jiaheillu commited on
Commit
0ebe088
·
1 Parent(s): 2572562

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -13
README.md CHANGED
@@ -14,22 +14,62 @@ pretty_name: genshin_voice_sovits
14
 
15
  本仓库用于预览训练出的各种语音模型的效果,点击角色名自动跳转对应训练参数。</br>
16
  正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
17
- <div style="width: 400px; height: 200px; overflow: auto;">
18
- <pre>
19
 
20
- | 角色名 | 角色原声A | 被转换人声B |A音色替换B|A音色翻唱(点击直接下载)|
21
- | :------: | :----: | :----: | :----: |:----:|
22
- | [散兵](https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/散兵效果预览/训练参数速览.md)| <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/部分训练集/真遗憾,小吉祥草王让他消除了那么多的切片,剥夺了我将他一片一片千刀万剐的快乐%E3%80%82.mp3" controls="controls"> | <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/原声/shenli3.wav" controls="controls"> | <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/shenli3mp3_auto_liulangzhe.wav" controls="controls">|[夢で会えたら](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/夢で逢えたら2liulangzhe_f.wav)|
23
- |[胡桃](https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/胡桃_preview/README.md)| <audio style="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E8%83%A1%E6%A1%83_preview/hutao.wav" controls="controls"> | .........| ......... |[moonlight shadow](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/moonlight_shadow2胡桃.WAV),[云烟成雨](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/云烟成雨2胡桃.WAV),[原点](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/原点2胡桃.WAV),[夢で逢えたら](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/夢だ会えたら2胡桃.WAV),[贝加尔湖畔](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/贝加尔湖畔2胡桃.WAV) |
24
- |[神里绫华](https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/绫华_preview/README.md)| <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/linghua428.wav" controls="controls"> | <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav" controls="controls"> | <audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav_auto_linghua_0.5.flac" controls="controls"> |[アムリタ](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/アムリタ2绫华.WAV),[大鱼](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/大鱼2绫华.WAV),[遊園施設](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/遊園施設2绫华.WAV),[the day you want away](https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/the_day_you_want_away2绫华.WAV)|
25
-
26
- <pre>
27
- <div>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
  关键参数:
30
 
31
- 音频时长:min<br>
32
- epoch: 轮 <br>
33
 
34
  其余:
35
  batch_size = 一个step训练的片段数<br>
@@ -42,5 +82,5 @@ step=segments*epoch/batch_size,即模型文件后面数字由来<br>
42
  差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
43
  何,差不多有个概念。当然即使loss也不足以参考,唯一的衡量标准就是当事人的耳朵。当然,正常训练,10min还是有些少的。<br>
44
 
45
- 相关文件全部在“散兵效果预览”文件夹中<br>
46
  ![sanbing_loss](./散兵效果预览/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)
 
14
 
15
  本仓库用于预览训练出的各种语音模型的效果,点击角色名自动跳转对应训练参数。</br>
16
  正常说话的音色转换较为准确,歌曲包含较广的音域且bgm和声等难以去除干净,效果有所折扣。</br>
17
+
 
18
 
19
+ <div style="width: 800px; height: 300px; overflow: auto;">
20
+ <table border="1" style="white-space: nowrap; text-align: center;">
21
+ <thead>
22
+ <tr>
23
+ <th>角色名</th>
24
+ <th>角色原声A</th>
25
+ <th>被转换人声B</th>
26
+ <th>A音色替换B</th>
27
+ <th>A音色翻唱(点击直接下载)</th>
28
+ </tr>
29
+ </thead>
30
+ <tbody>
31
+ <tr>
32
+ <td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/散兵效果预览/训练参数速览.md">散兵</a></td>
33
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/部分训练集/真遗憾,小吉祥草王让他消除了那么多的切片,剥夺了我将他一片一片千刀万剐的快乐%E3%80%82.mp3" controls="controls"></audio></td>
34
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/原声/shenli3.wav" controls="controls"></audio></td>
35
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/shenli3mp3_auto_liulangzhe.wav" controls="controls"></audio></td>
36
+ <td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/散兵效果预览/转换结果/夢で逢えたら2liulangzhe_f.wav">夢で会えたら</a></td>
37
+ </tr>
38
+ <tr>
39
+ <td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/胡桃_preview/README.md">胡桃</a></td>
40
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/%E8%83%A1%E6%A1%83_preview/hutao.wav" controls="controls"></audio></td>
41
+ <td>.........</td>
42
+ <td>.........</td>
43
+ <td>
44
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/moonlight_shadow2胡桃.WAV">moonlight shadow</a>,
45
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/云烟成雨2胡桃.WAV">云烟成雨</a>,
46
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/原点2胡桃.WAV">原点</a>,
47
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/夢だ会えたら2胡桃.WAV">夢で逢えたら</a>,
48
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/胡桃_preview/贝加尔湖畔2胡桃.WAV">贝加尔湖畔</a>
49
+ </td>
50
+ </tr>
51
+ <tr>
52
+ <td><a href="https://huggingface.co/datasets/jiaheillu/audio_preview/blob/main/绫华_preview/README.md">神里绫华</a></td>
53
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/linghua428.wav" controls="controls"></audio></td>
54
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav" controls="controls"></audio></td>
55
+ <td><audio src="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/yelan.wav_auto_linghua_0.5.flac" controls="controls"></audio></td>
56
+ <td>
57
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/アムリタ2绫华.WAV">アムリタ</a>,
58
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/大鱼2绫华.WAV">大鱼</a>,
59
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/遊園施設2绫华.WAV">遊園施設</a>,
60
+ <a href="https://huggingface.co/datasets/jiaheillu/audio_preview/resolve/main/绫华_preview/the_day_you_want_away2绫华.WAV">the day you want away</a>
61
+ </td>
62
+ </tr>
63
+ </tbody>
64
+ </table>
65
+ </div>
66
+
67
+
68
 
69
  关键参数:
70
 
71
+ audio duration:训练集总时长
72
+ epoch: 轮数
73
 
74
  其余:
75
  batch_size = 一个step训练的片段数<br>
 
82
  差不多2800epoch(10000step)就已经出结果了,实际使用的是5571epoch(19500step)的文件,被训练音色和原音色相差几<br>
83
  何,差不多有个概念。当然即使loss也不足以参考,唯一的衡量标准就是当事人的耳朵。当然,正常训练,10min还是有些少的。<br>
84
 
85
+ [点我查看相关文件](https://huggingface.co/datasets/jiaheillu/audio_preview/tree/main)<br>
86
  ![sanbing_loss](./散兵效果预览/%E8%AE%AD%E7%BB%83%E5%8F%82%E6%95%B0%E9%80%9F%E8%A7%88.assets/sanbing_loss.png)