File size: 29,397 Bytes
24b4584 185c80f 24b4584 185c80f 5423e0c 0ec62b2 e64fe4a ef30bda 8a1d393 2664ad9 0183c71 185c80f 3eadb3c cd8aa7c 0183c71 144f4e4 b1b95d7 511baf3 4e3be89 150c302 61f0c52 e0ab12a a8bd6fc 185c80f 5423e0c 0ec62b2 e64fe4a ef30bda 8a1d393 2664ad9 185c80f 3eadb3c cd8aa7c 0183c71 144f4e4 b1b95d7 511baf3 4e3be89 150c302 61f0c52 e0ab12a a8bd6fc 24b4584 043d75d 3c6c4f6 24b4584 3515442 86807cd 78bd94e 86807cd 24b4584 e0457f4 24b4584 6f77af2 e0457f4 24b4584 6f77af2 24b4584 e0457f4 24b4584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 |
---
annotations_creators:
- expert-generated
- crowdsourced
- found
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- image-to-text
- multiple-choice
- text-classification
- text-generation
- visual-question-answering
- other
- text2text-generation
task_ids:
- multi-class-classification
- language-modeling
- visual-question-answering
- explanation-generation
pretty_name: newyorker_caption_contest
tags:
- humor
- caption contest
- new yorker
dataset_info:
- config_name: explanation
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
dtype: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 133827514.64
num_examples: 2340
- name: validation
num_bytes: 8039885.0
num_examples: 130
- name: test
num_bytes: 6863533.0
num_examples: 131
download_size: 139737042
dataset_size: 148730932.64
- config_name: explanation_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
dtype: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 136614332.45999998
num_examples: 2358
- name: validation
num_bytes: 7911995.0
num_examples: 128
- name: test
num_bytes: 8039885.0
num_examples: 130
download_size: 134637839
dataset_size: 152566212.45999998
- config_name: explanation_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
dtype: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 138337491.342
num_examples: 2346
- name: validation
num_bytes: 7460490.0
num_examples: 132
- name: test
num_bytes: 7911995.0
num_examples: 128
download_size: 138271185
dataset_size: 153709976.342
- config_name: explanation_from_pixels
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 23039316.0
num_examples: 390
- name: validation
num_bytes: 7956182.0
num_examples: 130
- name: test
num_bytes: 6778892.0
num_examples: 131
download_size: 37552582
dataset_size: 37774390.0
- config_name: explanation_from_pixels_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 21986652.0
num_examples: 393
- name: validation
num_bytes: 7831556.0
num_examples: 128
- name: test
num_bytes: 7956182.0
num_examples: 130
download_size: 37534409
dataset_size: 37774390.0
- config_name: explanation_from_pixels_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 22566608.0
num_examples: 391
- name: validation
num_bytes: 7376225.0
num_examples: 132
- name: test
num_bytes: 7831556.0
num_examples: 128
download_size: 37544724
dataset_size: 37774389.0
- config_name: matching
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 618272766.36
num_examples: 9792
- name: validation
num_bytes: 34157757.0
num_examples: 531
- name: test
num_bytes: 29813118.0
num_examples: 528
download_size: 594460072
dataset_size: 682243641.36
- config_name: matching_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 593200158.116
num_examples: 9684
- name: validation
num_bytes: 36712942.0
num_examples: 546
- name: test
num_bytes: 34157757.0
num_examples: 531
download_size: 563587231
dataset_size: 664070857.116
- config_name: matching_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 591676321.09
num_examples: 9630
- name: validation
num_bytes: 33697178.0
num_examples: 540
- name: test
num_bytes: 36712942.0
num_examples: 546
download_size: 571864348
dataset_size: 662086441.09
- config_name: matching_from_pixels
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 101439044.384
num_examples: 1632
- name: validation
num_bytes: 33714551.0
num_examples: 531
- name: test
num_bytes: 29368704.0
num_examples: 528
download_size: 139733134
dataset_size: 164522299.384
- config_name: matching_from_pixels_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 94090646.83
num_examples: 1614
- name: validation
num_bytes: 36257141.0
num_examples: 546
- name: test
num_bytes: 33714551.0
num_examples: 531
download_size: 137278691
dataset_size: 164062338.82999998
- config_name: matching_from_pixels_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 96253584.505
num_examples: 1605
- name: validation
num_bytes: 33236000.0
num_examples: 540
- name: test
num_bytes: 36257141.0
num_examples: 546
download_size: 137890850
dataset_size: 165746725.505
- config_name: ranking
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 594615535.632
num_examples: 9576
- name: validation
num_bytes: 32624105.0
num_examples: 507
- name: test
num_bytes: 28907567.0
num_examples: 513
download_size: 571604579
dataset_size: 656147207.632
- config_name: ranking_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 580099188.9
num_examples: 9450
- name: validation
num_bytes: 35332200.0
num_examples: 534
- name: test
num_bytes: 32624105.0
num_examples: 507
download_size: 546559254
dataset_size: 648055493.9
- config_name: ranking_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: image_location
dtype: string
- name: image_description
dtype: string
- name: image_uncanny_description
dtype: string
- name: entities
sequence: string
- name: questions
sequence: string
- name: caption_choices
sequence: string
- name: from_description
dtype: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 566811450.504
num_examples: 9306
- name: validation
num_bytes: 32519173.0
num_examples: 531
- name: test
num_bytes: 35332200.0
num_examples: 534
download_size: 544444097
dataset_size: 634662823.504
- config_name: ranking_from_pixels
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 101282973.752
num_examples: 1596
- name: validation
num_bytes: 32072331.0
num_examples: 506
- name: test
num_bytes: 28550057.0
num_examples: 513
download_size: 134283256
dataset_size: 161905361.752
- config_name: ranking_from_pixels_1
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 93123370.15
num_examples: 1575
- name: validation
num_bytes: 34965110.0
num_examples: 534
- name: test
num_bytes: 32072331.0
num_examples: 506
download_size: 130879365
dataset_size: 160160811.15
- config_name: ranking_from_pixels_2
features:
- name: image
dtype: image
- name: contest_number
dtype: int32
- name: caption_choices
sequence: string
- name: winner_source
dtype: string
- name: label
dtype: string
- name: n_tokens_label
dtype: int32
- name: instance_id
dtype: string
splits:
- name: train
num_bytes: 93496576.85
num_examples: 1550
- name: validation
num_bytes: 32145436.0
num_examples: 531
- name: test
num_bytes: 34965110.0
num_examples: 534
download_size: 131637359
dataset_size: 160607122.85
configs:
- config_name: explanation
data_files:
- split: train
path: explanation/train-*
- split: validation
path: explanation/validation-*
- split: test
path: explanation/test-*
- config_name: explanation_1
data_files:
- split: train
path: explanation_1/train-*
- split: validation
path: explanation_1/validation-*
- split: test
path: explanation_1/test-*
- config_name: explanation_2
data_files:
- split: train
path: explanation_2/train-*
- split: validation
path: explanation_2/validation-*
- split: test
path: explanation_2/test-*
- config_name: explanation_from_pixels
data_files:
- split: train
path: explanation_from_pixels/train-*
- split: validation
path: explanation_from_pixels/validation-*
- split: test
path: explanation_from_pixels/test-*
- config_name: explanation_from_pixels_1
data_files:
- split: train
path: explanation_from_pixels_1/train-*
- split: validation
path: explanation_from_pixels_1/validation-*
- split: test
path: explanation_from_pixels_1/test-*
- config_name: explanation_from_pixels_2
data_files:
- split: train
path: explanation_from_pixels_2/train-*
- split: validation
path: explanation_from_pixels_2/validation-*
- split: test
path: explanation_from_pixels_2/test-*
- config_name: matching
data_files:
- split: train
path: matching/train-*
- split: validation
path: matching/validation-*
- split: test
path: matching/test-*
- config_name: matching_1
data_files:
- split: train
path: matching_1/train-*
- split: validation
path: matching_1/validation-*
- split: test
path: matching_1/test-*
- config_name: matching_2
data_files:
- split: train
path: matching_2/train-*
- split: validation
path: matching_2/validation-*
- split: test
path: matching_2/test-*
- config_name: matching_from_pixels
data_files:
- split: train
path: matching_from_pixels/train-*
- split: validation
path: matching_from_pixels/validation-*
- split: test
path: matching_from_pixels/test-*
- config_name: matching_from_pixels_1
data_files:
- split: train
path: matching_from_pixels_1/train-*
- split: validation
path: matching_from_pixels_1/validation-*
- split: test
path: matching_from_pixels_1/test-*
- config_name: matching_from_pixels_2
data_files:
- split: train
path: matching_from_pixels_2/train-*
- split: validation
path: matching_from_pixels_2/validation-*
- split: test
path: matching_from_pixels_2/test-*
- config_name: ranking
data_files:
- split: train
path: ranking/train-*
- split: validation
path: ranking/validation-*
- split: test
path: ranking/test-*
- config_name: ranking_1
data_files:
- split: train
path: ranking_1/train-*
- split: validation
path: ranking_1/validation-*
- split: test
path: ranking_1/test-*
- config_name: ranking_2
data_files:
- split: train
path: ranking_2/train-*
- split: validation
path: ranking_2/validation-*
- split: test
path: ranking_2/test-*
- config_name: ranking_from_pixels
data_files:
- split: train
path: ranking_from_pixels/train-*
- split: validation
path: ranking_from_pixels/validation-*
- split: test
path: ranking_from_pixels/test-*
- config_name: ranking_from_pixels_1
data_files:
- split: train
path: ranking_from_pixels_1/train-*
- split: validation
path: ranking_from_pixels_1/validation-*
- split: test
path: ranking_from_pixels_1/test-*
- config_name: ranking_from_pixels_2
data_files:
- split: train
path: ranking_from_pixels_2/train-*
- split: validation
path: ranking_from_pixels_2/validation-*
- split: test
path: ranking_from_pixels_2/test-*
---
# Dataset Card for New Yorker Caption Contest Benchmarks
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [capcon.dev](https://www.capcon.dev)
- **Repository:** [https://github.com/jmhessel/caption_contest_corpus](https://github.com/jmhessel/caption_contest_corpus)
- **Paper:** [Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293)
- **Leaderboard:** https://leaderboard.allenai.org/nycc-matching/ and https://leaderboard.allenai.org/nycc-ranking
- **Point of Contact:** [email protected]
### Dataset Summary
See [capcon.dev](https://www.capcon.dev) for more!
Data from:
[Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest](https://arxiv.org/abs/2209.06293)
```
@inproceedings{hessel2023androids,
title={Do Androids Laugh at Electric Sheep? {Humor} ``Understanding''
Benchmarks from {The New Yorker Caption Contest}},
author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D. and Lee, Lillian
and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin},
booktitle={Proceedings of the ACL},
year={2023}
}
```
If you use this dataset, we would appreciate you citing our work, but also -- several other papers that we build this corpus upon. See [Citation Information](#citation-information).
We challenge AI models to "demonstrate understanding" of the
sophisticated multimodal humor of The New Yorker Caption Contest.
Concretely, we develop three carefully circumscribed tasks for which
it suffices (but is not necessary) to grasp potentially complex and
unexpected relationships between image and caption, and similarly
complex and unexpected allusions to the wide varieties of human
experience.
### Supported Tasks and Leaderboards
Three tasks are supported:
- "Matching:" a model must recognize a caption written about a cartoon (vs. options that were not);
- "Quality ranking:" a model must evaluate the quality of a caption by scoring it more highly than a lower quality option from the same contest;
- "Explanation:" a model must explain why a given joke is funny.
There are no official leaderboards (yet).
### Languages
English
## Dataset Structure
Here's an example instance from Matching:
```
{'caption_choices': ['Tell me about your childhood very quickly.',
"Believe me . . . it's what's UNDER the ground that's "
'most interesting.',
"Stop me if you've heard this one.",
'I have trouble saying no.',
'Yes, I see the train but I think we can beat it.'],
'contest_number': 49,
'entities': ['https://en.wikipedia.org/wiki/Rule_of_three_(writing)',
'https://en.wikipedia.org/wiki/Bar_joke',
'https://en.wikipedia.org/wiki/Religious_institute'],
'from_description': 'scene: a bar description: Two priests and a rabbi are '
'walking into a bar, as the bartender and another patron '
'look on. The bartender talks on the phone while looking '
'skeptically at the incoming crew. uncanny: The scene '
'depicts a very stereotypical "bar joke" that would be '
'unlikely to be encountered in real life; the skepticism '
'of the bartender suggests that he is aware he is seeing '
'this trope, and is explaining it to someone on the '
'phone. entities: Rule_of_three_(writing), Bar_joke, '
'Religious_institute. choices A: Tell me about your '
"childhood very quickly. B: Believe me . . . it's what's "
"UNDER the ground that's most interesting. C: Stop me if "
"you've heard this one. D: I have trouble saying no. E: "
'Yes, I see the train but I think we can beat it.',
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=323x231 at 0x7F34F283E9D0>,
'image_description': 'Two priests and a rabbi are walking into a bar, as the '
'bartender and another patron look on. The bartender '
'talks on the phone while looking skeptically at the '
'incoming crew.',
'image_location': 'a bar',
'image_uncanny_description': 'The scene depicts a very stereotypical "bar '
'joke" that would be unlikely to be encountered '
'in real life; the skepticism of the bartender '
'suggests that he is aware he is seeing this '
'trope, and is explaining it to someone on the '
'phone.',
'instance_id': '21125bb8787b4e7e82aa3b0a1cba1571',
'label': 'C',
'n_tokens_label': 1,
'questions': ['What is the bartender saying on the phone in response to the '
'living, breathing, stereotypical bar joke that is unfolding?']}
```
The label "C" indicates that the 3rd choice in the `caption_choices` is correct.
Here's an example instance from Ranking (in the from pixels setting --- though, this is also available in the from description setting)
```
{'caption_choices': ['I guess I misunderstood when you said long bike ride.',
'Does your divorce lawyer have any other cool ideas?'],
'contest_number': 582,
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=600x414 at 0x7F8FF9F96610>,
'instance_id': 'dd1c214a1ca3404aa4e582c9ce50795a',
'label': 'A',
'n_tokens_label': 1,
'winner_source': 'official_winner'}
```
the label indicates that the first caption choice ("A", here) in the `caption_choices` list was more highly rated.
Here's an example instance from Explanation:
```
{'caption_choices': 'The classics can be so intimidating.',
'contest_number': 752,
'entities': ['https://en.wikipedia.org/wiki/Literature',
'https://en.wikipedia.org/wiki/Solicitor'],
'from_description': 'scene: a road description: Two people are walking down a '
'path. A number of giant books have surrounded them. '
'uncanny: There are book people in this world. entities: '
'Literature, Solicitor. caption: The classics can be so '
'intimidating.',
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=800x706 at 0x7F90003D0BB0>,
'image_description': 'Two people are walking down a path. A number of giant '
'books have surrounded them.',
'image_location': 'a road',
'image_uncanny_description': 'There are book people in this world.',
'instance_id': 'eef9baf450e2fab19b96facc128adf80',
'label': 'A play on the word intimidating --- usually if the classics (i.e., '
'classic novels) were to be intimidating, this would mean that they '
'are intimidating to read due to their length, complexity, etc. But '
'here, they are surrounded by anthropomorphic books which look '
'physically intimidating, i.e., they are intimidating because they '
'may try to beat up these people.',
'n_tokens_label': 59,
'questions': ['What do the books want?']}
```
The label is an explanation of the joke, which serves as the autoregressive target.
### Data Instances
See above
### Data Fields
See above
### Data Splits
Data splits can be accessed as:
```
from datasets import load_dataset
dset = load_dataset("jmhessel/newyorker_caption_contest", "matching")
dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking")
dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation")
```
Or, in the from pixels setting, e.g.,
```
from datasets import load_dataset
dset = load_dataset("jmhessel/newyorker_caption_contest", "ranking_from_pixels")
```
Because the dataset is small, we reported in 5-fold cross-validation setting initially. The default splits are split 0. You can access the other splits, e.g.:
```
from datasets import load_dataset
# the 4th data split
dset = load_dataset("jmhessel/newyorker_caption_contest", "explanation_4")
```
## Dataset Creation
Full details are in the paper.
### Curation Rationale
See the paper for rationale/motivation.
### Source Data
See citation below. We combined 3 sources of data, and added significant annotations of our own.
#### Initial Data Collection and Normalization
Full details are in the paper.
#### Who are the source language producers?
We paid crowdworkers $15/hr to annotate the corpus.
In addition, significant annotation efforts were conducted by the authors of this work.
### Annotations
Full details are in the paper.
#### Annotation process
Full details are in the paper.
#### Who are the annotators?
A mix of crowdworks and authors of this paper.
### Personal and Sensitive Information
Has been redacted from the dataset. Images are published in the New Yorker already.
## Considerations for Using the Data
### Social Impact of Dataset
It's plausible that humor could perpetuate negative stereotypes. The jokes in this corpus are a mix of crowdsourced entries that are highly rated, and ones published in the new yorker.
### Discussion of Biases
Humor is subjective, and some of the jokes may be considered offensive. The images may contain adult themes and minor cartoon nudity.
### Other Known Limitations
More details are in the paper
## Additional Information
### Dataset Curators
The dataset was curated by researchers at AI2
### Licensing Information
The annotations we provide are CC-BY-4.0. See www.capcon.dev for more info.
### Citation Information
```
@article{hessel2022androids,
title={Do Androids Laugh at Electric Sheep? Humor "Understanding" Benchmarks from The New Yorker Caption Contest},
author={Hessel, Jack and Marasovi{\'c}, Ana and Hwang, Jena D and Lee, Lillian and Da, Jeff and Zellers, Rowan and Mankoff, Robert and Choi, Yejin},
journal={arXiv preprint arXiv:2209.06293},
year={2022}
}
```
Our data contributions are:
- The cartoon-level annotations;
- The joke explanations;
- and the framing of the tasks
We release these data we contribute under CC-BY (see DATASET_LICENSE). If you find this data useful in your work, in addition to citing our contributions, please also cite the following, from which the cartoons/captions in our corpus are derived:
```
@misc{newyorkernextmldataset,
author={Jain, Lalit and Jamieson, Kevin and Mankoff, Robert and Nowak, Robert and Sievert, Scott},
title={The {N}ew {Y}orker Cartoon Caption Contest Dataset},
year={2020},
url={https://nextml.github.io/caption-contest-data/}
}
@inproceedings{radev-etal-2016-humor,
title = "Humor in Collective Discourse: Unsupervised Funniness Detection in The {New Yorker} Cartoon Caption Contest",
author = "Radev, Dragomir and
Stent, Amanda and
Tetreault, Joel and
Pappu, Aasish and
Iliakopoulou, Aikaterini and
Chanfreau, Agustin and
de Juan, Paloma and
Vallmitjana, Jordi and
Jaimes, Alejandro and
Jha, Rahul and
Mankoff, Robert",
booktitle = "LREC",
year = "2016",
}
@inproceedings{shahaf2015inside,
title={Inside jokes: Identifying humorous cartoon captions},
author={Shahaf, Dafna and Horvitz, Eric and Mankoff, Robert},
booktitle={KDD},
year={2015},
}
``` |