|
|
|
|
|
|
|
""" valuate network using pytorch |
|
Junde Wu |
|
""" |
|
|
|
import os |
|
import sys |
|
import argparse |
|
from datetime import datetime |
|
from collections import OrderedDict |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from sklearn.metrics import roc_auc_score, accuracy_score,confusion_matrix |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from skimage import io |
|
from torch.utils.data import DataLoader |
|
|
|
from torch.autograd import Variable |
|
from PIL import Image |
|
from tensorboardX import SummaryWriter |
|
|
|
from dataset import * |
|
from conf import settings |
|
import time |
|
import cfg |
|
from tqdm import tqdm |
|
from torch.utils.data import DataLoader, random_split |
|
from utils import * |
|
import function |
|
|
|
|
|
def main(): |
|
args = cfg.parse_args() |
|
if args.dataset == 'refuge' or args.dataset == 'refuge2': |
|
args.data_path = '../dataset' |
|
|
|
GPUdevice = torch.device('cuda', args.gpu_device) |
|
|
|
net = get_network(args, args.net, use_gpu=args.gpu, gpu_device=GPUdevice, distribution = args.distributed) |
|
|
|
'''load pretrained model''' |
|
assert args.weights != 0 |
|
print(f'=> resuming from {args.weights}') |
|
assert os.path.exists(args.weights) |
|
checkpoint_file = os.path.join(args.weights) |
|
assert os.path.exists(checkpoint_file) |
|
loc = 'cuda:{}'.format(args.gpu_device) |
|
checkpoint = torch.load(checkpoint_file, map_location=loc) |
|
start_epoch = checkpoint['epoch'] |
|
best_tol = checkpoint['best_tol'] |
|
|
|
state_dict = checkpoint['state_dict'] |
|
if args.distributed != 'none': |
|
from collections import OrderedDict |
|
new_state_dict = OrderedDict() |
|
for k, v in state_dict.items(): |
|
|
|
name = 'module.' + k |
|
new_state_dict[name] = v |
|
|
|
else: |
|
new_state_dict = state_dict |
|
|
|
net.load_state_dict(new_state_dict) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
args.path_helper = set_log_dir('logs', args.exp_name) |
|
logger = create_logger(args.path_helper['log_path']) |
|
logger.info(args) |
|
|
|
'''segmentation data''' |
|
nice_train_loader, nice_test_loader = get_dataloader(args) |
|
|
|
'''begain valuation''' |
|
best_acc = 0.0 |
|
best_tol = 1e4 |
|
|
|
if args.mod == 'sam_adpt': |
|
net.eval() |
|
|
|
if args.dataset != 'REFUGE': |
|
tol, (eiou, edice) = function.validation_sam(args, nice_test_loader, start_epoch, net) |
|
logger.info(f'Total score: {tol}, IOU: {eiou}, DICE: {edice} || @ epoch {start_epoch}.') |
|
else: |
|
tol, (eiou_cup, eiou_disc, edice_cup, edice_disc) = function.validation_sam(args, nice_test_loader, start_epoch, net) |
|
logger.info(f'Total score: {tol}, IOU_CUP: {eiou_cup}, IOU_DISC: {eiou_disc}, DICE_CUP: {edice_cup}, DICE_DISC: {edice_disc} || @ epoch {start_epoch}.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|