disks45_nocr_trec-robust-2004 / disks45_nocr_trec-robust-2004.py
Sean MacAvaney
commit files to HF hub
82515c2
"""
""" # TODO
try:
import ir_datasets
except ImportError as e:
raise ImportError('ir-datasets package missing; `pip install ir-datasets`')
import datasets
IRDS_ID = 'disks45/nocr/trec-robust-2004'
IRDS_ENTITY_TYPES = {'queries': {'query_id': 'string', 'title': 'string', 'description': 'string', 'narrative': 'string'}, 'qrels': {'query_id': 'string', 'doc_id': 'string', 'relevance': 'int64', 'iteration': 'string'}}
_CITATION = '@misc{Voorhees1996Disks45,\n title = {NIST TREC Disks 4 and 5: Retrieval Test Collections Document Set},\n author = {Ellen M. Voorhees},\n doi = {10.18434/t47g6m},\n year = {1996},\n publisher = {National Institute of Standards and Technology}\n}\n@inproceedings{Voorhees2004Robust,\n title={Overview of the TREC 2004 Robust Retrieval Track},\n author={Ellen Voorhees},\n booktitle={TREC},\n year={2004}\n}\n@inproceedings{Huston2014ACO,\n title={A Comparison of Retrieval Models using Term Dependencies},\n author={Samuel Huston and W. Bruce Croft},\n booktitle={CIKM},\n year={2014}\n}'
_DESCRIPTION = "" # TODO
class disks45_nocr_trec_robust_2004(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [datasets.BuilderConfig(name=e) for e in IRDS_ENTITY_TYPES]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features({k: datasets.Value(v) for k, v in IRDS_ENTITY_TYPES[self.config.name].items()}),
homepage=f"https://ir-datasets.com/disks45#disks45/nocr/trec-robust-2004",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
return [datasets.SplitGenerator(name=self.config.name)]
def _generate_examples(self):
dataset = ir_datasets.load(IRDS_ID)
for i, item in enumerate(getattr(dataset, self.config.name)):
key = i
if self.config.name == 'docs':
key = item.doc_id
elif self.config.name == 'queries':
key = item.query_id
yield key, item._asdict()
def as_dataset(self, split=None, *args, **kwargs):
split = self.config.name # always return split corresponding with this config to avid returning a redundant DatasetDict layer
return super().as_dataset(split, *args, **kwargs)