scat / scat.py
gsarti's picture
Fix
bb42a16
# coding=utf-8
# Copyright 2023 The Inseq Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SCAT: Supporting Context for Ambiguous Translations"""
import re
from pathlib import Path
from typing import Dict
import datasets
from datasets.utils.download_manager import DownloadManager
_CITATION = """\
@inproceedings{yin-etal-2021-context,
title = "Do Context-Aware Translation Models Pay the Right Attention?",
author = "Yin, Kayo and
Fernandes, Patrick and
Pruthi, Danish and
Chaudhary, Aditi and
Martins, Andr{\'e} F. T. and
Neubig, Graham",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.65",
doi = "10.18653/v1/2021.acl-long.65",
pages = "788--801",
}
"""
_DESCRIPTION = """\
The Supporting Context for Ambiguous Translations corpus (SCAT) is a dataset
of English-to-French translations annotated with human rationales used for resolving ambiguity
in pronoun anaphora resolution for multi-sentence translation.
"""
_URL = "https://huggingface.co./datasets/inseq/scat/raw/main/filtered_scat"
_HOMEPAGE = "https://github.com/neulab/contextual-mt/tree/master/data/scat"
_LICENSE = "Unknown"
class ScatConfig(datasets.BuilderConfig):
def __init__(
self,
source_language: str,
target_language: str,
**kwargs
):
"""BuilderConfig for MT-GenEval.
Args:
source_language: `str`, source language for translation.
target_language: `str`, translation language.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(**kwargs)
self.source_language = source_language
self.target_language = target_language
class Scat(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [ScatConfig(name="sentences", source_language="en", target_language="fr")]
DEFAULT_CONFIG_NAME = "sentences"
@staticmethod
def clean_string(txt: str):
return txt.replace("<p>", "").replace("</p>", "").replace("<hon>", "").replace("<hoff>", "")
@staticmethod
def swap_pronoun(txt: str):
pron: str = re.findall(r"<p>([^<]*)</p>", txt)[0]
new_pron = pron
is_cap = pron.istitle()
if pron.lower() == "elles":
new_pron = "ils"
if pron.lower() == "elle":
new_pron = "il"
if pron.lower() == "ils":
new_pron = "elles"
if pron.lower() == "il":
new_pron = "elle"
if pron.lower() == "un":
new_pron = "une"
if pron.lower() == "une":
new_pron = "un"
if is_cap:
new_pron = new_pron.capitalize()
return txt.replace(f"<p>{pron}</p>", f"<p>{new_pron}</p>")
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("int32"),
"context_en": datasets.Value("string"),
"en": datasets.Value("string"),
"context_fr": datasets.Value("string"),
"fr": datasets.Value("string"),
"contrast_fr": datasets.Value("string"),
"context_en_with_tags": datasets.Value("string"),
"en_with_tags": datasets.Value("string"),
"context_fr_with_tags": datasets.Value("string"),
"fr_with_tags": datasets.Value("string"),
"contrast_fr_with_tags": datasets.Value("string"),
"has_supporting_context": datasets.Value("bool"),
"has_supporting_preceding_context": datasets.Value("bool"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager):
"""Returns SplitGenerators."""
filepaths = {}
splits = ["train", "valid", "test"]
for split in splits:
filepaths[split] = {}
for lang in ["en", "fr"]:
for ftype in ["context", ""]:
fname = f"filtered.{split}{'.' + ftype if ftype else ''}.{lang}"
name = f"{ftype}_{lang}" if ftype else lang
filepaths[split][name] = dl_manager.download_and_extract(f"{_URL}/{fname}")
return [
datasets.SplitGenerator(
name=split_name,
gen_kwargs={
"filepaths": filepaths[split],
},
)
for split, split_name in zip(splits, ["train", "validation", "test"])
]
def _generate_examples(
self, filepaths: Dict[str, str]
):
""" Yields examples as (key, example) tuples. """
with open(filepaths["en"]) as f:
en = f.read().splitlines()
with open(filepaths["fr"]) as f:
fr = f.read().splitlines()
with open(filepaths["context_en"]) as f:
context_en = f.read().splitlines()
with open(filepaths["context_fr"]) as f:
context_fr = f.read().splitlines()
for i, (e, f, ce, cf) in enumerate(zip(en, fr, context_en, context_fr)):
allfields = " ".join([e, f, ce, cf])
has_supporting_context = False
if "<hon>" in allfields and "<hoff>" in allfields:
has_supporting_context = True
contrast_fr = self.swap_pronoun(f)
yield i, {
"id": i,
"context_en": self.clean_string(ce),
"en": self.clean_string(e),
"context_fr": self.clean_string(cf),
"fr": self.clean_string(f),
"contrast_fr": self.clean_string(contrast_fr),
"context_en_with_tags": ce,
"en_with_tags": e,
"context_fr_with_tags": cf,
"fr_with_tags": f,
"contrast_fr_with_tags": contrast_fr,
"has_supporting_context": has_supporting_context,
"has_supporting_preceding_context": "<hon>" in cf,
}