|
|
|
import argparse |
|
import os |
|
import shutil |
|
import sys |
|
import tempfile |
|
import time |
|
from collections import OrderedDict |
|
from datetime import datetime |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
import torchvision |
|
import torchvision.transforms as transforms |
|
from einops import rearrange |
|
from monai.inferers import sliding_window_inference |
|
from monai.losses import DiceCELoss |
|
from monai.transforms import AsDiscrete |
|
from PIL import Image |
|
from skimage import io |
|
from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score |
|
from tensorboardX import SummaryWriter |
|
|
|
from torch.autograd import Variable |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
|
|
import cfg |
|
import models.sam.utils.transforms as samtrans |
|
import pytorch_ssim |
|
|
|
from conf import settings |
|
from utils import * |
|
|
|
|
|
|
|
|
|
|
|
args = cfg.parse_args() |
|
|
|
GPUdevice = torch.device('cuda', args.gpu_device) |
|
pos_weight = torch.ones([1]).cuda(device=GPUdevice)*2 |
|
criterion_G = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight) |
|
seed = torch.randint(1,11,(args.b,7)) |
|
|
|
torch.backends.cudnn.benchmark = True |
|
loss_function = DiceCELoss(to_onehot_y=True, softmax=True) |
|
scaler = torch.cuda.amp.GradScaler() |
|
max_iterations = settings.EPOCH |
|
post_label = AsDiscrete(to_onehot=14) |
|
post_pred = AsDiscrete(argmax=True, to_onehot=14) |
|
dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) |
|
dice_val_best = 0.0 |
|
global_step_best = 0 |
|
epoch_loss_values = [] |
|
metric_values = [] |
|
|
|
def train_sam(args, net: nn.Module, optimizer, train_loader, |
|
epoch, writer, schedulers=None, vis = 50): |
|
hard = 0 |
|
epoch_loss = 0 |
|
ind = 0 |
|
|
|
net.train() |
|
optimizer.zero_grad() |
|
|
|
epoch_loss = 0 |
|
GPUdevice = torch.device('cuda:' + str(args.gpu_device)) |
|
|
|
if args.thd: |
|
lossfunc = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean') |
|
else: |
|
lossfunc = criterion_G |
|
|
|
with tqdm(total=len(train_loader), desc=f'Epoch {epoch}', unit='img') as pbar: |
|
for pack in train_loader: |
|
|
|
imgs = pack['image'].to(dtype = torch.float32, device = GPUdevice) |
|
masks = pack['label'].to(dtype = torch.float32, device = GPUdevice) |
|
|
|
|
|
if 'pt' not in pack: |
|
imgs, pt, masks = generate_click_prompt(imgs, masks) |
|
else: |
|
pt = pack['pt'] |
|
point_labels = pack['p_label'] |
|
name = pack['image_meta_dict']['filename_or_obj'] |
|
|
|
if args.thd: |
|
imgs, pt, masks = generate_click_prompt(imgs, masks) |
|
|
|
pt = rearrange(pt, 'b n d -> (b d) n') |
|
imgs = rearrange(imgs, 'b c h w d -> (b d) c h w ') |
|
masks = rearrange(masks, 'b c h w d -> (b d) c h w ') |
|
|
|
imgs = imgs.repeat(1,3,1,1) |
|
point_labels = torch.ones(imgs.size(0)) |
|
|
|
imgs = torchvision.transforms.Resize((args.image_size,args.image_size))(imgs) |
|
masks = torchvision.transforms.Resize((args.out_size,args.out_size))(masks) |
|
showp = pt |
|
|
|
mask_type = torch.float32 |
|
ind += 1 |
|
b_size,c,w,h = imgs.size() |
|
longsize = w if w >=h else h |
|
|
|
if point_labels.clone().flatten()[0] != -1: |
|
|
|
point_coords = pt |
|
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=GPUdevice) |
|
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=GPUdevice) |
|
if(len(point_labels.shape)==1): |
|
coords_torch, labels_torch, showp = coords_torch[None, :, :], labels_torch[None, :], showp[None, :, :] |
|
pt = (coords_torch, labels_torch) |
|
|
|
'''init''' |
|
if hard: |
|
true_mask_ave = (true_mask_ave > 0.5).float() |
|
|
|
|
|
|
|
'''Train''' |
|
if args.mod == 'sam_adpt': |
|
for n, value in net.image_encoder.named_parameters(): |
|
if "Adapter" not in n: |
|
value.requires_grad = False |
|
else: |
|
value.requires_grad = True |
|
elif args.mod == 'sam_lora' or args.mod == 'sam_adalora': |
|
from models.common import loralib as lora |
|
lora.mark_only_lora_as_trainable(net.image_encoder) |
|
if args.mod == 'sam_adalora': |
|
|
|
rankallocator = lora.RankAllocator( |
|
net.image_encoder, lora_r=4, target_rank=8, |
|
init_warmup=500, final_warmup=1500, mask_interval=10, |
|
total_step=3000, beta1=0.85, beta2=0.85, |
|
) |
|
else: |
|
for n, value in net.image_encoder.named_parameters(): |
|
value.requires_grad = True |
|
|
|
imge= net.image_encoder(imgs) |
|
with torch.no_grad(): |
|
if args.net == 'sam' or args.net == 'mobile_sam': |
|
se, de = net.prompt_encoder( |
|
points=pt, |
|
boxes=None, |
|
masks=None, |
|
) |
|
elif args.net == "efficient_sam": |
|
coords_torch,labels_torch = transform_prompt(coords_torch,labels_torch,h,w) |
|
se = net.prompt_encoder( |
|
coords=coords_torch, |
|
labels=labels_torch, |
|
) |
|
|
|
if args.net == 'sam': |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
dense_prompt_embeddings=de, |
|
multimask_output=(args.multimask_output > 1), |
|
) |
|
elif args.net == 'mobile_sam': |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
dense_prompt_embeddings=de, |
|
multimask_output=False, |
|
) |
|
elif args.net == "efficient_sam": |
|
se = se.view( |
|
se.shape[0], |
|
1, |
|
se.shape[1], |
|
se.shape[2], |
|
) |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
multimask_output=False, |
|
) |
|
|
|
|
|
pred = F.interpolate(pred,size=(args.out_size,args.out_size)) |
|
|
|
loss = lossfunc(pred, masks) |
|
|
|
pbar.set_postfix(**{'loss (batch)': loss.item()}) |
|
epoch_loss += loss.item() |
|
|
|
|
|
if args.mod == 'sam_adalora': |
|
(loss+lora.compute_orth_regu(net, regu_weight=0.1)).backward() |
|
optimizer.step() |
|
rankallocator.update_and_mask(net, ind) |
|
else: |
|
loss.backward() |
|
optimizer.step() |
|
|
|
optimizer.zero_grad() |
|
|
|
'''vis images''' |
|
if vis: |
|
if ind % vis == 0: |
|
namecat = 'Train' |
|
for na in name[:2]: |
|
namecat = namecat + na.split('/')[-1].split('.')[0] + '+' |
|
vis_image(imgs,pred,masks, os.path.join(args.path_helper['sample_path'], namecat+'epoch+' +str(epoch) + '.jpg'), reverse=False, points=showp) |
|
|
|
pbar.update() |
|
|
|
return loss |
|
|
|
def validation_sam(args, val_loader, epoch, net: nn.Module, clean_dir=True): |
|
|
|
net.eval() |
|
|
|
mask_type = torch.float32 |
|
n_val = len(val_loader) |
|
ave_res, mix_res = (0,0,0,0), (0,)*args.multimask_output*2 |
|
rater_res = [(0,0,0,0) for _ in range(6)] |
|
tot = 0 |
|
hard = 0 |
|
threshold = (0.1, 0.3, 0.5, 0.7, 0.9) |
|
GPUdevice = torch.device('cuda:' + str(args.gpu_device)) |
|
device = GPUdevice |
|
|
|
if args.thd: |
|
lossfunc = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean') |
|
else: |
|
lossfunc = criterion_G |
|
|
|
with tqdm(total=n_val, desc='Validation round', unit='batch', leave=False) as pbar: |
|
for ind, pack in enumerate(val_loader): |
|
imgsw = pack['image'].to(dtype = torch.float32, device = GPUdevice) |
|
masksw = pack['label'].to(dtype = torch.float32, device = GPUdevice) |
|
|
|
|
|
if 'pt' not in pack or args.thd: |
|
imgsw, ptw, masksw = generate_click_prompt(imgsw, masksw) |
|
else: |
|
ptw = pack['pt'] |
|
point_labels = pack['p_label'] |
|
name = pack['image_meta_dict']['filename_or_obj'] |
|
|
|
buoy = 0 |
|
if args.evl_chunk: |
|
evl_ch = int(args.evl_chunk) |
|
else: |
|
evl_ch = int(imgsw.size(-1)) |
|
|
|
while (buoy + evl_ch) <= imgsw.size(-1): |
|
if args.thd: |
|
pt = ptw[:,:,buoy: buoy + evl_ch] |
|
else: |
|
pt = ptw |
|
|
|
imgs = imgsw[...,buoy:buoy + evl_ch] |
|
masks = masksw[...,buoy:buoy + evl_ch] |
|
buoy += evl_ch |
|
|
|
if args.thd: |
|
pt = rearrange(pt, 'b n d -> (b d) n') |
|
imgs = rearrange(imgs, 'b c h w d -> (b d) c h w ') |
|
masks = rearrange(masks, 'b c h w d -> (b d) c h w ') |
|
imgs = imgs.repeat(1,3,1,1) |
|
point_labels = torch.ones(imgs.size(0)) |
|
|
|
imgs = torchvision.transforms.Resize((args.image_size,args.image_size))(imgs) |
|
masks = torchvision.transforms.Resize((args.out_size,args.out_size))(masks) |
|
|
|
showp = pt |
|
|
|
mask_type = torch.float32 |
|
ind += 1 |
|
b_size,c,w,h = imgs.size() |
|
longsize = w if w >=h else h |
|
|
|
if point_labels.clone().flatten()[0] != -1: |
|
|
|
point_coords = pt |
|
coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=GPUdevice) |
|
labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=GPUdevice) |
|
if(len(point_labels.shape)==1): |
|
coords_torch, labels_torch, showp = coords_torch[None, :, :], labels_torch[None, :], showp[None, :, :] |
|
pt = (coords_torch, labels_torch) |
|
|
|
'''init''' |
|
if hard: |
|
true_mask_ave = (true_mask_ave > 0.5).float() |
|
|
|
imgs = imgs.to(dtype = mask_type,device = GPUdevice) |
|
|
|
'''test''' |
|
with torch.no_grad(): |
|
imge= net.image_encoder(imgs) |
|
if args.net == 'sam' or args.net == 'mobile_sam': |
|
se, de = net.prompt_encoder( |
|
points=pt, |
|
boxes=None, |
|
masks=None, |
|
) |
|
elif args.net == "efficient_sam": |
|
coords_torch,labels_torch = transform_prompt(coords_torch,labels_torch,h,w) |
|
se = net.prompt_encoder( |
|
coords=coords_torch, |
|
labels=labels_torch, |
|
) |
|
|
|
if args.net == 'sam': |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
dense_prompt_embeddings=de, |
|
multimask_output=(args.multimask_output > 1), |
|
) |
|
elif args.net == 'mobile_sam': |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
dense_prompt_embeddings=de, |
|
multimask_output=False, |
|
) |
|
elif args.net == "efficient_sam": |
|
se = se.view( |
|
se.shape[0], |
|
1, |
|
se.shape[1], |
|
se.shape[2], |
|
) |
|
pred, _ = net.mask_decoder( |
|
image_embeddings=imge, |
|
image_pe=net.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=se, |
|
multimask_output=False, |
|
) |
|
|
|
|
|
pred = F.interpolate(pred,size=(args.out_size,args.out_size)) |
|
tot += lossfunc(pred, masks) |
|
|
|
'''vis images''' |
|
if ind % args.vis == 0: |
|
namecat = 'Test' |
|
for na in name[:2 |
|
|
|
]: |
|
img_name = na.split('/')[-1].split('.')[0] |
|
namecat = namecat + img_name + '+' |
|
vis_image(imgs,pred, masks, os.path.join(args.path_helper['sample_path'], namecat+'epoch+' +str(epoch) + '.jpg'), reverse=False, points=showp) |
|
|
|
|
|
temp = eval_seg(pred, masks, threshold) |
|
mix_res = tuple([sum(a) for a in zip(mix_res, temp)]) |
|
|
|
pbar.update() |
|
|
|
if args.evl_chunk: |
|
n_val = n_val * (imgsw.size(-1) // evl_ch) |
|
|
|
return tot/ n_val , tuple([a/n_val for a in mix_res]) |
|
|
|
def transform_prompt(coord,label,h,w): |
|
coord = coord.transpose(0,1) |
|
label = label.transpose(0,1) |
|
|
|
coord = coord.unsqueeze(1) |
|
label = label.unsqueeze(1) |
|
|
|
batch_size, max_num_queries, num_pts, _ = coord.shape |
|
num_pts = coord.shape[2] |
|
rescaled_batched_points = get_rescaled_pts(coord, h, w) |
|
|
|
decoder_max_num_input_points = 6 |
|
if num_pts > decoder_max_num_input_points: |
|
rescaled_batched_points = rescaled_batched_points[ |
|
:, :, : decoder_max_num_input_points, : |
|
] |
|
label = label[ |
|
:, :, : decoder_max_num_input_points |
|
] |
|
elif num_pts < decoder_max_num_input_points: |
|
rescaled_batched_points = F.pad( |
|
rescaled_batched_points, |
|
(0, 0, 0, decoder_max_num_input_points - num_pts), |
|
value=-1.0, |
|
) |
|
label = F.pad( |
|
label, |
|
(0, decoder_max_num_input_points - num_pts), |
|
value=-1.0, |
|
) |
|
|
|
rescaled_batched_points = rescaled_batched_points.reshape( |
|
batch_size * max_num_queries, decoder_max_num_input_points, 2 |
|
) |
|
label = label.reshape( |
|
batch_size * max_num_queries, decoder_max_num_input_points |
|
) |
|
|
|
return rescaled_batched_points,label |
|
|
|
|
|
def get_rescaled_pts(batched_points: torch.Tensor, input_h: int, input_w: int): |
|
return torch.stack( |
|
[ |
|
torch.where( |
|
batched_points[..., 0] >= 0, |
|
batched_points[..., 0] * 1024 / input_w, |
|
-1.0, |
|
), |
|
torch.where( |
|
batched_points[..., 1] >= 0, |
|
batched_points[..., 1] * 1024 / input_h, |
|
-1.0, |
|
), |
|
], |
|
dim=-1, |
|
) |