Blastoise', 'Tentacool', 'Lickitung', 'Paras', 'Clefable', 'Cubone', 'Marowak', 'Nidorino', 'Jolteon', 'Muk', 'Magikarp', 'Slowbro', 'Tauros', 'Kabuto', 'Spearow', 'Sandshrew', 'Eevee', 'Kakuna', 'Omastar', 'Ekans', 'Geodude', 'Magmar', 'Snorlax', 'Meowth', 'Pidgeotto', 'Venusaur', 'Persian', 'Rhydon', 'Starmie', 'Charmeleon', 'Lapras', 'Alakazam', 'Graveler', 'Psyduck', 'Rapidash', 'Doduo', 'Magneton', 'Arcanine', 'Electrode', 'Omanyte', 'Poliwhirl', 'Mew', 'Alolan Sandslash', 'Mewtwo', 'Weezing', 'Gastly', 'Victreebel', 'Ivysaur', 'MrMime', 'Shellder', 'Scyther', 'Diglett', 'Primeape', 'Raichu'] class POKEMONCLASSIFICATIONConfig(datasets.BuilderConfig): """Builder Config for pokemon-classification""" def __init__(self, data_urls, **kwargs): """ BuilderConfig for pokemon-classification. Args: data_urls: `dict`, name to url to download the zip file from. **kwargs: keyword arguments forwarded to super. """ super(POKEMONCLASSIFICATIONConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) self.data_urls = data_urls class POKEMONCLASSIFICATION(datasets.GeneratorBasedBuilder): """pokemon-classification image classification dataset""" VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ POKEMONCLASSIFICATIONConfig( name="full", description="Full version of pokemon-classification dataset.", data_urls={ "train": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/train.zip", "validation": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/valid.zip", "test": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/test.zip", } , ), POKEMONCLASSIFICATIONConfig( name="mini", description="Mini version of pokemon-classification dataset.", data_urls={ "train": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip", "validation": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip", "test": "https://huggingface.co./datasets/keremberke/pokemon-classification/resolve/main/data/valid-mini.zip", }, ) ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_CATEGORIES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(self.config.data_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["train"]]), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "files": dl_manager.iter_files([data_files["validation"]]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": dl_manager.iter_files([data_files["test"]]), }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith((".jpg", ".png", ".jpeg", ".bmp", ".tif", ".tiff")): yield i, { "image_file_path": path, "image": path, "labels": os.path.basename(os.path.dirname(path)), }