# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dengue Dataset Low-Resource Multiclass Text Classification Dataset in Filipino""" import csv import os import datasets _DESCRIPTION = """\ Benchmark dataset for low-resource multiclass classification, with 4,015 training, 500 testing, and 500 validation examples, each labeled as part of five classes. Each sample can be a part of multiple classes. Collected as tweets. """ _CITATION = """\ @INPROCEEDINGS{8459963, author={E. D. {Livelo} and C. {Cheng}}, booktitle={2018 IEEE International Conference on Agents (ICA)}, title={Intelligent Dengue Infoveillance Using Gated Recurrent Neural Learning and Cross-Label Frequencies}, year={2018}, volume={}, number={}, pages={2-7}, doi={10.1109/AGENTS.2018.8459963}} } """ _HOMEPAGE = "https://github.com/jcblaisecruz02/Filipino-Text-Benchmarks" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _URL = "https://huggingface.co./datasets/jcblaise/dengue_filipino/resolve/main/dengue_raw.zip" class DengueFilipino(datasets.GeneratorBasedBuilder): """Dengue Dataset Low-Resource Multiclass Text Classification Dataset in Filipino""" VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "text": datasets.Value("string"), "absent": datasets.features.ClassLabel(names=["0", "1"]), "dengue": datasets.features.ClassLabel(names=["0", "1"]), "health": datasets.features.ClassLabel(names=["0", "1"]), "mosquito": datasets.features.ClassLabel(names=["0", "1"]), "sick": datasets.features.ClassLabel(names=["0", "1"]), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.download_and_extract(_URL) train_path = os.path.join(data_dir, "dengue", "train.csv") test_path = os.path.join(data_dir, "dengue", "test.csv") validation_path = os.path.join(data_dir, "dengue", "valid.csv") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": train_path, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": test_path, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": validation_path, "split": "dev", }, ), ] def _generate_examples(self, filepath, split): """Yields examples.""" with open(filepath, encoding="utf-8") as csv_file: csv_reader = csv.reader( csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True ) next(csv_reader) for id_, row in enumerate(csv_reader): try: text, absent, dengue, health, mosquito, sick = row payload = { "text": text, "absent": absent, "dengue": dengue, "health": health, "mosquito": mosquito, "sick": sick, } yield id_, payload except ValueError: pass