|
""" helper function |
|
|
|
author junde |
|
""" |
|
|
|
import collections |
|
import logging |
|
import math |
|
import os |
|
import pathlib |
|
import random |
|
import shutil |
|
import sys |
|
import tempfile |
|
import time |
|
import warnings |
|
from collections import OrderedDict |
|
from datetime import datetime |
|
from typing import BinaryIO, List, Optional, Text, Tuple, Union |
|
|
|
import dateutil.tz |
|
import matplotlib.pyplot as plt |
|
import numpy |
|
import numpy as np |
|
import PIL |
|
import seaborn as sns |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
import torchvision.utils as vutils |
|
from monai.config import print_config |
|
from monai.data import (CacheDataset, ThreadDataLoader, decollate_batch, |
|
load_decathlon_datalist, set_track_meta) |
|
from monai.inferers import sliding_window_inference |
|
from monai.losses import DiceCELoss |
|
from monai.metrics import DiceMetric |
|
from monai.networks.nets import SwinUNETR |
|
from monai.transforms import (AsDiscrete, Compose, CropForegroundd, |
|
EnsureTyped, LoadImaged, Orientationd, |
|
RandCropByPosNegLabeld, RandFlipd, RandRotate90d, |
|
RandShiftIntensityd, ScaleIntensityRanged, |
|
Spacingd) |
|
from PIL import Image, ImageColor, ImageDraw, ImageFont |
|
from torch import autograd |
|
from torch.autograd import Function, Variable |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
from torch.utils.data import DataLoader |
|
|
|
|
|
|
|
|
|
from torchvision.models import vgg19 |
|
from tqdm import tqdm |
|
|
|
import cfg |
|
|
|
from models.discriminator import Discriminator |
|
|
|
|
|
|
|
args = cfg.parse_args() |
|
device = torch.device('cuda', args.gpu_device) |
|
|
|
'''preparation of domain loss''' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'''end''' |
|
|
|
def get_network(args, net, use_gpu=True, gpu_device = 0, distribution = True): |
|
""" return given network |
|
""" |
|
|
|
if net == 'sam': |
|
from models.sam import SamPredictor, sam_model_registry |
|
from models.sam.utils.transforms import ResizeLongestSide |
|
options = ['default','vit_b','vit_l','vit_h'] |
|
if args.encoder not in options: |
|
raise ValueError("Invalid encoder option. Please choose from: {}".format(options)) |
|
else: |
|
net = sam_model_registry[args.encoder](args,checkpoint=args.sam_ckpt).to(device) |
|
|
|
elif net == 'efficient_sam': |
|
from models.efficient_sam import sam_model_registry |
|
options = ['default','vit_s','vit_t'] |
|
if args.encoder not in options: |
|
raise ValueError("Invalid encoder option. Please choose from: {}".format(options)) |
|
else: |
|
net = sam_model_registry[args.encoder](args) |
|
|
|
elif net == 'mobile_sam': |
|
from models.MobileSAMv2.mobilesamv2 import sam_model_registry |
|
options = ['default','vit_h','vit_l','vit_b','tiny_vit','efficientvit_l2','PromptGuidedDecoder','sam_vit_h'] |
|
if args.encoder not in options: |
|
raise ValueError("Invalid encoder option. Please choose from: {}".format(options)) |
|
else: |
|
net = sam_model_registry[args.encoder](args,checkpoint=args.sam_ckpt) |
|
|
|
else: |
|
print('the network name you have entered is not supported yet') |
|
sys.exit() |
|
|
|
if use_gpu: |
|
|
|
if distribution != 'none': |
|
net = torch.nn.DataParallel(net,device_ids=[int(id) for id in args.distributed.split(',')]) |
|
net = net.to(device=gpu_device) |
|
else: |
|
net = net.to(device=gpu_device) |
|
|
|
return net |
|
|
|
|
|
def get_decath_loader(args): |
|
|
|
train_transforms = Compose( |
|
[ |
|
LoadImaged(keys=["image", "label"], ensure_channel_first=True), |
|
ScaleIntensityRanged( |
|
keys=["image"], |
|
a_min=-175, |
|
a_max=250, |
|
b_min=0.0, |
|
b_max=1.0, |
|
clip=True, |
|
), |
|
CropForegroundd(keys=["image", "label"], source_key="image"), |
|
Orientationd(keys=["image", "label"], axcodes="RAS"), |
|
Spacingd( |
|
keys=["image", "label"], |
|
pixdim=(1.5, 1.5, 2.0), |
|
mode=("bilinear", "nearest"), |
|
), |
|
EnsureTyped(keys=["image", "label"], device=device, track_meta=False), |
|
RandCropByPosNegLabeld( |
|
keys=["image", "label"], |
|
label_key="label", |
|
spatial_size=(args.roi_size, args.roi_size, args.chunk), |
|
pos=1, |
|
neg=1, |
|
num_samples=args.num_sample, |
|
image_key="image", |
|
image_threshold=0, |
|
), |
|
RandFlipd( |
|
keys=["image", "label"], |
|
spatial_axis=[0], |
|
prob=0.10, |
|
), |
|
RandFlipd( |
|
keys=["image", "label"], |
|
spatial_axis=[1], |
|
prob=0.10, |
|
), |
|
RandFlipd( |
|
keys=["image", "label"], |
|
spatial_axis=[2], |
|
prob=0.10, |
|
), |
|
RandRotate90d( |
|
keys=["image", "label"], |
|
prob=0.10, |
|
max_k=3, |
|
), |
|
RandShiftIntensityd( |
|
keys=["image"], |
|
offsets=0.10, |
|
prob=0.50, |
|
), |
|
] |
|
) |
|
val_transforms = Compose( |
|
[ |
|
LoadImaged(keys=["image", "label"], ensure_channel_first=True), |
|
ScaleIntensityRanged( |
|
keys=["image"], a_min=-175, a_max=250, b_min=0.0, b_max=1.0, clip=True |
|
), |
|
CropForegroundd(keys=["image", "label"], source_key="image"), |
|
Orientationd(keys=["image", "label"], axcodes="RAS"), |
|
Spacingd( |
|
keys=["image", "label"], |
|
pixdim=(1.5, 1.5, 2.0), |
|
mode=("bilinear", "nearest"), |
|
), |
|
EnsureTyped(keys=["image", "label"], device=device, track_meta=True), |
|
] |
|
) |
|
|
|
|
|
|
|
data_dir = args.data_path |
|
split_JSON = "dataset_0.json" |
|
|
|
datasets = os.path.join(data_dir, split_JSON) |
|
datalist = load_decathlon_datalist(datasets, True, "training") |
|
val_files = load_decathlon_datalist(datasets, True, "validation") |
|
train_ds = CacheDataset( |
|
data=datalist, |
|
transform=train_transforms, |
|
cache_num=24, |
|
cache_rate=1.0, |
|
num_workers=8, |
|
) |
|
train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=args.b, shuffle=True) |
|
val_ds = CacheDataset( |
|
data=val_files, transform=val_transforms, cache_num=2, cache_rate=1.0, num_workers=0 |
|
) |
|
val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1) |
|
|
|
set_track_meta(False) |
|
|
|
return train_loader, val_loader, train_transforms, val_transforms, datalist, val_files |
|
|
|
|
|
def cka_loss(gram_featureA, gram_featureB): |
|
|
|
scaled_hsic = torch.dot(torch.flatten(gram_featureA),torch.flatten(gram_featureB)) |
|
normalization_x = gram_featureA.norm() |
|
normalization_y = gram_featureB.norm() |
|
return scaled_hsic / (normalization_x * normalization_y) |
|
|
|
|
|
class WarmUpLR(_LRScheduler): |
|
"""warmup_training learning rate scheduler |
|
Args: |
|
optimizer: optimzier(e.g. SGD) |
|
total_iters: totoal_iters of warmup phase |
|
""" |
|
def __init__(self, optimizer, total_iters, last_epoch=-1): |
|
|
|
self.total_iters = total_iters |
|
super().__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
"""we will use the first m batches, and set the learning |
|
rate to base_lr * m / total_iters |
|
""" |
|
return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs] |
|
|
|
def gram_matrix(input): |
|
a, b, c, d = input.size() |
|
|
|
|
|
|
|
features = input.view(a * b, c * d) |
|
|
|
G = torch.mm(features, features.t()) |
|
|
|
|
|
|
|
return G.div(a * b * c * d) |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def make_grid( |
|
tensor: Union[torch.Tensor, List[torch.Tensor]], |
|
nrow: int = 8, |
|
padding: int = 2, |
|
normalize: bool = False, |
|
value_range: Optional[Tuple[int, int]] = None, |
|
scale_each: bool = False, |
|
pad_value: int = 0, |
|
**kwargs |
|
) -> torch.Tensor: |
|
if not (torch.is_tensor(tensor) or |
|
(isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))): |
|
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}') |
|
|
|
if "range" in kwargs.keys(): |
|
warning = "range will be deprecated, please use value_range instead." |
|
warnings.warn(warning) |
|
value_range = kwargs["range"] |
|
|
|
|
|
if isinstance(tensor, list): |
|
tensor = torch.stack(tensor, dim=0) |
|
|
|
if tensor.dim() == 2: |
|
tensor = tensor.unsqueeze(0) |
|
if tensor.dim() == 3: |
|
if tensor.size(0) == 1: |
|
tensor = torch.cat((tensor, tensor, tensor), 0) |
|
tensor = tensor.unsqueeze(0) |
|
|
|
if tensor.dim() == 4 and tensor.size(1) == 1: |
|
tensor = torch.cat((tensor, tensor, tensor), 1) |
|
|
|
if normalize is True: |
|
tensor = tensor.clone() |
|
if value_range is not None: |
|
assert isinstance(value_range, tuple), \ |
|
"value_range has to be a tuple (min, max) if specified. min and max are numbers" |
|
|
|
def norm_ip(img, low, high): |
|
img.clamp(min=low, max=high) |
|
img.sub_(low).div_(max(high - low, 1e-5)) |
|
|
|
def norm_range(t, value_range): |
|
if value_range is not None: |
|
norm_ip(t, value_range[0], value_range[1]) |
|
else: |
|
norm_ip(t, float(t.min()), float(t.max())) |
|
|
|
if scale_each is True: |
|
for t in tensor: |
|
norm_range(t, value_range) |
|
else: |
|
norm_range(tensor, value_range) |
|
|
|
if tensor.size(0) == 1: |
|
return tensor.squeeze(0) |
|
|
|
|
|
nmaps = tensor.size(0) |
|
xmaps = min(nrow, nmaps) |
|
ymaps = int(math.ceil(float(nmaps) / xmaps)) |
|
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding) |
|
num_channels = tensor.size(1) |
|
grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value) |
|
k = 0 |
|
for y in range(ymaps): |
|
for x in range(xmaps): |
|
if k >= nmaps: |
|
break |
|
|
|
|
|
grid.narrow(1, y * height + padding, height - padding).narrow( |
|
2, x * width + padding, width - padding |
|
).copy_(tensor[k]) |
|
k = k + 1 |
|
return grid |
|
|
|
|
|
@torch.no_grad() |
|
def save_image( |
|
tensor: Union[torch.Tensor, List[torch.Tensor]], |
|
fp: Union[Text, pathlib.Path, BinaryIO], |
|
format: Optional[str] = None, |
|
**kwargs |
|
) -> None: |
|
""" |
|
Save a given Tensor into an image file. |
|
Args: |
|
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor, |
|
saves the tensor as a grid of images by calling ``make_grid``. |
|
fp (string or file object): A filename or a file object |
|
format(Optional): If omitted, the format to use is determined from the filename extension. |
|
If a file object was used instead of a filename, this parameter should always be used. |
|
**kwargs: Other arguments are documented in ``make_grid``. |
|
""" |
|
|
|
grid = make_grid(tensor, **kwargs) |
|
|
|
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy() |
|
im = Image.fromarray(ndarr) |
|
im.save(fp, format=format) |
|
|
|
|
|
def create_logger(log_dir, phase='train'): |
|
time_str = time.strftime('%Y-%m-%d-%H-%M') |
|
log_file = '{}_{}.log'.format(time_str, phase) |
|
final_log_file = os.path.join(log_dir, log_file) |
|
head = '%(asctime)-15s %(message)s' |
|
logging.basicConfig(filename=str(final_log_file), |
|
format=head) |
|
logger = logging.getLogger() |
|
logger.setLevel(logging.INFO) |
|
console = logging.StreamHandler() |
|
logging.getLogger('').addHandler(console) |
|
|
|
return logger |
|
|
|
|
|
def set_log_dir(root_dir, exp_name): |
|
path_dict = {} |
|
os.makedirs(root_dir, exist_ok=True) |
|
|
|
|
|
exp_path = os.path.join(root_dir, exp_name) |
|
now = datetime.now(dateutil.tz.tzlocal()) |
|
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S') |
|
prefix = exp_path + '_' + timestamp |
|
os.makedirs(prefix) |
|
path_dict['prefix'] = prefix |
|
|
|
|
|
ckpt_path = os.path.join(prefix, 'Model') |
|
os.makedirs(ckpt_path) |
|
path_dict['ckpt_path'] = ckpt_path |
|
|
|
log_path = os.path.join(prefix, 'Log') |
|
os.makedirs(log_path) |
|
path_dict['log_path'] = log_path |
|
|
|
|
|
sample_path = os.path.join(prefix, 'Samples') |
|
os.makedirs(sample_path) |
|
path_dict['sample_path'] = sample_path |
|
|
|
return path_dict |
|
|
|
|
|
def save_checkpoint(states, is_best, output_dir, |
|
filename='checkpoint.pth'): |
|
torch.save(states, os.path.join(output_dir, filename)) |
|
if is_best: |
|
torch.save(states, os.path.join(output_dir, 'checkpoint_best.pth')) |
|
|
|
|
|
class RunningStats: |
|
def __init__(self, WIN_SIZE): |
|
self.mean = 0 |
|
self.run_var = 0 |
|
self.WIN_SIZE = WIN_SIZE |
|
|
|
self.window = collections.deque(maxlen=WIN_SIZE) |
|
|
|
def clear(self): |
|
self.window.clear() |
|
self.mean = 0 |
|
self.run_var = 0 |
|
|
|
def is_full(self): |
|
return len(self.window) == self.WIN_SIZE |
|
|
|
def push(self, x): |
|
|
|
if len(self.window) == self.WIN_SIZE: |
|
|
|
x_removed = self.window.popleft() |
|
self.window.append(x) |
|
old_m = self.mean |
|
self.mean += (x - x_removed) / self.WIN_SIZE |
|
self.run_var += (x + x_removed - old_m - self.mean) * (x - x_removed) |
|
else: |
|
|
|
self.window.append(x) |
|
delta = x - self.mean |
|
self.mean += delta / len(self.window) |
|
self.run_var += delta * (x - self.mean) |
|
|
|
def get_mean(self): |
|
return self.mean if len(self.window) else 0.0 |
|
|
|
def get_var(self): |
|
return self.run_var / len(self.window) if len(self.window) > 1 else 0.0 |
|
|
|
def get_std(self): |
|
return math.sqrt(self.get_var()) |
|
|
|
def get_all(self): |
|
return list(self.window) |
|
|
|
def __str__(self): |
|
return "Current window values: {}".format(list(self.window)) |
|
|
|
def iou(outputs: np.array, labels: np.array): |
|
|
|
SMOOTH = 1e-6 |
|
intersection = (outputs & labels).sum((1, 2)) |
|
union = (outputs | labels).sum((1, 2)) |
|
|
|
iou = (intersection + SMOOTH) / (union + SMOOTH) |
|
|
|
|
|
return iou.mean() |
|
|
|
class DiceCoeff(Function): |
|
"""Dice coeff for individual examples""" |
|
|
|
def forward(self, input, target): |
|
self.save_for_backward(input, target) |
|
eps = 0.0001 |
|
self.inter = torch.dot(input.view(-1), target.view(-1)) |
|
self.union = torch.sum(input) + torch.sum(target) + eps |
|
|
|
t = (2 * self.inter.float() + eps) / self.union.float() |
|
return t |
|
|
|
|
|
def backward(self, grad_output): |
|
|
|
input, target = self.saved_variables |
|
grad_input = grad_target = None |
|
|
|
if self.needs_input_grad[0]: |
|
grad_input = grad_output * 2 * (target * self.union - self.inter) \ |
|
/ (self.union * self.union) |
|
if self.needs_input_grad[1]: |
|
grad_target = None |
|
|
|
return grad_input, grad_target |
|
|
|
|
|
def dice_coeff(input, target): |
|
"""Dice coeff for batches""" |
|
if input.is_cuda: |
|
s = torch.FloatTensor(1).to(device = input.device).zero_() |
|
else: |
|
s = torch.FloatTensor(1).zero_() |
|
|
|
for i, c in enumerate(zip(input, target)): |
|
s = s + DiceCoeff().forward(c[0], c[1]) |
|
|
|
return s / (i + 1) |
|
|
|
'''parameter''' |
|
def para_image(w, h=None, img = None, mode = 'multi', seg = None, sd=None, batch=None, |
|
fft = False, channels=None, init = None): |
|
h = h or w |
|
batch = batch or 1 |
|
ch = channels or 3 |
|
shape = [batch, ch, h, w] |
|
param_f = fft_image if fft else pixel_image |
|
if init is not None: |
|
param_f = init_image |
|
params, maps_f = param_f(init) |
|
else: |
|
params, maps_f = param_f(shape, sd=sd) |
|
if mode == 'multi': |
|
output = to_valid_out(maps_f,img,seg) |
|
elif mode == 'seg': |
|
output = gene_out(maps_f,img) |
|
elif mode == 'raw': |
|
output = raw_out(maps_f,img) |
|
return params, output |
|
|
|
def to_valid_out(maps_f,img,seg): |
|
def inner(): |
|
maps = maps_f() |
|
maps = maps.to(device = img.device) |
|
maps = torch.nn.Softmax(dim = 1)(maps) |
|
final_seg = torch.multiply(seg,maps).sum(dim = 1, keepdim = True) |
|
return torch.cat((img,final_seg),1) |
|
|
|
return inner |
|
|
|
def gene_out(maps_f,img): |
|
def inner(): |
|
maps = maps_f() |
|
maps = maps.to(device = img.device) |
|
|
|
return torch.cat((img,maps),1) |
|
|
|
return inner |
|
|
|
def raw_out(maps_f,img): |
|
def inner(): |
|
maps = maps_f() |
|
maps = maps.to(device = img.device) |
|
|
|
return maps |
|
|
|
return inner |
|
|
|
|
|
class CompositeActivation(torch.nn.Module): |
|
|
|
def forward(self, x): |
|
x = torch.atan(x) |
|
return torch.cat([x/0.67, (x*x)/0.6], 1) |
|
|
|
|
|
|
|
def cppn(args, size, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8, |
|
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"): |
|
|
|
r = 3 ** 0.5 |
|
|
|
coord_range = torch.linspace(-r, r, size) |
|
x = coord_range.view(-1, 1).repeat(1, coord_range.size(0)) |
|
y = coord_range.view(1, -1).repeat(coord_range.size(0), 1) |
|
|
|
input_tensor = torch.stack([x, y], dim=0).unsqueeze(0).repeat(batch,1,1,1).to(device) |
|
|
|
layers = [] |
|
kernel_size = 1 |
|
for i in range(num_layers): |
|
out_c = num_hidden_channels |
|
in_c = out_c * 2 |
|
if i == 0: |
|
in_c = 2 |
|
if i == num_layers - 1: |
|
out_c = num_output_channels |
|
layers.append(('conv{}'.format(i), torch.nn.Conv2d(in_c, out_c, kernel_size))) |
|
if normalize: |
|
layers.append(('norm{}'.format(i), torch.nn.InstanceNorm2d(out_c))) |
|
if i < num_layers - 1: |
|
layers.append(('actv{}'.format(i), activation_fn())) |
|
else: |
|
layers.append(('output', torch.nn.Sigmoid())) |
|
|
|
|
|
net = torch.nn.Sequential(OrderedDict(layers)).to(device) |
|
|
|
def weights_init(module): |
|
if isinstance(module, torch.nn.Conv2d): |
|
torch.nn.init.normal_(module.weight, 0, np.sqrt(1/module.in_channels)) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
net.apply(weights_init) |
|
|
|
torch.nn.init.zeros_(dict(net.named_children())['conv{}'.format(num_layers - 1)].weight) |
|
outimg = raw_out(lambda: net(input_tensor),img) if args.netype == 'raw' else to_valid_out(lambda: net(input_tensor),img,seg) |
|
return net.parameters(), outimg |
|
|
|
def get_siren(args): |
|
wrapper = get_network(args, 'siren', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed) |
|
'''load init weights''' |
|
checkpoint = torch.load('./logs/siren_train_init_2022_08_19_21_00_16/Model/checkpoint_best.pth') |
|
wrapper.load_state_dict(checkpoint['state_dict'],strict=False) |
|
'''end''' |
|
|
|
'''load prompt''' |
|
checkpoint = torch.load('./logs/vae_standard_refuge1_2022_08_21_17_56_49/Model/checkpoint500') |
|
vae = get_network(args, 'vae', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed) |
|
vae.load_state_dict(checkpoint['state_dict'],strict=False) |
|
'''end''' |
|
|
|
return wrapper, vae |
|
|
|
|
|
def siren(args, wrapper, vae, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8, |
|
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"): |
|
vae_img = torchvision.transforms.Resize(64)(img) |
|
latent = vae.encoder(vae_img).view(-1).detach() |
|
outimg = raw_out(lambda: wrapper(latent = latent),img) if args.netype == 'raw' else to_valid_out(lambda: wrapper(latent = latent),img,seg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return wrapper.parameters(), outimg |
|
|
|
|
|
'''adversary''' |
|
def render_vis( |
|
args, |
|
model, |
|
objective_f, |
|
real_img, |
|
param_f=None, |
|
optimizer=None, |
|
transforms=None, |
|
thresholds=(256,), |
|
verbose=True, |
|
preprocess=True, |
|
progress=True, |
|
show_image=True, |
|
save_image=False, |
|
image_name=None, |
|
show_inline=False, |
|
fixed_image_size=None, |
|
label = 1, |
|
raw_img = None, |
|
prompt = None |
|
): |
|
if label == 1: |
|
sign = 1 |
|
elif label == 0: |
|
sign = -1 |
|
else: |
|
print('label is wrong, label is',label) |
|
if args.reverse: |
|
sign = -sign |
|
if args.multilayer: |
|
sign = 1 |
|
|
|
'''prepare''' |
|
now = datetime.now() |
|
date_time = now.strftime("%m-%d-%Y, %H:%M:%S") |
|
|
|
netD, optD = pre_d() |
|
'''end''' |
|
|
|
if param_f is None: |
|
param_f = lambda: param.image(128) |
|
|
|
|
|
|
|
params, image_f = param_f() |
|
|
|
if optimizer is None: |
|
optimizer = lambda params: torch.optim.Adam(params, lr=5e-1) |
|
optimizer = optimizer(params) |
|
|
|
if transforms is None: |
|
transforms = [] |
|
transforms = transforms.copy() |
|
|
|
|
|
image_shape = image_f().shape |
|
|
|
if fixed_image_size is not None: |
|
new_size = fixed_image_size |
|
elif image_shape[2] < 224 or image_shape[3] < 224: |
|
new_size = 224 |
|
else: |
|
new_size = None |
|
if new_size: |
|
transforms.append( |
|
torch.nn.Upsample(size=new_size, mode="bilinear", align_corners=True) |
|
) |
|
|
|
transform_f = transform.compose(transforms) |
|
|
|
hook = hook_model(model, image_f) |
|
objective_f = objectives.as_objective(objective_f) |
|
|
|
if verbose: |
|
model(transform_f(image_f())) |
|
print("Initial loss of ad: {:.3f}".format(objective_f(hook))) |
|
|
|
images = [] |
|
try: |
|
for i in tqdm(range(1, max(thresholds) + 1), disable=(not progress)): |
|
optimizer.zero_grad() |
|
try: |
|
model(transform_f(image_f())) |
|
except RuntimeError as ex: |
|
if i == 1: |
|
|
|
|
|
|
|
warnings.warn( |
|
"Some layers could not be computed because the size of the " |
|
"image is not big enough. It is fine, as long as the non" |
|
"computed layers are not used in the objective function" |
|
f"(exception details: '{ex}')" |
|
) |
|
if args.disc: |
|
'''dom loss part''' |
|
|
|
|
|
|
|
for p in netD.parameters(): |
|
p.requires_grad = True |
|
for _ in range(args.drec): |
|
netD.zero_grad() |
|
real = real_img |
|
fake = image_f() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
one = torch.tensor(1, dtype=torch.float) |
|
mone = one * -1 |
|
one = one.cuda(args.gpu_device) |
|
mone = mone.cuda(args.gpu_device) |
|
|
|
d_loss_real = netD(real) |
|
d_loss_real = d_loss_real.mean() |
|
d_loss_real.backward(mone) |
|
|
|
d_loss_fake = netD(fake) |
|
d_loss_fake = d_loss_fake.mean() |
|
d_loss_fake.backward(one) |
|
|
|
|
|
gradient_penalty = calculate_gradient_penalty(netD, real.data, fake.data) |
|
gradient_penalty.backward() |
|
|
|
|
|
d_loss = d_loss_fake - d_loss_real + gradient_penalty |
|
Wasserstein_D = d_loss_real - d_loss_fake |
|
optD.step() |
|
|
|
|
|
for p in netD.parameters(): |
|
p.requires_grad = False |
|
|
|
fake_images = image_f() |
|
g_loss = netD(fake_images) |
|
g_loss = -g_loss.mean() |
|
dom_loss = g_loss |
|
g_cost = -g_loss |
|
|
|
if i% 5 == 0: |
|
print(f' loss_fake: {d_loss_fake}, loss_real: {d_loss_real}') |
|
print(f'Generator g_loss: {g_loss}') |
|
'''end''' |
|
|
|
|
|
|
|
'''ssim loss''' |
|
|
|
'''end''' |
|
|
|
if args.disc: |
|
loss = sign * objective_f(hook) + args.pw * dom_loss |
|
|
|
else: |
|
loss = sign * objective_f(hook) |
|
|
|
|
|
loss.backward() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
optimizer.step() |
|
if i in thresholds: |
|
image = tensor_to_img_array(image_f()) |
|
|
|
|
|
if save_image: |
|
na = image_name[0].split('\\')[-1].split('.')[0] + '_' + str(i) + '.png' |
|
na = date_time + na |
|
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path'] |
|
img_path = os.path.join(outpath, str(na)) |
|
export(image_f(), img_path) |
|
|
|
images.append(image) |
|
except KeyboardInterrupt: |
|
print("Interrupted optimization at step {:d}.".format(i)) |
|
if verbose: |
|
print("Loss at step {}: {:.3f}".format(i, objective_f(hook))) |
|
images.append(tensor_to_img_array(image_f())) |
|
|
|
if save_image: |
|
na = image_name[0].split('\\')[-1].split('.')[0] + '.png' |
|
na = date_time + na |
|
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path'] |
|
img_path = os.path.join(outpath, str(na)) |
|
export(image_f(), img_path) |
|
if show_inline: |
|
show(tensor_to_img_array(image_f())) |
|
elif show_image: |
|
view(image_f()) |
|
return image_f() |
|
|
|
|
|
def tensor_to_img_array(tensor): |
|
image = tensor.cpu().detach().numpy() |
|
image = np.transpose(image, [0, 2, 3, 1]) |
|
return image |
|
|
|
|
|
def view(tensor): |
|
image = tensor_to_img_array(tensor) |
|
assert len(image.shape) in [ |
|
3, |
|
4, |
|
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape) |
|
|
|
image = (image * 255).astype(np.uint8) |
|
if len(image.shape) == 4: |
|
image = np.concatenate(image, axis=1) |
|
Image.fromarray(image).show() |
|
|
|
|
|
def export(tensor, img_path=None): |
|
|
|
c = tensor.size(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if c == 3: |
|
vutils.save_image(tensor, fp = img_path) |
|
else: |
|
image = tensor[:,0:3,:,:] |
|
w_map = tensor[:,-1,:,:].unsqueeze(1) |
|
image = tensor_to_img_array(image) |
|
w_map = 1 - tensor_to_img_array(w_map).squeeze() |
|
|
|
assert len(image.shape) in [ |
|
3, |
|
4, |
|
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape) |
|
|
|
image = (image * 255).astype(np.uint8) |
|
w_map = (w_map * 255).astype(np.uint8) |
|
|
|
Image.fromarray(w_map,'L').save(img_path) |
|
|
|
|
|
class ModuleHook: |
|
def __init__(self, module): |
|
self.hook = module.register_forward_hook(self.hook_fn) |
|
self.module = None |
|
self.features = None |
|
|
|
|
|
def hook_fn(self, module, input, output): |
|
self.module = module |
|
self.features = output |
|
|
|
|
|
def close(self): |
|
self.hook.remove() |
|
|
|
|
|
def hook_model(model, image_f): |
|
features = OrderedDict() |
|
|
|
def hook_layers(net, prefix=[]): |
|
if hasattr(net, "_modules"): |
|
for name, layer in net._modules.items(): |
|
if layer is None: |
|
|
|
continue |
|
features["_".join(prefix + [name])] = ModuleHook(layer) |
|
hook_layers(layer, prefix=prefix + [name]) |
|
|
|
hook_layers(model) |
|
|
|
def hook(layer): |
|
if layer == "input": |
|
out = image_f() |
|
elif layer == "labels": |
|
out = list(features.values())[-1].features |
|
else: |
|
assert layer in features, f"Invalid layer {layer}. Retrieve the list of layers with `lucent.modelzoo.util.get_model_layers(model)`." |
|
out = features[layer].features |
|
assert out is not None, "There are no saved feature maps. Make sure to put the model in eval mode, like so: `model.to(device).eval()`. See README for example." |
|
return out |
|
|
|
return hook |
|
|
|
def vis_image(imgs, pred_masks, gt_masks, save_path, reverse = False, points = None, boxes = None): |
|
|
|
b,c,h,w = pred_masks.size() |
|
dev = pred_masks.get_device() |
|
row_num = min(b, 4) |
|
|
|
if torch.max(pred_masks) > 1 or torch.min(pred_masks) < 0: |
|
pred_masks = torch.sigmoid(pred_masks) |
|
|
|
if reverse == True: |
|
pred_masks = 1 - pred_masks |
|
gt_masks = 1 - gt_masks |
|
if c == 2: |
|
pred_disc, pred_cup = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), pred_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w) |
|
gt_disc, gt_cup = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), gt_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w) |
|
tup = (imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:]) |
|
compose = torch.cat(tup, 0) |
|
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10) |
|
elif c > 2: |
|
preds = [] |
|
gts = [] |
|
for i in range(0, c): |
|
pred = pred_masks[:,i,:,:].unsqueeze(1).expand(b,3,h,w) |
|
preds.append(pred) |
|
gt = gt_masks[:,i,:,:].unsqueeze(1).expand(b,3,h,w) |
|
gts.append(gt) |
|
tup = [imgs[:row_num,:,:,:]] + preds + gts |
|
compose = torch.cat(tup,0) |
|
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10) |
|
else: |
|
imgs = torchvision.transforms.Resize((h,w))(imgs) |
|
if imgs.size(1) == 1: |
|
imgs = imgs[:,0,:,:].unsqueeze(1).expand(b,3,h,w) |
|
pred_masks = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w) |
|
gt_masks = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w) |
|
if points != None: |
|
for i in range(b): |
|
if args.thd: |
|
ps = np.round(points.cpu()/args.roi_size * args.out_size).to(dtype = torch.int) |
|
else: |
|
ps = np.round(points.cpu()/args.image_size * args.out_size).to(dtype = torch.int) |
|
|
|
for p in ps: |
|
gt_masks[i,0,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.5 |
|
gt_masks[i,1,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.1 |
|
gt_masks[i,2,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.4 |
|
if boxes is not None: |
|
for i in range(b): |
|
|
|
|
|
|
|
img255 = (imgs[i] * 255).byte() |
|
img255 = torchvision.utils.draw_bounding_boxes(img255, boxes[i].reshape(-1, 4), colors="red") |
|
img01 = img255 / 255 |
|
|
|
imgs[i, :] = img01 |
|
tup = (imgs[:row_num,:,:,:],pred_masks[:row_num,:,:,:], gt_masks[:row_num,:,:,:]) |
|
|
|
compose = torch.cat(tup,0) |
|
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10) |
|
|
|
return |
|
|
|
def eval_seg(pred,true_mask_p,threshold): |
|
''' |
|
threshold: a int or a tuple of int |
|
masks: [b,2,h,w] |
|
pred: [b,2,h,w] |
|
''' |
|
b, c, h, w = pred.size() |
|
if c == 2: |
|
iou_d, iou_c, disc_dice, cup_dice = 0,0,0,0 |
|
for th in threshold: |
|
|
|
gt_vmask_p = (true_mask_p > th).float() |
|
vpred = (pred > th).float() |
|
vpred_cpu = vpred.cpu() |
|
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32') |
|
cup_pred = vpred_cpu[:,1,:,:].numpy().astype('int32') |
|
|
|
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32') |
|
cup_mask = gt_vmask_p [:, 1, :, :].squeeze(1).cpu().numpy().astype('int32') |
|
|
|
'''iou for numpy''' |
|
iou_d += iou(disc_pred,disc_mask) |
|
iou_c += iou(cup_pred,cup_mask) |
|
|
|
'''dice for torch''' |
|
disc_dice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item() |
|
cup_dice += dice_coeff(vpred[:,1,:,:], gt_vmask_p[:,1,:,:]).item() |
|
|
|
return iou_d / len(threshold), iou_c / len(threshold), disc_dice / len(threshold), cup_dice / len(threshold) |
|
elif c > 2: |
|
ious = [0] * c |
|
dices = [0] * c |
|
for th in threshold: |
|
gt_vmask_p = (true_mask_p > th).float() |
|
vpred = (pred > th).float() |
|
vpred_cpu = vpred.cpu() |
|
for i in range(0, c): |
|
pred = vpred_cpu[:,i,:,:].numpy().astype('int32') |
|
mask = gt_vmask_p[:,i,:,:].squeeze(1).cpu().numpy().astype('int32') |
|
|
|
'''iou for numpy''' |
|
ious[i] += iou(pred,mask) |
|
|
|
'''dice for torch''' |
|
dices[i] += dice_coeff(vpred[:,i,:,:], gt_vmask_p[:,i,:,:]).item() |
|
|
|
return tuple(np.array(ious + dices) / len(threshold)) |
|
else: |
|
eiou, edice = 0,0 |
|
for th in threshold: |
|
|
|
gt_vmask_p = (true_mask_p > th).float() |
|
vpred = (pred > th).float() |
|
vpred_cpu = vpred.cpu() |
|
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32') |
|
|
|
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32') |
|
|
|
'''iou for numpy''' |
|
eiou += iou(disc_pred,disc_mask) |
|
|
|
'''dice for torch''' |
|
edice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item() |
|
|
|
return eiou / len(threshold), edice / len(threshold) |
|
|
|
|
|
def dot_compare(layer, batch=1, cossim_pow=0): |
|
def inner(T): |
|
dot = (T(layer)[batch] * T(layer)[0]).sum() |
|
mag = torch.sqrt(torch.sum(T(layer)[0]**2)) |
|
cossim = dot/(1e-6 + mag) |
|
return -dot * cossim ** cossim_pow |
|
return inner |
|
|
|
def init_D(m): |
|
classname = m.__class__.__name__ |
|
if classname.find('Conv') != -1: |
|
nn.init.normal_(m.weight.data, 0.0, 0.02) |
|
elif classname.find('BatchNorm') != -1: |
|
nn.init.normal_(m.weight.data, 1.0, 0.02) |
|
nn.init.constant_(m.bias.data, 0) |
|
|
|
def pre_d(): |
|
netD = Discriminator(3).to(device) |
|
|
|
beta1 = 0.5 |
|
dis_lr = 0.00002 |
|
optimizerD = optim.Adam(netD.parameters(), lr=dis_lr, betas=(beta1, 0.999)) |
|
return netD, optimizerD |
|
|
|
def update_d(args, netD, optimizerD, real, fake): |
|
criterion = nn.BCELoss() |
|
|
|
label = torch.full((args.b,), 1., dtype=torch.float, device=device) |
|
output = netD(real).view(-1) |
|
|
|
errD_real = criterion(output, label) |
|
|
|
errD_real.backward() |
|
D_x = output.mean().item() |
|
|
|
label.fill_(0.) |
|
|
|
output = netD(fake.detach()).view(-1) |
|
|
|
errD_fake = criterion(output, label) |
|
|
|
errD_fake.backward() |
|
D_G_z1 = output.mean().item() |
|
|
|
errD = errD_real + errD_fake |
|
|
|
optimizerD.step() |
|
|
|
return errD, D_x, D_G_z1 |
|
|
|
def calculate_gradient_penalty(netD, real_images, fake_images): |
|
eta = torch.FloatTensor(args.b,1,1,1).uniform_(0,1) |
|
eta = eta.expand(args.b, real_images.size(1), real_images.size(2), real_images.size(3)).to(device = device) |
|
|
|
interpolated = (eta * real_images + ((1 - eta) * fake_images)).to(device = device) |
|
|
|
|
|
interpolated = Variable(interpolated, requires_grad=True) |
|
|
|
|
|
prob_interpolated = netD(interpolated) |
|
|
|
|
|
gradients = autograd.grad(outputs=prob_interpolated, inputs=interpolated, |
|
grad_outputs=torch.ones( |
|
prob_interpolated.size()).to(device = device), |
|
create_graph=True, retain_graph=True)[0] |
|
|
|
grad_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * 10 |
|
return grad_penalty |
|
|
|
|
|
def random_click(mask, point_labels = 1): |
|
|
|
max_label = max(set(mask.flatten())) |
|
if max_label == 0: |
|
point_labels = max_label |
|
|
|
indices = np.argwhere(mask == max_label) |
|
return point_labels, indices[np.random.randint(len(indices))] |
|
|
|
|
|
def generate_click_prompt(img, msk, pt_label = 1): |
|
|
|
pt_list = [] |
|
msk_list = [] |
|
b, c, h, w, d = msk.size() |
|
msk = msk[:,0,:,:,:] |
|
for i in range(d): |
|
pt_list_s = [] |
|
msk_list_s = [] |
|
for j in range(b): |
|
msk_s = msk[j,:,:,i] |
|
indices = torch.nonzero(msk_s) |
|
if indices.size(0) == 0: |
|
|
|
random_index = torch.randint(0, h, (2,)).to(device = msk.device) |
|
new_s = msk_s |
|
else: |
|
random_index = random.choice(indices) |
|
label = msk_s[random_index[0], random_index[1]] |
|
new_s = torch.zeros_like(msk_s) |
|
|
|
new_s = (msk_s == label).to(dtype = torch.float) |
|
|
|
pt_list_s.append(random_index) |
|
msk_list_s.append(new_s) |
|
pts = torch.stack(pt_list_s, dim=0) |
|
msks = torch.stack(msk_list_s, dim=0) |
|
pt_list.append(pts) |
|
msk_list.append(msks) |
|
pt = torch.stack(pt_list, dim=-1) |
|
msk = torch.stack(msk_list, dim=-1) |
|
|
|
msk = msk.unsqueeze(1) |
|
|
|
return img, pt, msk |
|
|
|
|
|
def random_box(multi_rater): |
|
max_value = torch.max(multi_rater[:,0,:,:], dim=0)[0] |
|
max_value_position = torch.nonzero(max_value) |
|
|
|
x_coords = max_value_position[:, 0] |
|
y_coords = max_value_position[:, 1] |
|
|
|
|
|
x_min = int(torch.min(x_coords)) |
|
x_max = int(torch.max(x_coords)) |
|
y_min = int(torch.min(y_coords)) |
|
y_max = int(torch.max(y_coords)) |
|
|
|
|
|
x_min = random.choice(np.arange(x_min-10,x_min+11)) |
|
x_max = random.choice(np.arange(x_max-10,x_max+11)) |
|
y_min = random.choice(np.arange(y_min-10,y_min+11)) |
|
y_max = random.choice(np.arange(y_max-10,y_max+11)) |
|
|
|
return x_min, x_max, y_min, y_max |
|
|
|
|