Datasets:

Modalities:
Text
Languages:
Hebrew
ArXiv:
Libraries:
Datasets
File size: 4,620 Bytes
d4b59cd
 
a5de7c0
d4b59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5de7c0
d4b59cd
 
 
 
 
a5de7c0
d4b59cd
 
 
 
 
 
a5de7c0
d4b59cd
 
 
 
 
 
a5de7c0
d4b59cd
 
 
 
 
 
 
 
 
a5de7c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import io
import json
import os

import datasets
from datasets.tasks import QuestionAnsweringExtractive


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{keren2021parashoot,
  title={ParaShoot: A Hebrew Question Answering Dataset},
  author={Keren, Omri and Levy, Omer},
  booktitle={Proceedings of the 3rd Workshop on Machine Reading for Question Answering},
  pages={106--112},
  year={2021}
}
"""

_DESCRIPTION = """
A Hebrew question and answering dataset in the style of SQuAD, based on articles scraped from Wikipedia. The dataset contains a few thousand crowdsource-annotated pairs of questions and answers, in a setting suitable for few-shot learning.
"""

_URLS = {
    "train": "data/train.tar.gz",
    "validation": "data/dev.tar.gz",
    "test": "data/test.tar.gz",
}


class ParashootConfig(datasets.BuilderConfig):
    """BuilderConfig for Parashoot."""

    def __init__(self, **kwargs):
        """BuilderConfig for Parashoot.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(ParashootConfig, self).__init__(**kwargs)


class Parashoot(datasets.GeneratorBasedBuilder):
    """Parashoot: The Hebrew Question Answering Dataset. Version 1.1."""

    BUILDER_CONFIGS = [
        ParashootConfig(
            version=datasets.Version("1.1.0", ""),
            description=_DESCRIPTION,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.features.Sequence(
                        {
                            "text": datasets.Value("string"),
                            "answer_start": datasets.Value("int32"),
                        }
                    ),
                }
            ),
            # No default supervised_keys (as we have to pass both question
            # and context as input).
            supervised_keys=None,
            homepage="https://github.com/omrikeren/ParaShoot",
            citation=_CITATION,
            task_templates=[
                QuestionAnsweringExtractive(
                    question_column="question",
                    context_column="context",
                    answers_column="answers",
                )
            ],
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download(_URLS)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": dl_manager.iter_archive(downloaded_files["train"]),
                    "basename": "train.jsonl",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": dl_manager.iter_archive(downloaded_files["validation"]),
                    "basename": "dev.jsonl",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": dl_manager.iter_archive(downloaded_files["test"]),
                    "basename": "test.jsonl",
                },
            ),
        ]

    def _generate_examples(self, filepath, basename):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        key = 0
        for file_path, file_obj in filepath:
            with io.BytesIO(file_obj.read()) as f:
                for line in f:
                    article = json.loads(line)
                    title = article.get("title", "")
                    context = article["context"]
                    answer_starts = article["answers"]["answer_start"]
                    answers = article["answers"]["text"]
                    yield key, {
                        "title": title,
                        "context": context,
                        "question": article["question"],
                        "id": article["id"],
                        "answers": {
                            "answer_start": answer_starts,
                            "text": answers,
                        },
                    }
                    key += 1