|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations |
|
from typing import Tuple, Any, Sequence, Callable, Optional |
|
|
|
import numpy as np |
|
import torch |
|
|
|
|
|
def rot_matmul( |
|
a: torch.Tensor, |
|
b: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Performs matrix multiplication of two rotation matrix tensors. Written |
|
out by hand to avoid AMP downcasting. |
|
|
|
Args: |
|
a: [*, 3, 3] left multiplicand |
|
b: [*, 3, 3] right multiplicand |
|
Returns: |
|
The product ab |
|
""" |
|
def row_mul(i): |
|
return torch.stack( |
|
[ |
|
a[..., i, 0] * b[..., 0, 0] |
|
+ a[..., i, 1] * b[..., 1, 0] |
|
+ a[..., i, 2] * b[..., 2, 0], |
|
a[..., i, 0] * b[..., 0, 1] |
|
+ a[..., i, 1] * b[..., 1, 1] |
|
+ a[..., i, 2] * b[..., 2, 1], |
|
a[..., i, 0] * b[..., 0, 2] |
|
+ a[..., i, 1] * b[..., 1, 2] |
|
+ a[..., i, 2] * b[..., 2, 2], |
|
], |
|
dim=-1, |
|
) |
|
|
|
return torch.stack( |
|
[ |
|
row_mul(0), |
|
row_mul(1), |
|
row_mul(2), |
|
], |
|
dim=-2 |
|
) |
|
|
|
|
|
def rot_vec_mul( |
|
r: torch.Tensor, |
|
t: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Applies a rotation to a vector. Written out by hand to avoid transfer |
|
to avoid AMP downcasting. |
|
|
|
Args: |
|
r: [*, 3, 3] rotation matrices |
|
t: [*, 3] coordinate tensors |
|
Returns: |
|
[*, 3] rotated coordinates |
|
""" |
|
x, y, z = torch.unbind(t, dim=-1) |
|
return torch.stack( |
|
[ |
|
r[..., 0, 0] * x + r[..., 0, 1] * y + r[..., 0, 2] * z, |
|
r[..., 1, 0] * x + r[..., 1, 1] * y + r[..., 1, 2] * z, |
|
r[..., 2, 0] * x + r[..., 2, 1] * y + r[..., 2, 2] * z, |
|
], |
|
dim=-1, |
|
) |
|
|
|
|
|
def identity_rot_mats( |
|
batch_dims: Tuple[int], |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
requires_grad: bool = True, |
|
) -> torch.Tensor: |
|
rots = torch.eye( |
|
3, dtype=dtype, device=device, requires_grad=requires_grad |
|
) |
|
rots = rots.view(*((1,) * len(batch_dims)), 3, 3) |
|
rots = rots.expand(*batch_dims, -1, -1) |
|
rots = rots.contiguous() |
|
|
|
return rots |
|
|
|
|
|
def identity_trans( |
|
batch_dims: Tuple[int], |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
requires_grad: bool = True, |
|
) -> torch.Tensor: |
|
trans = torch.zeros( |
|
(*batch_dims, 3), |
|
dtype=dtype, |
|
device=device, |
|
requires_grad=requires_grad |
|
) |
|
return trans |
|
|
|
|
|
def identity_quats( |
|
batch_dims: Tuple[int], |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
requires_grad: bool = True, |
|
) -> torch.Tensor: |
|
quat = torch.zeros( |
|
(*batch_dims, 4), |
|
dtype=dtype, |
|
device=device, |
|
requires_grad=requires_grad |
|
) |
|
|
|
with torch.no_grad(): |
|
quat[..., 0] = 1 |
|
|
|
return quat |
|
|
|
|
|
_quat_elements = ["a", "b", "c", "d"] |
|
_qtr_keys = [l1 + l2 for l1 in _quat_elements for l2 in _quat_elements] |
|
_qtr_ind_dict = {key: ind for ind, key in enumerate(_qtr_keys)} |
|
|
|
|
|
def _to_mat(pairs): |
|
mat = np.zeros((4, 4)) |
|
for pair in pairs: |
|
key, value = pair |
|
ind = _qtr_ind_dict[key] |
|
mat[ind // 4][ind % 4] = value |
|
|
|
return mat |
|
|
|
|
|
_QTR_MAT = np.zeros((4, 4, 3, 3)) |
|
_QTR_MAT[..., 0, 0] = _to_mat([("aa", 1), ("bb", 1), ("cc", -1), ("dd", -1)]) |
|
_QTR_MAT[..., 0, 1] = _to_mat([("bc", 2), ("ad", -2)]) |
|
_QTR_MAT[..., 0, 2] = _to_mat([("bd", 2), ("ac", 2)]) |
|
_QTR_MAT[..., 1, 0] = _to_mat([("bc", 2), ("ad", 2)]) |
|
_QTR_MAT[..., 1, 1] = _to_mat([("aa", 1), ("bb", -1), ("cc", 1), ("dd", -1)]) |
|
_QTR_MAT[..., 1, 2] = _to_mat([("cd", 2), ("ab", -2)]) |
|
_QTR_MAT[..., 2, 0] = _to_mat([("bd", 2), ("ac", -2)]) |
|
_QTR_MAT[..., 2, 1] = _to_mat([("cd", 2), ("ab", 2)]) |
|
_QTR_MAT[..., 2, 2] = _to_mat([("aa", 1), ("bb", -1), ("cc", -1), ("dd", 1)]) |
|
|
|
|
|
def quat_to_rot(quat: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts a quaternion to a rotation matrix. |
|
|
|
Args: |
|
quat: [*, 4] quaternions |
|
Returns: |
|
[*, 3, 3] rotation matrices |
|
""" |
|
|
|
quat = quat[..., None] * quat[..., None, :] |
|
|
|
|
|
mat = quat.new_tensor(_QTR_MAT, requires_grad=False) |
|
|
|
|
|
shaped_qtr_mat = mat.view((1,) * len(quat.shape[:-2]) + mat.shape) |
|
quat = quat[..., None, None] * shaped_qtr_mat |
|
|
|
|
|
return torch.sum(quat, dim=(-3, -4)) |
|
|
|
|
|
def rot_to_quat( |
|
rot: torch.Tensor, |
|
): |
|
if(rot.shape[-2:] != (3, 3)): |
|
raise ValueError("Input rotation is incorrectly shaped") |
|
|
|
rot = [[rot[..., i, j] for j in range(3)] for i in range(3)] |
|
[[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = rot |
|
|
|
k = [ |
|
[ xx + yy + zz, zy - yz, xz - zx, yx - xy,], |
|
[ zy - yz, xx - yy - zz, xy + yx, xz + zx,], |
|
[ xz - zx, xy + yx, yy - xx - zz, yz + zy,], |
|
[ yx - xy, xz + zx, yz + zy, zz - xx - yy,] |
|
] |
|
|
|
k = (1./3.) * torch.stack([torch.stack(t, dim=-1) for t in k], dim=-2) |
|
|
|
_, vectors = torch.linalg.eigh(k) |
|
return vectors[..., -1] |
|
|
|
|
|
_QUAT_MULTIPLY = np.zeros((4, 4, 4)) |
|
_QUAT_MULTIPLY[:, :, 0] = [[ 1, 0, 0, 0], |
|
[ 0,-1, 0, 0], |
|
[ 0, 0,-1, 0], |
|
[ 0, 0, 0,-1]] |
|
|
|
_QUAT_MULTIPLY[:, :, 1] = [[ 0, 1, 0, 0], |
|
[ 1, 0, 0, 0], |
|
[ 0, 0, 0, 1], |
|
[ 0, 0,-1, 0]] |
|
|
|
_QUAT_MULTIPLY[:, :, 2] = [[ 0, 0, 1, 0], |
|
[ 0, 0, 0,-1], |
|
[ 1, 0, 0, 0], |
|
[ 0, 1, 0, 0]] |
|
|
|
_QUAT_MULTIPLY[:, :, 3] = [[ 0, 0, 0, 1], |
|
[ 0, 0, 1, 0], |
|
[ 0,-1, 0, 0], |
|
[ 1, 0, 0, 0]] |
|
|
|
_QUAT_MULTIPLY_BY_VEC = _QUAT_MULTIPLY[:, 1:, :] |
|
|
|
|
|
def quat_multiply(quat1, quat2): |
|
"""Multiply a quaternion by another quaternion.""" |
|
mat = quat1.new_tensor(_QUAT_MULTIPLY) |
|
reshaped_mat = mat.view((1,) * len(quat1.shape[:-1]) + mat.shape) |
|
return torch.sum( |
|
reshaped_mat * |
|
quat1[..., :, None, None] * |
|
quat2[..., None, :, None], |
|
dim=(-3, -2) |
|
) |
|
|
|
|
|
def quat_multiply_by_vec(quat, vec): |
|
"""Multiply a quaternion by a pure-vector quaternion.""" |
|
mat = quat.new_tensor(_QUAT_MULTIPLY_BY_VEC) |
|
reshaped_mat = mat.view((1,) * len(quat.shape[:-1]) + mat.shape) |
|
return torch.sum( |
|
reshaped_mat * |
|
quat[..., :, None, None] * |
|
vec[..., None, :, None], |
|
dim=(-3, -2) |
|
) |
|
|
|
|
|
def invert_rot_mat(rot_mat: torch.Tensor): |
|
return rot_mat.transpose(-1, -2) |
|
|
|
|
|
def invert_quat(quat: torch.Tensor): |
|
quat_prime = quat.clone() |
|
quat_prime[..., 1:] *= -1 |
|
inv = quat_prime / torch.sum(quat ** 2, dim=-1, keepdim=True) |
|
return inv |
|
|
|
|
|
class Rotation: |
|
""" |
|
A 3D rotation. Depending on how the object is initialized, the |
|
rotation is represented by either a rotation matrix or a |
|
quaternion, though both formats are made available by helper functions. |
|
To simplify gradient computation, the underlying format of the |
|
rotation cannot be changed in-place. Like Rigid, the class is designed |
|
to mimic the behavior of a torch Tensor, almost as if each Rotation |
|
object were a tensor of rotations, in one format or another. |
|
""" |
|
def __init__(self, |
|
rot_mats: Optional[torch.Tensor] = None, |
|
quats: Optional[torch.Tensor] = None, |
|
normalize_quats: bool = True, |
|
): |
|
""" |
|
Args: |
|
rot_mats: |
|
A [*, 3, 3] rotation matrix tensor. Mutually exclusive with |
|
quats |
|
quats: |
|
A [*, 4] quaternion. Mutually exclusive with rot_mats. If |
|
normalize_quats is not True, must be a unit quaternion |
|
normalize_quats: |
|
If quats is specified, whether to normalize quats |
|
""" |
|
if((rot_mats is None and quats is None) or |
|
(rot_mats is not None and quats is not None)): |
|
raise ValueError("Exactly one input argument must be specified") |
|
|
|
if((rot_mats is not None and rot_mats.shape[-2:] != (3, 3)) or |
|
(quats is not None and quats.shape[-1] != 4)): |
|
raise ValueError( |
|
"Incorrectly shaped rotation matrix or quaternion" |
|
) |
|
|
|
|
|
if(quats is not None): |
|
quats = quats.to(dtype=torch.float32) |
|
if(rot_mats is not None): |
|
rot_mats = rot_mats.to(dtype=torch.float32) |
|
|
|
if(quats is not None and normalize_quats): |
|
quats = quats / torch.linalg.norm(quats, dim=-1, keepdim=True) |
|
|
|
self._rot_mats = rot_mats |
|
self._quats = quats |
|
|
|
@staticmethod |
|
def identity( |
|
shape, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
requires_grad: bool = True, |
|
fmt: str = "quat", |
|
) -> Rotation: |
|
""" |
|
Returns an identity Rotation. |
|
|
|
Args: |
|
shape: |
|
The "shape" of the resulting Rotation object. See documentation |
|
for the shape property |
|
dtype: |
|
The torch dtype for the rotation |
|
device: |
|
The torch device for the new rotation |
|
requires_grad: |
|
Whether the underlying tensors in the new rotation object |
|
should require gradient computation |
|
fmt: |
|
One of "quat" or "rot_mat". Determines the underlying format |
|
of the new object's rotation |
|
Returns: |
|
A new identity rotation |
|
""" |
|
if(fmt == "rot_mat"): |
|
rot_mats = identity_rot_mats( |
|
shape, dtype, device, requires_grad, |
|
) |
|
return Rotation(rot_mats=rot_mats, quats=None) |
|
elif(fmt == "quat"): |
|
quats = identity_quats(shape, dtype, device, requires_grad) |
|
return Rotation(rot_mats=None, quats=quats, normalize_quats=False) |
|
else: |
|
raise ValueError(f"Invalid format: f{fmt}") |
|
|
|
|
|
|
|
def __getitem__(self, index: Any) -> Rotation: |
|
""" |
|
Allows torch-style indexing over the virtual shape of the rotation |
|
object. See documentation for the shape property. |
|
|
|
Args: |
|
index: |
|
A torch index. E.g. (1, 3, 2), or (slice(None,)) |
|
Returns: |
|
The indexed rotation |
|
""" |
|
if type(index) != tuple: |
|
index = (index,) |
|
|
|
if(self._rot_mats is not None): |
|
rot_mats = self._rot_mats[index + (slice(None), slice(None))] |
|
return Rotation(rot_mats=rot_mats) |
|
elif(self._quats is not None): |
|
quats = self._quats[index + (slice(None),)] |
|
return Rotation(quats=quats, normalize_quats=False) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def __mul__(self, |
|
right: torch.Tensor, |
|
) -> Rotation: |
|
""" |
|
Pointwise left multiplication of the rotation with a tensor. Can be |
|
used to e.g. mask the Rotation. |
|
|
|
Args: |
|
right: |
|
The tensor multiplicand |
|
Returns: |
|
The product |
|
""" |
|
if not(isinstance(right, torch.Tensor)): |
|
raise TypeError("The other multiplicand must be a Tensor") |
|
|
|
if(self._rot_mats is not None): |
|
rot_mats = self._rot_mats * right[..., None, None] |
|
return Rotation(rot_mats=rot_mats, quats=None) |
|
elif(self._quats is not None): |
|
quats = self._quats * right[..., None] |
|
return Rotation(rot_mats=None, quats=quats, normalize_quats=False) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def __rmul__(self, |
|
left: torch.Tensor, |
|
) -> Rotation: |
|
""" |
|
Reverse pointwise multiplication of the rotation with a tensor. |
|
|
|
Args: |
|
left: |
|
The left multiplicand |
|
Returns: |
|
The product |
|
""" |
|
return self.__mul__(left) |
|
|
|
|
|
|
|
@property |
|
def shape(self) -> torch.Size: |
|
""" |
|
Returns the virtual shape of the rotation object. This shape is |
|
defined as the batch dimensions of the underlying rotation matrix |
|
or quaternion. If the Rotation was initialized with a [10, 3, 3] |
|
rotation matrix tensor, for example, the resulting shape would be |
|
[10]. |
|
|
|
Returns: |
|
The virtual shape of the rotation object |
|
""" |
|
s = None |
|
if(self._quats is not None): |
|
s = self._quats.shape[:-1] |
|
else: |
|
s = self._rot_mats.shape[:-2] |
|
|
|
return s |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
Returns the dtype of the underlying rotation. |
|
|
|
Returns: |
|
The dtype of the underlying rotation |
|
""" |
|
if(self._rot_mats is not None): |
|
return self._rot_mats.dtype |
|
elif(self._quats is not None): |
|
return self._quats.dtype |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
The device of the underlying rotation |
|
|
|
Returns: |
|
The device of the underlying rotation |
|
""" |
|
if(self._rot_mats is not None): |
|
return self._rot_mats.device |
|
elif(self._quats is not None): |
|
return self._quats.device |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
@property |
|
def requires_grad(self) -> bool: |
|
""" |
|
Returns the requires_grad property of the underlying rotation |
|
|
|
Returns: |
|
The requires_grad property of the underlying tensor |
|
""" |
|
if(self._rot_mats is not None): |
|
return self._rot_mats.requires_grad |
|
elif(self._quats is not None): |
|
return self._quats.requires_grad |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def get_rot_mats(self) -> torch.Tensor: |
|
""" |
|
Returns the underlying rotation as a rotation matrix tensor. |
|
|
|
Returns: |
|
The rotation as a rotation matrix tensor |
|
""" |
|
rot_mats = self._rot_mats |
|
if(rot_mats is None): |
|
if(self._quats is None): |
|
raise ValueError("Both rotations are None") |
|
else: |
|
rot_mats = quat_to_rot(self._quats) |
|
|
|
return rot_mats |
|
|
|
def get_quats(self) -> torch.Tensor: |
|
""" |
|
Returns the underlying rotation as a quaternion tensor. |
|
|
|
Depending on whether the Rotation was initialized with a |
|
quaternion, this function may call torch.linalg.eigh. |
|
|
|
Returns: |
|
The rotation as a quaternion tensor. |
|
""" |
|
quats = self._quats |
|
if(quats is None): |
|
if(self._rot_mats is None): |
|
raise ValueError("Both rotations are None") |
|
else: |
|
quats = rot_to_quat(self._rot_mats) |
|
|
|
return quats |
|
|
|
def get_cur_rot(self) -> torch.Tensor: |
|
""" |
|
Return the underlying rotation in its current form |
|
|
|
Returns: |
|
The stored rotation |
|
""" |
|
if(self._rot_mats is not None): |
|
return self._rot_mats |
|
elif(self._quats is not None): |
|
return self._quats |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
|
|
|
|
def compose_q_update_vec(self, |
|
q_update_vec: torch.Tensor, |
|
normalize_quats: bool = True |
|
) -> Rotation: |
|
""" |
|
Returns a new quaternion Rotation after updating the current |
|
object's underlying rotation with a quaternion update, formatted |
|
as a [*, 3] tensor whose final three columns represent x, y, z such |
|
that (1, x, y, z) is the desired (not necessarily unit) quaternion |
|
update. |
|
|
|
Args: |
|
q_update_vec: |
|
A [*, 3] quaternion update tensor |
|
normalize_quats: |
|
Whether to normalize the output quaternion |
|
Returns: |
|
An updated Rotation |
|
""" |
|
quats = self.get_quats() |
|
new_quats = quats + quat_multiply_by_vec(quats, q_update_vec) |
|
return Rotation( |
|
rot_mats=None, |
|
quats=new_quats, |
|
normalize_quats=normalize_quats, |
|
) |
|
|
|
def compose_r(self, r: Rotation) -> Rotation: |
|
""" |
|
Compose the rotation matrices of the current Rotation object with |
|
those of another. |
|
|
|
Args: |
|
r: |
|
An update rotation object |
|
Returns: |
|
An updated rotation object |
|
""" |
|
r1 = self.get_rot_mats() |
|
r2 = r.get_rot_mats() |
|
new_rot_mats = rot_matmul(r1, r2) |
|
return Rotation(rot_mats=new_rot_mats, quats=None) |
|
|
|
def compose_q(self, r: Rotation, normalize_quats: bool = True) -> Rotation: |
|
""" |
|
Compose the quaternions of the current Rotation object with those |
|
of another. |
|
|
|
Depending on whether either Rotation was initialized with |
|
quaternions, this function may call torch.linalg.eigh. |
|
|
|
Args: |
|
r: |
|
An update rotation object |
|
Returns: |
|
An updated rotation object |
|
""" |
|
q1 = self.get_quats() |
|
q2 = r.get_quats() |
|
new_quats = quat_multiply(q1, q2) |
|
return Rotation( |
|
rot_mats=None, quats=new_quats, normalize_quats=normalize_quats |
|
) |
|
|
|
def apply(self, pts: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Apply the current Rotation as a rotation matrix to a set of 3D |
|
coordinates. |
|
|
|
Args: |
|
pts: |
|
A [*, 3] set of points |
|
Returns: |
|
[*, 3] rotated points |
|
""" |
|
rot_mats = self.get_rot_mats() |
|
return rot_vec_mul(rot_mats, pts) |
|
|
|
def invert_apply(self, pts: torch.Tensor) -> torch.Tensor: |
|
""" |
|
The inverse of the apply() method. |
|
|
|
Args: |
|
pts: |
|
A [*, 3] set of points |
|
Returns: |
|
[*, 3] inverse-rotated points |
|
""" |
|
rot_mats = self.get_rot_mats() |
|
inv_rot_mats = invert_rot_mat(rot_mats) |
|
return rot_vec_mul(inv_rot_mats, pts) |
|
|
|
def invert(self) -> Rotation: |
|
""" |
|
Returns the inverse of the current Rotation. |
|
|
|
Returns: |
|
The inverse of the current Rotation |
|
""" |
|
if(self._rot_mats is not None): |
|
return Rotation( |
|
rot_mats=invert_rot_mat(self._rot_mats), |
|
quats=None |
|
) |
|
elif(self._quats is not None): |
|
return Rotation( |
|
rot_mats=None, |
|
quats=invert_quat(self._quats), |
|
normalize_quats=False, |
|
) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
|
|
|
|
def unsqueeze(self, |
|
dim: int, |
|
) -> Rigid: |
|
""" |
|
Analogous to torch.unsqueeze. The dimension is relative to the |
|
shape of the Rotation object. |
|
|
|
Args: |
|
dim: A positive or negative dimension index. |
|
Returns: |
|
The unsqueezed Rotation. |
|
""" |
|
if dim >= len(self.shape): |
|
raise ValueError("Invalid dimension") |
|
|
|
if(self._rot_mats is not None): |
|
rot_mats = self._rot_mats.unsqueeze(dim if dim >= 0 else dim - 2) |
|
return Rotation(rot_mats=rot_mats, quats=None) |
|
elif(self._quats is not None): |
|
quats = self._quats.unsqueeze(dim if dim >= 0 else dim - 1) |
|
return Rotation(rot_mats=None, quats=quats, normalize_quats=False) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
@staticmethod |
|
def cat( |
|
rs: Sequence[Rotation], |
|
dim: int, |
|
) -> Rigid: |
|
""" |
|
Concatenates rotations along one of the batch dimensions. Analogous |
|
to torch.cat(). |
|
|
|
Note that the output of this operation is always a rotation matrix, |
|
regardless of the format of input rotations. |
|
|
|
Args: |
|
rs: |
|
A list of rotation objects |
|
dim: |
|
The dimension along which the rotations should be |
|
concatenated |
|
Returns: |
|
A concatenated Rotation object in rotation matrix format |
|
""" |
|
rot_mats = [r.get_rot_mats() for r in rs] |
|
rot_mats = torch.cat(rot_mats, dim=dim if dim >= 0 else dim - 2) |
|
|
|
return Rotation(rot_mats=rot_mats, quats=None) |
|
|
|
def map_tensor_fn(self, |
|
fn: Callable[torch.Tensor, torch.Tensor] |
|
) -> Rotation: |
|
""" |
|
Apply a Tensor -> Tensor function to underlying rotation tensors, |
|
mapping over the rotation dimension(s). Can be used e.g. to sum out |
|
a one-hot batch dimension. |
|
|
|
Args: |
|
fn: |
|
A Tensor -> Tensor function to be mapped over the Rotation |
|
Returns: |
|
The transformed Rotation object |
|
""" |
|
if(self._rot_mats is not None): |
|
rot_mats = self._rot_mats.view(self._rot_mats.shape[:-2] + (9,)) |
|
rot_mats = torch.stack( |
|
list(map(fn, torch.unbind(rot_mats, dim=-1))), dim=-1 |
|
) |
|
rot_mats = rot_mats.view(rot_mats.shape[:-1] + (3, 3)) |
|
return Rotation(rot_mats=rot_mats, quats=None) |
|
elif(self._quats is not None): |
|
quats = torch.stack( |
|
list(map(fn, torch.unbind(self._quats, dim=-1))), dim=-1 |
|
) |
|
return Rotation(rot_mats=None, quats=quats, normalize_quats=False) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def cuda(self) -> Rotation: |
|
""" |
|
Analogous to the cuda() method of torch Tensors |
|
|
|
Returns: |
|
A copy of the Rotation in CUDA memory |
|
""" |
|
if(self._rot_mats is not None): |
|
return Rotation(rot_mats=self._rot_mats.cuda(), quats=None) |
|
elif(self._quats is not None): |
|
return Rotation( |
|
rot_mats=None, |
|
quats=self._quats.cuda(), |
|
normalize_quats=False |
|
) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def to(self, |
|
device: Optional[torch.device], |
|
dtype: Optional[torch.dtype] |
|
) -> Rotation: |
|
""" |
|
Analogous to the to() method of torch Tensors |
|
|
|
Args: |
|
device: |
|
A torch device |
|
dtype: |
|
A torch dtype |
|
Returns: |
|
A copy of the Rotation using the new device and dtype |
|
""" |
|
if(self._rot_mats is not None): |
|
return Rotation( |
|
rot_mats=self._rot_mats.to(device=device, dtype=dtype), |
|
quats=None, |
|
) |
|
elif(self._quats is not None): |
|
return Rotation( |
|
rot_mats=None, |
|
quats=self._quats.to(device=device, dtype=dtype), |
|
normalize_quats=False, |
|
) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
def detach(self) -> Rotation: |
|
""" |
|
Returns a copy of the Rotation whose underlying Tensor has been |
|
detached from its torch graph. |
|
|
|
Returns: |
|
A copy of the Rotation whose underlying Tensor has been detached |
|
from its torch graph |
|
""" |
|
if(self._rot_mats is not None): |
|
return Rotation(rot_mats=self._rot_mats.detach(), quats=None) |
|
elif(self._quats is not None): |
|
return Rotation( |
|
rot_mats=None, |
|
quats=self._quats.detach(), |
|
normalize_quats=False, |
|
) |
|
else: |
|
raise ValueError("Both rotations are None") |
|
|
|
|
|
class Rigid: |
|
""" |
|
A class representing a rigid transformation. Little more than a wrapper |
|
around two objects: a Rotation object and a [*, 3] translation |
|
Designed to behave approximately like a single torch tensor with the |
|
shape of the shared batch dimensions of its component parts. |
|
""" |
|
def __init__(self, |
|
rots: Optional[Rotation], |
|
trans: Optional[torch.Tensor], |
|
): |
|
""" |
|
Args: |
|
rots: A [*, 3, 3] rotation tensor |
|
trans: A corresponding [*, 3] translation tensor |
|
""" |
|
|
|
|
|
batch_dims, dtype, device, requires_grad = None, None, None, None |
|
if(trans is not None): |
|
batch_dims = trans.shape[:-1] |
|
dtype = trans.dtype |
|
device = trans.device |
|
requires_grad = trans.requires_grad |
|
elif(rots is not None): |
|
batch_dims = rots.shape |
|
dtype = rots.dtype |
|
device = rots.device |
|
requires_grad = rots.requires_grad |
|
else: |
|
raise ValueError("At least one input argument must be specified") |
|
|
|
if(rots is None): |
|
rots = Rotation.identity( |
|
batch_dims, dtype, device, requires_grad, |
|
) |
|
elif(trans is None): |
|
trans = identity_trans( |
|
batch_dims, dtype, device, requires_grad, |
|
) |
|
|
|
if((rots.shape != trans.shape[:-1]) or |
|
(rots.device != trans.device)): |
|
raise ValueError("Rots and trans incompatible") |
|
|
|
|
|
trans = trans.to(dtype=torch.float32) |
|
|
|
self._rots = rots |
|
self._trans = trans |
|
|
|
@staticmethod |
|
def identity( |
|
shape: Tuple[int], |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
requires_grad: bool = True, |
|
fmt: str = "quat", |
|
) -> Rigid: |
|
""" |
|
Constructs an identity transformation. |
|
|
|
Args: |
|
shape: |
|
The desired shape |
|
dtype: |
|
The dtype of both internal tensors |
|
device: |
|
The device of both internal tensors |
|
requires_grad: |
|
Whether grad should be enabled for the internal tensors |
|
Returns: |
|
The identity transformation |
|
""" |
|
return Rigid( |
|
Rotation.identity(shape, dtype, device, requires_grad, fmt=fmt), |
|
identity_trans(shape, dtype, device, requires_grad), |
|
) |
|
|
|
def __getitem__(self, |
|
index: Any, |
|
) -> Rigid: |
|
""" |
|
Indexes the affine transformation with PyTorch-style indices. |
|
The index is applied to the shared dimensions of both the rotation |
|
and the translation. |
|
|
|
E.g.:: |
|
|
|
r = Rotation(rot_mats=torch.rand(10, 10, 3, 3), quats=None) |
|
t = Rigid(r, torch.rand(10, 10, 3)) |
|
indexed = t[3, 4:6] |
|
assert(indexed.shape == (2,)) |
|
assert(indexed.get_rots().shape == (2,)) |
|
assert(indexed.get_trans().shape == (2, 3)) |
|
|
|
Args: |
|
index: A standard torch tensor index. E.g. 8, (10, None, 3), |
|
or (3, slice(0, 1, None)) |
|
Returns: |
|
The indexed tensor |
|
""" |
|
if type(index) != tuple: |
|
index = (index,) |
|
|
|
return Rigid( |
|
self._rots[index], |
|
self._trans[index + (slice(None),)], |
|
) |
|
|
|
def __mul__(self, |
|
right: torch.Tensor, |
|
) -> Rigid: |
|
""" |
|
Pointwise left multiplication of the transformation with a tensor. |
|
Can be used to e.g. mask the Rigid. |
|
|
|
Args: |
|
right: |
|
The tensor multiplicand |
|
Returns: |
|
The product |
|
""" |
|
if not(isinstance(right, torch.Tensor)): |
|
raise TypeError("The other multiplicand must be a Tensor") |
|
|
|
new_rots = self._rots * right |
|
new_trans = self._trans * right[..., None] |
|
|
|
return Rigid(new_rots, new_trans) |
|
|
|
def __rmul__(self, |
|
left: torch.Tensor, |
|
) -> Rigid: |
|
""" |
|
Reverse pointwise multiplication of the transformation with a |
|
tensor. |
|
|
|
Args: |
|
left: |
|
The left multiplicand |
|
Returns: |
|
The product |
|
""" |
|
return self.__mul__(left) |
|
|
|
@property |
|
def shape(self) -> torch.Size: |
|
""" |
|
Returns the shape of the shared dimensions of the rotation and |
|
the translation. |
|
|
|
Returns: |
|
The shape of the transformation |
|
""" |
|
s = self._trans.shape[:-1] |
|
return s |
|
|
|
@property |
|
def device(self) -> torch.device: |
|
""" |
|
Returns the device on which the Rigid's tensors are located. |
|
|
|
Returns: |
|
The device on which the Rigid's tensors are located |
|
""" |
|
return self._trans.device |
|
|
|
def get_rots(self) -> Rotation: |
|
""" |
|
Getter for the rotation. |
|
|
|
Returns: |
|
The rotation object |
|
""" |
|
return self._rots |
|
|
|
def get_trans(self) -> torch.Tensor: |
|
""" |
|
Getter for the translation. |
|
|
|
Returns: |
|
The stored translation |
|
""" |
|
return self._trans |
|
|
|
def compose_q_update_vec(self, |
|
q_update_vec: torch.Tensor, |
|
) -> Rigid: |
|
""" |
|
Composes the transformation with a quaternion update vector of |
|
shape [*, 6], where the final 6 columns represent the x, y, and |
|
z values of a quaternion of form (1, x, y, z) followed by a 3D |
|
translation. |
|
|
|
Args: |
|
q_vec: The quaternion update vector. |
|
Returns: |
|
The composed transformation. |
|
""" |
|
q_vec, t_vec = q_update_vec[..., :3], q_update_vec[..., 3:] |
|
new_rots = self._rots.compose_q_update_vec(q_vec) |
|
|
|
trans_update = self._rots.apply(t_vec) |
|
new_translation = self._trans + trans_update |
|
|
|
return Rigid(new_rots, new_translation) |
|
|
|
def compose(self, |
|
r: Rigid, |
|
) -> Rigid: |
|
""" |
|
Composes the current rigid object with another. |
|
|
|
Args: |
|
r: |
|
Another Rigid object |
|
Returns: |
|
The composition of the two transformations |
|
""" |
|
new_rot = self._rots.compose_r(r._rots) |
|
new_trans = self._rots.apply(r._trans) + self._trans |
|
return Rigid(new_rot, new_trans) |
|
|
|
def apply(self, |
|
pts: torch.Tensor, |
|
) -> torch.Tensor: |
|
""" |
|
Applies the transformation to a coordinate tensor. |
|
|
|
Args: |
|
pts: A [*, 3] coordinate tensor. |
|
Returns: |
|
The transformed points. |
|
""" |
|
rotated = self._rots.apply(pts) |
|
return rotated + self._trans |
|
|
|
def invert_apply(self, |
|
pts: torch.Tensor |
|
) -> torch.Tensor: |
|
""" |
|
Applies the inverse of the transformation to a coordinate tensor. |
|
|
|
Args: |
|
pts: A [*, 3] coordinate tensor |
|
Returns: |
|
The transformed points. |
|
""" |
|
pts = pts - self._trans |
|
return self._rots.invert_apply(pts) |
|
|
|
def invert(self) -> Rigid: |
|
""" |
|
Inverts the transformation. |
|
|
|
Returns: |
|
The inverse transformation. |
|
""" |
|
rot_inv = self._rots.invert() |
|
trn_inv = rot_inv.apply(self._trans) |
|
|
|
return Rigid(rot_inv, -1 * trn_inv) |
|
|
|
def map_tensor_fn(self, |
|
fn: Callable[torch.Tensor, torch.Tensor] |
|
) -> Rigid: |
|
""" |
|
Apply a Tensor -> Tensor function to underlying translation and |
|
rotation tensors, mapping over the translation/rotation dimensions |
|
respectively. |
|
|
|
Args: |
|
fn: |
|
A Tensor -> Tensor function to be mapped over the Rigid |
|
Returns: |
|
The transformed Rigid object |
|
""" |
|
new_rots = self._rots.map_tensor_fn(fn) |
|
new_trans = torch.stack( |
|
list(map(fn, torch.unbind(self._trans, dim=-1))), |
|
dim=-1 |
|
) |
|
|
|
return Rigid(new_rots, new_trans) |
|
|
|
def to_tensor_4x4(self) -> torch.Tensor: |
|
""" |
|
Converts a transformation to a homogenous transformation tensor. |
|
|
|
Returns: |
|
A [*, 4, 4] homogenous transformation tensor |
|
""" |
|
tensor = self._trans.new_zeros((*self.shape, 4, 4)) |
|
tensor[..., :3, :3] = self._rots.get_rot_mats() |
|
tensor[..., :3, 3] = self._trans |
|
tensor[..., 3, 3] = 1 |
|
return tensor |
|
|
|
@staticmethod |
|
def from_tensor_4x4( |
|
t: torch.Tensor |
|
) -> Rigid: |
|
""" |
|
Constructs a transformation from a homogenous transformation |
|
tensor. |
|
|
|
Args: |
|
t: [*, 4, 4] homogenous transformation tensor |
|
Returns: |
|
T object with shape [*] |
|
""" |
|
if(t.shape[-2:] != (4, 4)): |
|
raise ValueError("Incorrectly shaped input tensor") |
|
|
|
rots = Rotation(rot_mats=t[..., :3, :3], quats=None) |
|
trans = t[..., :3, 3] |
|
|
|
return Rigid(rots, trans) |
|
|
|
def to_tensor_7(self) -> torch.Tensor: |
|
""" |
|
Converts a transformation to a tensor with 7 final columns, four |
|
for the quaternion followed by three for the translation. |
|
|
|
Returns: |
|
A [*, 7] tensor representation of the transformation |
|
""" |
|
tensor = self._trans.new_zeros((*self.shape, 7)) |
|
tensor[..., :4] = self._rots.get_quats() |
|
tensor[..., 4:] = self._trans |
|
|
|
return tensor |
|
|
|
@staticmethod |
|
def from_tensor_7( |
|
t: torch.Tensor, |
|
normalize_quats: bool = False, |
|
) -> Rigid: |
|
if(t.shape[-1] != 7): |
|
raise ValueError("Incorrectly shaped input tensor") |
|
|
|
quats, trans = t[..., :4], t[..., 4:] |
|
|
|
rots = Rotation( |
|
rot_mats=None, |
|
quats=quats, |
|
normalize_quats=normalize_quats |
|
) |
|
|
|
return Rigid(rots, trans) |
|
|
|
@staticmethod |
|
def from_3_points( |
|
p_neg_x_axis: torch.Tensor, |
|
origin: torch.Tensor, |
|
p_xy_plane: torch.Tensor, |
|
eps: float = 1e-8 |
|
) -> Rigid: |
|
""" |
|
Implements algorithm 21. Constructs transformations from sets of 3 |
|
points using the Gram-Schmidt algorithm. |
|
|
|
Args: |
|
p_neg_x_axis: [*, 3] coordinates |
|
origin: [*, 3] coordinates used as frame origins |
|
p_xy_plane: [*, 3] coordinates |
|
eps: Small epsilon value |
|
Returns: |
|
A transformation object of shape [*] |
|
""" |
|
p_neg_x_axis = torch.unbind(p_neg_x_axis, dim=-1) |
|
origin = torch.unbind(origin, dim=-1) |
|
p_xy_plane = torch.unbind(p_xy_plane, dim=-1) |
|
|
|
e0 = [c1 - c2 for c1, c2 in zip(origin, p_neg_x_axis)] |
|
e1 = [c1 - c2 for c1, c2 in zip(p_xy_plane, origin)] |
|
|
|
denom = torch.sqrt(sum((c * c for c in e0)) + eps) |
|
e0 = [c / denom for c in e0] |
|
dot = sum((c1 * c2 for c1, c2 in zip(e0, e1))) |
|
e1 = [c2 - c1 * dot for c1, c2 in zip(e0, e1)] |
|
denom = torch.sqrt(sum((c * c for c in e1)) + eps) |
|
e1 = [c / denom for c in e1] |
|
e2 = [ |
|
e0[1] * e1[2] - e0[2] * e1[1], |
|
e0[2] * e1[0] - e0[0] * e1[2], |
|
e0[0] * e1[1] - e0[1] * e1[0], |
|
] |
|
|
|
rots = torch.stack([c for tup in zip(e0, e1, e2) for c in tup], dim=-1) |
|
rots = rots.reshape(rots.shape[:-1] + (3, 3)) |
|
|
|
rot_obj = Rotation(rot_mats=rots, quats=None) |
|
|
|
return Rigid(rot_obj, torch.stack(origin, dim=-1)) |
|
|
|
def unsqueeze(self, |
|
dim: int, |
|
) -> Rigid: |
|
""" |
|
Analogous to torch.unsqueeze. The dimension is relative to the |
|
shared dimensions of the rotation/translation. |
|
|
|
Args: |
|
dim: A positive or negative dimension index. |
|
Returns: |
|
The unsqueezed transformation. |
|
""" |
|
if dim >= len(self.shape): |
|
raise ValueError("Invalid dimension") |
|
rots = self._rots.unsqueeze(dim) |
|
trans = self._trans.unsqueeze(dim if dim >= 0 else dim - 1) |
|
|
|
return Rigid(rots, trans) |
|
|
|
@staticmethod |
|
def cat( |
|
ts: Sequence[Rigid], |
|
dim: int, |
|
) -> Rigid: |
|
""" |
|
Concatenates transformations along a new dimension. |
|
|
|
Args: |
|
ts: |
|
A list of T objects |
|
dim: |
|
The dimension along which the transformations should be |
|
concatenated |
|
Returns: |
|
A concatenated transformation object |
|
""" |
|
rots = Rotation.cat([t._rots for t in ts], dim) |
|
trans = torch.cat( |
|
[t._trans for t in ts], dim=dim if dim >= 0 else dim - 1 |
|
) |
|
|
|
return Rigid(rots, trans) |
|
|
|
def apply_rot_fn(self, fn: Callable[Rotation, Rotation]) -> Rigid: |
|
""" |
|
Applies a Rotation -> Rotation function to the stored rotation |
|
object. |
|
|
|
Args: |
|
fn: A function of type Rotation -> Rotation |
|
Returns: |
|
A transformation object with a transformed rotation. |
|
""" |
|
return Rigid(fn(self._rots), self._trans) |
|
|
|
def apply_trans_fn(self, fn: Callable[torch.Tensor, torch.Tensor]) -> Rigid: |
|
""" |
|
Applies a Tensor -> Tensor function to the stored translation. |
|
|
|
Args: |
|
fn: |
|
A function of type Tensor -> Tensor to be applied to the |
|
translation |
|
Returns: |
|
A transformation object with a transformed translation. |
|
""" |
|
return Rigid(self._rots, fn(self._trans)) |
|
|
|
def scale_translation(self, trans_scale_factor: float) -> Rigid: |
|
""" |
|
Scales the translation by a constant factor. |
|
|
|
Args: |
|
trans_scale_factor: |
|
The constant factor |
|
Returns: |
|
A transformation object with a scaled translation. |
|
""" |
|
fn = lambda t: t * trans_scale_factor |
|
return self.apply_trans_fn(fn) |
|
|
|
def stop_rot_gradient(self) -> Rigid: |
|
""" |
|
Detaches the underlying rotation object |
|
|
|
Returns: |
|
A transformation object with detached rotations |
|
""" |
|
fn = lambda r: r.detach() |
|
return self.apply_rot_fn(fn) |
|
|
|
@staticmethod |
|
def make_transform_from_reference(n_xyz, ca_xyz, c_xyz, eps=1e-20): |
|
""" |
|
Returns a transformation object from reference coordinates. |
|
|
|
Note that this method does not take care of symmetries. If you |
|
provide the atom positions in the non-standard way, the N atom will |
|
end up not at [-0.527250, 1.359329, 0.0] but instead at |
|
[-0.527250, -1.359329, 0.0]. You need to take care of such cases in |
|
your code. |
|
|
|
Args: |
|
n_xyz: A [*, 3] tensor of nitrogen xyz coordinates. |
|
ca_xyz: A [*, 3] tensor of carbon alpha xyz coordinates. |
|
c_xyz: A [*, 3] tensor of carbon xyz coordinates. |
|
Returns: |
|
A transformation object. After applying the translation and |
|
rotation to the reference backbone, the coordinates will |
|
approximately equal to the input coordinates. |
|
""" |
|
translation = -1 * ca_xyz |
|
n_xyz = n_xyz + translation |
|
c_xyz = c_xyz + translation |
|
|
|
c_x, c_y, c_z = [c_xyz[..., i] for i in range(3)] |
|
norm = torch.sqrt(eps + c_x ** 2 + c_y ** 2) |
|
sin_c1 = -c_y / norm |
|
cos_c1 = c_x / norm |
|
zeros = sin_c1.new_zeros(sin_c1.shape) |
|
ones = sin_c1.new_ones(sin_c1.shape) |
|
|
|
c1_rots = sin_c1.new_zeros((*sin_c1.shape, 3, 3)) |
|
c1_rots[..., 0, 0] = cos_c1 |
|
c1_rots[..., 0, 1] = -1 * sin_c1 |
|
c1_rots[..., 1, 0] = sin_c1 |
|
c1_rots[..., 1, 1] = cos_c1 |
|
c1_rots[..., 2, 2] = 1 |
|
|
|
norm = torch.sqrt(eps + c_x ** 2 + c_y ** 2 + c_z ** 2) |
|
sin_c2 = c_z / norm |
|
cos_c2 = torch.sqrt(c_x ** 2 + c_y ** 2) / norm |
|
|
|
c2_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) |
|
c2_rots[..., 0, 0] = cos_c2 |
|
c2_rots[..., 0, 2] = sin_c2 |
|
c2_rots[..., 1, 1] = 1 |
|
c2_rots[..., 2, 0] = -1 * sin_c2 |
|
c2_rots[..., 2, 2] = cos_c2 |
|
|
|
c_rots = rot_matmul(c2_rots, c1_rots) |
|
n_xyz = rot_vec_mul(c_rots, n_xyz) |
|
|
|
_, n_y, n_z = [n_xyz[..., i] for i in range(3)] |
|
norm = torch.sqrt(eps + n_y ** 2 + n_z ** 2) |
|
sin_n = -n_z / norm |
|
cos_n = n_y / norm |
|
|
|
n_rots = sin_c2.new_zeros((*sin_c2.shape, 3, 3)) |
|
n_rots[..., 0, 0] = 1 |
|
n_rots[..., 1, 1] = cos_n |
|
n_rots[..., 1, 2] = -1 * sin_n |
|
n_rots[..., 2, 1] = sin_n |
|
n_rots[..., 2, 2] = cos_n |
|
|
|
rots = rot_matmul(n_rots, c_rots) |
|
|
|
rots = rots.transpose(-1, -2) |
|
translation = -1 * translation |
|
|
|
rot_obj = Rotation(rot_mats=rots, quats=None) |
|
|
|
return Rigid(rot_obj, translation) |
|
|
|
def cuda(self) -> Rigid: |
|
""" |
|
Moves the transformation object to GPU memory |
|
|
|
Returns: |
|
A version of the transformation on GPU |
|
""" |
|
return Rigid(self._rots.cuda(), self._trans.cuda()) |
|
|