Datasets:
Tasks:
Image Classification
Formats:
parquet
Sub-tasks:
multi-label-image-classification
Languages:
English
Size:
100M - 1B
ArXiv:
Tags:
image-labeled pairs
License:
jun-untitled
commited on
Commit
·
926a920
1
Parent(s):
99a020c
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,121 @@
|
|
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
---
|
3 |
+
annotations_creators:
|
4 |
+
- no-annotation
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
language_creators:
|
8 |
+
- other
|
9 |
+
license:
|
10 |
+
- cc-by-4.0
|
11 |
+
multilinguality:
|
12 |
+
- monolingual
|
13 |
+
pretty_name: COYO-Labeled-300M
|
14 |
+
size_categories:
|
15 |
+
- 100M<n<1B
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
tags:
|
19 |
+
- image-labeled pairs
|
20 |
+
task_categories:
|
21 |
+
- image-classification
|
22 |
+
task_ids:
|
23 |
+
- multi-label-image-classification
|
24 |
---
|
25 |
+
# Dataset Card for COYO-Labeled-300M
|
26 |
+
## Table of Contents
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Annotations](#annotations)
|
40 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
41 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
42 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
43 |
+
- [Discussion of Biases](#discussion-of-biases)
|
44 |
+
- [Other Known Limitations](#other-known-limitations)
|
45 |
+
- [Additional Information](#additional-information)
|
46 |
+
- [Dataset Curators](#dataset-curators)
|
47 |
+
- [Licensing Information](#licensing-information)
|
48 |
+
- [Citation Information](#citation-information)
|
49 |
+
- [Contributions](#contributions)
|
50 |
+
## Dataset Description
|
51 |
+
- **Homepage:** [COYO homepage](https://kakaobrain.com/contents/?contentId=7eca73e3-3089-43cb-b701-332e8a1743fd)
|
52 |
+
- **Repository:** [COYO repository](https://github.com/kakaobrain/coyo-dataset)
|
53 |
+
- **Paper:**
|
54 |
+
- **Leaderboard:**
|
55 |
+
- **Point of Contact:** [COYO email]([email protected])
|
56 |
+
### Dataset Summary
|
57 |
+
**COYO-Labeled-300M** is a dataset of **machine-labeled** 300M images-multi-label pairs. We labeled subset of COYO-700M with a large model (efficientnetv2-xl) trained on imagenet-21k. We followed the same evaluation pipeline as in efficientnet-v2. The labels are top 50 most likely labels out of 21,841 classes from imagenet-21k. The label probabilies are provided rather than label so that the user can select threshold of their choice for multi-label classification use or can take top-1 class for single class classification use.
|
58 |
+
|
59 |
+
In other words, **COYO-Labeled-300M** is a ImageNet-like dataset. Instead of human labeled 1.25 million samples, it's machine-labeled 300 million samples. This dataset is similar to JFT-300M which is not released to the public.
|
60 |
+
|
61 |
+
### Supported Tasks and Leaderboards
|
62 |
+
We empirically validated the quality of COYO-Labeled-300M dataset by re-implementing popular model, [ViT](https://arxiv.org/abs/2010.11929).
|
63 |
+
We found that our ViT implementation trained on COYO-Labeled-300M performs similar to the performance numbers in the ViT paper trained on JFT-300M.
|
64 |
+
We also provide weights for the pretrained ViT model on COYO-Labeled-300M as well as its training & fine-tuning code.
|
65 |
+
### Languages
|
66 |
+
The labels in the COYO-Labeled-300M dataset consist of English.
|
67 |
+
|
68 |
+
## Dataset Structure
|
69 |
+
### Data Instances
|
70 |
+
Each instance in COYO-Labeled-300M represents multi-labels and image pair information with meta-attributes.
|
71 |
+
And we also provide label information, **imagenet21k_tree.pickle**.
|
72 |
+
|
73 |
+
```
|
74 |
+
{
|
75 |
+
'id': 315,
|
76 |
+
'url': 'https://a.1stdibscdn.com/pair-of-blue-and-white-table-lamps-for-sale/1121189/f_121556431538206028457/12155643_master.jpg?width=240',
|
77 |
+
'imagehash': 'daf5a50aae4aa54a',
|
78 |
+
'vision_label_indices': [8087, 11054, 8086, 6614, 6966, 8193, 10576, 9710, 4334, 9909, 8090, 10104, 10105, 9602, 5278, 9547, 6978, 12011, 7272, 5273, 6279, 4279, 10903, 8656, 9601, 8795, 9326, 4606, 9907, 9106, 7574, 10006, 7257, 6959, 9758, 9039, 10682, 7164, 5888, 11654, 8201, 4546, 9238, 8197, 10882, 17380, 4470, 5275, 10537, 11548],
|
79 |
+
'vision_label_probs': [0.4453125, 0.30419921875, 0.09417724609375, 0.033905029296875, 0.03240966796875, 0.0157928466796875, 0.01406097412109375, 0.01129150390625, 0.00978851318359375, 0.00841522216796875, 0.007720947265625, 0.00634002685546875, 0.0041656494140625, 0.004070281982421875, 0.002910614013671875, 0.0028018951416015625, 0.002262115478515625, 0.0020503997802734375, 0.0017080307006835938, 0.0016880035400390625, 0.0016679763793945312, 0.0016613006591796875, 0.0014324188232421875, 0.0012445449829101562, 0.0011739730834960938, 0.0010318756103515625, 0.0008969306945800781, 0.0008792877197265625, 0.0008726119995117188, 0.0008263587951660156, 0.0007123947143554688, 0.0006799697875976562, 0.0006561279296875, 0.0006542205810546875, 0.0006093978881835938, 0.0006046295166015625, 0.0005769729614257812, 0.00057220458984375, 0.0005636215209960938, 0.00055694580078125, 0.0005092620849609375, 0.000507354736328125, 0.000507354736328125, 0.000499725341796875, 0.000484466552734375, 0.0004456043243408203, 0.0004439353942871094, 0.0004355907440185547, 0.00043392181396484375, 0.00041866302490234375],
|
80 |
+
'width': 240,
|
81 |
+
'height': 240
|
82 |
+
}
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
### Data Fields
|
87 |
+
|
88 |
+
| name | type | description |
|
89 |
+
|--------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
90 |
+
| id | long | Unique 64-bit integer ID generated by [monotonically_increasing_id()](https://spark.apache.org/docs/3.1.3/api/python/reference/api/pyspark.sql.functions.monotonically_increasing_id.html) which is the same value that is mapped with the existing COYO-700M. |
|
91 |
+
| url | string | The image URL extracted from the `src` attribute of the `<img>` |
|
92 |
+
| imagehash | string | The [perceptual hash(pHash)](http://www.phash.org/) of the image |
|
93 |
+
| vision_label_indices | sequence[integer] | Inference results of EfficientNetV2-XL model trained on ImageNet-21K dataset (Top 50 indices among 21,841 classes) |
|
94 |
+
| vision_label_probs | sequence[float] | Inference results of EfficientNetV2-XL model trained on ImageNet-21K dataset (Top 50 indices among 21,841 probabilites) |
|
95 |
+
| width | integer | The width of the image |
|
96 |
+
| height | integer | The height of the image |
|
97 |
+
|
98 |
+
|
99 |
+
### Data Splits
|
100 |
+
|
101 |
+
Data was not split, since the evaluation was expected to be performed on more widely used downstream task(s).
|
102 |
+
|
103 |
+
## Dataset Creation
|
104 |
+
|
105 |
+
### Curation Rationale
|
106 |
+
|
107 |
+
We labeled subset of COYO-700M with a large model (efficientnetv2-xl) trained on imagenet-21k. Data sampling was done with a size similar to jft-300m, filtered by a specific threshold for probabilities for the top-1 label.
|
108 |
+
|
109 |
+
### Source Data
|
110 |
+
|
111 |
+
[COYO-700M](https://huggingface.co/datasets/kakaobrain/coyo-700m)
|
112 |
+
|
113 |
+
#### Who are the source language producers?
|
114 |
+
[Common Crawl](https://commoncrawl.org/) is the data source for COYO-700M.
|
115 |
+
### Annotations
|
116 |
+
#### Annotation process
|
117 |
+
The dataset was built in a fully automated process that did not require human annotation.
|
118 |
+
#### Who are the annotators?
|
119 |
+
No human annotation
|
120 |
+
### Personal and Sensitive Information
|
121 |
+
The basic instruction, licenses and contributors are the same as for the [coyo-700m](https://huggingface.co/datasets/kakaobrain/coyo-700m).
|