egrace479 commited on
Commit
be98f94
1 Parent(s): fa42db3

Add notebook that performs taxa and view standardization.

Browse files
Files changed (1) hide show
  1. notebooks/standardize_taxa.ipynb +1464 -0
notebooks/standardize_taxa.ipynb ADDED
@@ -0,0 +1,1464 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import pandas as pd"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 2,
15
+ "metadata": {},
16
+ "outputs": [],
17
+ "source": [
18
+ "df = pd.read_csv(\"../Jiggins_Zenodo_Img_Master.csv\", low_memory=False)"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 3,
24
+ "metadata": {},
25
+ "outputs": [
26
+ {
27
+ "data": {
28
+ "text/plain": [
29
+ "CAMID 12586\n",
30
+ "X 49359\n",
31
+ "Image_name 37821\n",
32
+ "View 10\n",
33
+ "zenodo_name 36\n",
34
+ "zenodo_link 32\n",
35
+ "Sequence 11301\n",
36
+ "Taxonomic_Name 363\n",
37
+ "Locality 645\n",
38
+ "Sample_accession 1571\n",
39
+ "Collected_by 12\n",
40
+ "Other_ID 3088\n",
41
+ "Date 810\n",
42
+ "Dataset 8\n",
43
+ "Store 142\n",
44
+ "Brood 226\n",
45
+ "Death_Date 82\n",
46
+ "Cross_Type 30\n",
47
+ "Stage 1\n",
48
+ "Sex 3\n",
49
+ "Unit_Type 6\n",
50
+ "file_type 3\n",
51
+ "dtype: int64"
52
+ ]
53
+ },
54
+ "execution_count": 3,
55
+ "metadata": {},
56
+ "output_type": "execute_result"
57
+ }
58
+ ],
59
+ "source": [
60
+ "df.nunique()"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 4,
66
+ "metadata": {},
67
+ "outputs": [
68
+ {
69
+ "data": {
70
+ "text/plain": [
71
+ "file_type\n",
72
+ "jpg 37072\n",
73
+ "raw 12226\n",
74
+ "tif 61\n",
75
+ "Name: count, dtype: int64"
76
+ ]
77
+ },
78
+ "execution_count": 4,
79
+ "metadata": {},
80
+ "output_type": "execute_result"
81
+ }
82
+ ],
83
+ "source": [
84
+ "df.file_type.value_counts()"
85
+ ]
86
+ },
87
+ {
88
+ "cell_type": "code",
89
+ "execution_count": 5,
90
+ "metadata": {},
91
+ "outputs": [
92
+ {
93
+ "data": {
94
+ "text/plain": [
95
+ "View\n",
96
+ "dorsal 15128\n",
97
+ "ventral 13424\n",
98
+ "Dorsal 8360\n",
99
+ "Ventral 8090\n",
100
+ "ventral 1644\n",
101
+ "forewing dorsal 406\n",
102
+ "hindwing dorsal 406\n",
103
+ "forewing ventral 406\n",
104
+ "hindwing ventral 406\n",
105
+ "Dorsal and Ventral 18\n",
106
+ "Name: count, dtype: int64"
107
+ ]
108
+ },
109
+ "execution_count": 5,
110
+ "metadata": {},
111
+ "output_type": "execute_result"
112
+ }
113
+ ],
114
+ "source": [
115
+ "df.View.value_counts()"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "markdown",
120
+ "metadata": {},
121
+ "source": [
122
+ "Not great that `ventral` gets listed twice as lowercase and _again_ as `Ventral`.\n",
123
+ "\n",
124
+ "### Standardize `View` Column\n",
125
+ "Let's standardize `View` so that there isn't a discrepancy based on case."
126
+ ]
127
+ },
128
+ {
129
+ "cell_type": "code",
130
+ "execution_count": 6,
131
+ "metadata": {},
132
+ "outputs": [
133
+ {
134
+ "data": {
135
+ "text/plain": [
136
+ "View\n",
137
+ "dorsal 23488\n",
138
+ "ventral 21514\n",
139
+ "ventral 1644\n",
140
+ "forewing dorsal 406\n",
141
+ "hindwing dorsal 406\n",
142
+ "forewing ventral 406\n",
143
+ "hindwing ventral 406\n",
144
+ "dorsal and ventral 18\n",
145
+ "Name: count, dtype: int64"
146
+ ]
147
+ },
148
+ "execution_count": 6,
149
+ "metadata": {},
150
+ "output_type": "execute_result"
151
+ }
152
+ ],
153
+ "source": [
154
+ "df[\"View\"] = df.View.str.lower()\n",
155
+ "df.View.value_counts()"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": 7,
161
+ "metadata": {},
162
+ "outputs": [
163
+ {
164
+ "name": "stdout",
165
+ "output_type": "stream",
166
+ "text": [
167
+ "['dorsal' 'ventral' nan 'dorsal and ventral' 'ventral ' 'forewing dorsal'\n",
168
+ " 'hindwing dorsal' 'forewing ventral' 'hindwing ventral']\n"
169
+ ]
170
+ }
171
+ ],
172
+ "source": [
173
+ "print(df.View.unique())"
174
+ ]
175
+ },
176
+ {
177
+ "cell_type": "markdown",
178
+ "metadata": {},
179
+ "source": [
180
+ "Yes, one has a space after it, so we'll replace that."
181
+ ]
182
+ },
183
+ {
184
+ "cell_type": "code",
185
+ "execution_count": 8,
186
+ "metadata": {},
187
+ "outputs": [
188
+ {
189
+ "data": {
190
+ "text/plain": [
191
+ "View\n",
192
+ "dorsal 23488\n",
193
+ "ventral 23158\n",
194
+ "forewing dorsal 406\n",
195
+ "hindwing dorsal 406\n",
196
+ "forewing ventral 406\n",
197
+ "hindwing ventral 406\n",
198
+ "dorsal and ventral 18\n",
199
+ "Name: count, dtype: int64"
200
+ ]
201
+ },
202
+ "execution_count": 8,
203
+ "metadata": {},
204
+ "output_type": "execute_result"
205
+ }
206
+ ],
207
+ "source": [
208
+ "df.loc[df[\"View\"] == \"ventral \", \"View\"] = \"ventral\"\n",
209
+ "df.View.value_counts() "
210
+ ]
211
+ },
212
+ {
213
+ "cell_type": "markdown",
214
+ "metadata": {},
215
+ "source": [
216
+ "### Add Record Number Column\n",
217
+ "We'll add a `record_number` column for easier matching to the license/citation file."
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": 9,
223
+ "metadata": {},
224
+ "outputs": [],
225
+ "source": [
226
+ "def get_record_number(url):\n",
227
+ " num = url.split(sep = \"/\")[-1]\n",
228
+ " return num"
229
+ ]
230
+ },
231
+ {
232
+ "cell_type": "code",
233
+ "execution_count": 10,
234
+ "metadata": {},
235
+ "outputs": [
236
+ {
237
+ "data": {
238
+ "text/plain": [
239
+ "32"
240
+ ]
241
+ },
242
+ "execution_count": 10,
243
+ "metadata": {},
244
+ "output_type": "execute_result"
245
+ }
246
+ ],
247
+ "source": [
248
+ "df[\"record_number\"] = df.zenodo_link.apply(get_record_number)\n",
249
+ "df.record_number.nunique()"
250
+ ]
251
+ },
252
+ {
253
+ "cell_type": "markdown",
254
+ "metadata": {},
255
+ "source": [
256
+ "We have 32 unique records represented in the full dataset. When we reduce down to just the Heliconius images, this will probably be less."
257
+ ]
258
+ },
259
+ {
260
+ "cell_type": "markdown",
261
+ "metadata": {},
262
+ "source": [
263
+ "### Add `species` and `subspecies` Columns\n",
264
+ "This will make some analysis easier and allow for easy viewing on the [Data Dashboard](https://huggingface.co/spaces/imageomics/dashboard-prototype)."
265
+ ]
266
+ },
267
+ {
268
+ "cell_type": "code",
269
+ "execution_count": 11,
270
+ "metadata": {},
271
+ "outputs": [],
272
+ "source": [
273
+ "def get_species(taxa_name):\n",
274
+ " if type(taxa_name) != float: #taxa name not null\n",
275
+ " species = taxa_name.split(sep = \" ssp\")[0]\n",
276
+ " return species\n",
277
+ " else:\n",
278
+ " return taxa_name"
279
+ ]
280
+ },
281
+ {
282
+ "cell_type": "code",
283
+ "execution_count": 12,
284
+ "metadata": {},
285
+ "outputs": [],
286
+ "source": [
287
+ "def get_subspecies(taxa_name):\n",
288
+ " if type(taxa_name) != float:\n",
289
+ " if \"ssp.\" in taxa_name:\n",
290
+ " subspecies = taxa_name.split(sep = \"ssp. \")[1]\n",
291
+ " elif \"ssp \" in taxa_name:\n",
292
+ " subspecies = taxa_name.split(sep = \"ssp \")[1]\n",
293
+ " else:\n",
294
+ " subspecies = None\n",
295
+ " else:\n",
296
+ " subspecies = None\n",
297
+ " return subspecies"
298
+ ]
299
+ },
300
+ {
301
+ "cell_type": "code",
302
+ "execution_count": 13,
303
+ "metadata": {},
304
+ "outputs": [
305
+ {
306
+ "data": {
307
+ "text/plain": [
308
+ "246"
309
+ ]
310
+ },
311
+ "execution_count": 13,
312
+ "metadata": {},
313
+ "output_type": "execute_result"
314
+ }
315
+ ],
316
+ "source": [
317
+ "df[\"species\"] = df.Taxonomic_Name.apply(get_species)\n",
318
+ "df.species.nunique()"
319
+ ]
320
+ },
321
+ {
322
+ "cell_type": "code",
323
+ "execution_count": 14,
324
+ "metadata": {},
325
+ "outputs": [
326
+ {
327
+ "data": {
328
+ "text/plain": [
329
+ "139"
330
+ ]
331
+ },
332
+ "execution_count": 14,
333
+ "metadata": {},
334
+ "output_type": "execute_result"
335
+ }
336
+ ],
337
+ "source": [
338
+ "df[\"subspecies\"] = df.Taxonomic_Name.apply(get_subspecies)\n",
339
+ "df.subspecies.nunique()"
340
+ ]
341
+ },
342
+ {
343
+ "cell_type": "markdown",
344
+ "metadata": {},
345
+ "source": [
346
+ "Cross Types are labeled differently:\n",
347
+ "They are all abbreviations, we have `malleti (mal), plesseni (ple), notabilis (not), lativitta (lat)`, and Neil would guess that `latRo` refers to lativitta with a rounded apical band (e.g., a phenotypic variant of lativitta), but he couldn't say for sure without some more digging, so that will have to stay as-is. We will leave the `Test cross...` ones, but there is not much more to do with them."
348
+ ]
349
+ },
350
+ {
351
+ "cell_type": "code",
352
+ "execution_count": 15,
353
+ "metadata": {},
354
+ "outputs": [
355
+ {
356
+ "data": {
357
+ "text/plain": [
358
+ "array(['mal', 'mal x ple', 'ple', 'ple x mal', 'latRo x not',\n",
359
+ " '(latRo x not) x not', '(mal x ple) x mal', '(mal x ple) x ple',\n",
360
+ " 'ple x (mal x ple)', '(ple x mal) x (mal x ple)', 'lat x not',\n",
361
+ " '(ple x mal) x ple', '(mal x ple) x (mal x ple)',\n",
362
+ " '(ple x mal) x mal', '(ple x mal) x (ple x mal)',\n",
363
+ " '(mal x ple) x (ple x mal)', 'hybrid', 'mal x (ple x mal)',\n",
364
+ " '(lat x not) x lat', '(lat x not) x not', 'Ac heterozygote',\n",
365
+ " 'ple x (ple x mal)', '2 banded', 'lat',\n",
366
+ " 'Test cross (2 banded F2 x 2 banded F2)',\n",
367
+ " 'Test cross (4 spots x 2 banded)', 'Test cross (N heterozygozity)',\n",
368
+ " 'Test cross (short HW bar)', 'Test cross (4 spots x 4 spots)',\n",
369
+ " 'Test cross (N heterozygocity - NBNN x mal - thin)'], dtype=object)"
370
+ ]
371
+ },
372
+ "execution_count": 15,
373
+ "metadata": {},
374
+ "output_type": "execute_result"
375
+ }
376
+ ],
377
+ "source": [
378
+ "df.Cross_Type.dropna().unique()"
379
+ ]
380
+ },
381
+ {
382
+ "cell_type": "code",
383
+ "execution_count": 16,
384
+ "metadata": {},
385
+ "outputs": [],
386
+ "source": [
387
+ "def clean_cross_types(cross_type):\n",
388
+ " if type(cross_type) != float:\n",
389
+ " cross_type = cross_type.replace(\"mal\", \"malleti\")\n",
390
+ " cross_type = cross_type.replace(\"ple\", \"plesseni\")\n",
391
+ " cross_type = cross_type.replace(\"not\", \"notabilis\")\n",
392
+ " if \"latRo\" not in cross_type:\n",
393
+ " #latRo does not cross with lativitta, so only apply when latRo isn't present\n",
394
+ " cross_type = cross_type.replace(\"lat\", \"lativitta\")\n",
395
+ " return cross_type"
396
+ ]
397
+ },
398
+ {
399
+ "cell_type": "code",
400
+ "execution_count": 17,
401
+ "metadata": {},
402
+ "outputs": [],
403
+ "source": [
404
+ "df[\"Cross_Type\"] = df[\"Cross_Type\"].apply(clean_cross_types)"
405
+ ]
406
+ },
407
+ {
408
+ "cell_type": "markdown",
409
+ "metadata": {},
410
+ "source": [
411
+ "Now we can fill these cross types in for the `subspecies` column (all Cross Types are just labeled to the spceies level in `Taxonomic_Name`, so they did not get processed previously)."
412
+ ]
413
+ },
414
+ {
415
+ "cell_type": "code",
416
+ "execution_count": 18,
417
+ "metadata": {},
418
+ "outputs": [
419
+ {
420
+ "data": {
421
+ "text/plain": [
422
+ "156"
423
+ ]
424
+ },
425
+ "execution_count": 18,
426
+ "metadata": {},
427
+ "output_type": "execute_result"
428
+ }
429
+ ],
430
+ "source": [
431
+ "cross_type_subspecies = [ct for ct in list(df.Cross_Type.dropna().unique()) if \"Test\" not in ct and \"banded\" not in ct]\n",
432
+ "cross_type_subspecies.remove(\"hybrid\")\n",
433
+ "cross_type_subspecies.remove(\"Ac heterozygote\")\n",
434
+ "\n",
435
+ "for ct in cross_type_subspecies:\n",
436
+ " df.loc[df[\"Cross_Type\"] == ct, \"subspecies\"] = ct\n",
437
+ "\n",
438
+ "df.subspecies.nunique()\n"
439
+ ]
440
+ },
441
+ {
442
+ "cell_type": "code",
443
+ "execution_count": 19,
444
+ "metadata": {},
445
+ "outputs": [
446
+ {
447
+ "data": {
448
+ "text/plain": [
449
+ "21"
450
+ ]
451
+ },
452
+ "execution_count": 19,
453
+ "metadata": {},
454
+ "output_type": "execute_result"
455
+ }
456
+ ],
457
+ "source": [
458
+ "len(cross_type_subspecies)"
459
+ ]
460
+ },
461
+ {
462
+ "cell_type": "code",
463
+ "execution_count": 20,
464
+ "metadata": {},
465
+ "outputs": [
466
+ {
467
+ "data": {
468
+ "text/plain": [
469
+ "subspecies\n",
470
+ "(malleti x plesseni) x malleti 1204\n",
471
+ "plesseni x (malleti x plesseni) 600\n",
472
+ "malleti x (plesseni x malleti) 370\n",
473
+ "(plesseni x malleti) x plesseni 363\n",
474
+ "(plesseni x malleti) x (malleti x plesseni) 354\n",
475
+ "(plesseni x malleti) x (plesseni x malleti) 286\n",
476
+ "(malleti x plesseni) x plesseni 278\n",
477
+ "plesseni x malleti 234\n",
478
+ "malleti x plesseni 192\n",
479
+ "lativitta x notabilis 136\n",
480
+ "(lativitta x notabilis) x lativitta 110\n",
481
+ "plesseni x (plesseni x malleti) 106\n",
482
+ "(lativitta x notabilis) x notabilis 106\n",
483
+ "(malleti x plesseni) x (malleti x plesseni) 98\n",
484
+ "(plesseni x malleti) x malleti 80\n",
485
+ "(malleti x plesseni) x (plesseni x malleti) 56\n",
486
+ "malleti 28\n",
487
+ "plesseni 28\n",
488
+ "(latRo x notabilis) x notabilis 16\n",
489
+ "latRo x notabilis 4\n",
490
+ "lativitta 4\n",
491
+ "Name: count, dtype: int64"
492
+ ]
493
+ },
494
+ "execution_count": 20,
495
+ "metadata": {},
496
+ "output_type": "execute_result"
497
+ }
498
+ ],
499
+ "source": [
500
+ "df.loc[df[\"Cross_Type\"].notna(), \"subspecies\"].value_counts()"
501
+ ]
502
+ },
503
+ {
504
+ "cell_type": "code",
505
+ "execution_count": 21,
506
+ "metadata": {},
507
+ "outputs": [
508
+ {
509
+ "name": "stdout",
510
+ "output_type": "stream",
511
+ "text": [
512
+ "4\n"
513
+ ]
514
+ },
515
+ {
516
+ "data": {
517
+ "text/plain": [
518
+ "['malleti', 'plesseni', 'plesseni x malleti', 'lativitta']"
519
+ ]
520
+ },
521
+ "execution_count": 21,
522
+ "metadata": {},
523
+ "output_type": "execute_result"
524
+ }
525
+ ],
526
+ "source": [
527
+ "already_present_subspecies = []\n",
528
+ "\n",
529
+ "for subspecies in list(df.loc[df[\"Cross_Type\"].notna(), \"subspecies\"].dropna().unique()):\n",
530
+ " if subspecies in list(df.loc[~df[\"Cross_Type\"].notna(), \"subspecies\"].dropna().unique()):\n",
531
+ " already_present_subspecies.append(subspecies)\n",
532
+ "\n",
533
+ "print(len(already_present_subspecies))\n",
534
+ "already_present_subspecies"
535
+ ]
536
+ },
537
+ {
538
+ "cell_type": "markdown",
539
+ "metadata": {},
540
+ "source": [
541
+ "Perfect, this adds 17 more subspecies (`lativitta`, `plessani`, `maletti`, and `plesseni x malleti` were already represented). Note, this is based on _exact_ duplicates. `notabilis x lativitta` is also already in the dataset, but the order (where the cross types are concerned) general goes `maternal x paternal`."
542
+ ]
543
+ },
544
+ {
545
+ "cell_type": "code",
546
+ "execution_count": 22,
547
+ "metadata": {},
548
+ "outputs": [
549
+ {
550
+ "data": {
551
+ "text/html": [
552
+ "<div>\n",
553
+ "<style scoped>\n",
554
+ " .dataframe tbody tr th:only-of-type {\n",
555
+ " vertical-align: middle;\n",
556
+ " }\n",
557
+ "\n",
558
+ " .dataframe tbody tr th {\n",
559
+ " vertical-align: top;\n",
560
+ " }\n",
561
+ "\n",
562
+ " .dataframe thead th {\n",
563
+ " text-align: right;\n",
564
+ " }\n",
565
+ "</style>\n",
566
+ "<table border=\"1\" class=\"dataframe\">\n",
567
+ " <thead>\n",
568
+ " <tr style=\"text-align: right;\">\n",
569
+ " <th></th>\n",
570
+ " <th>CAMID</th>\n",
571
+ " <th>X</th>\n",
572
+ " <th>Image_name</th>\n",
573
+ " <th>View</th>\n",
574
+ " <th>zenodo_name</th>\n",
575
+ " <th>zenodo_link</th>\n",
576
+ " <th>Sequence</th>\n",
577
+ " <th>Taxonomic_Name</th>\n",
578
+ " <th>Locality</th>\n",
579
+ " <th>Sample_accession</th>\n",
580
+ " <th>...</th>\n",
581
+ " <th>Brood</th>\n",
582
+ " <th>Death_Date</th>\n",
583
+ " <th>Cross_Type</th>\n",
584
+ " <th>Stage</th>\n",
585
+ " <th>Sex</th>\n",
586
+ " <th>Unit_Type</th>\n",
587
+ " <th>file_type</th>\n",
588
+ " <th>record_number</th>\n",
589
+ " <th>species</th>\n",
590
+ " <th>subspecies</th>\n",
591
+ " </tr>\n",
592
+ " </thead>\n",
593
+ " <tbody>\n",
594
+ " <tr>\n",
595
+ " <th>1986</th>\n",
596
+ " <td>19N1989</td>\n",
597
+ " <td>21369</td>\n",
598
+ " <td>19N1989_v.JPG</td>\n",
599
+ " <td>ventral</td>\n",
600
+ " <td>0.sheffield.ps.nn.ikiam.batch2.csv</td>\n",
601
+ " <td>https://zenodo.org/record/4288311</td>\n",
602
+ " <td>1,989</td>\n",
603
+ " <td>Heliconius melpomene ssp. malleti</td>\n",
604
+ " <td>Ikiam Mariposario</td>\n",
605
+ " <td>NaN</td>\n",
606
+ " <td>...</td>\n",
607
+ " <td>IKIAM.P44</td>\n",
608
+ " <td>NaN</td>\n",
609
+ " <td>NaN</td>\n",
610
+ " <td>NaN</td>\n",
611
+ " <td>Male</td>\n",
612
+ " <td>reared</td>\n",
613
+ " <td>jpg</td>\n",
614
+ " <td>4288311</td>\n",
615
+ " <td>Heliconius melpomene</td>\n",
616
+ " <td>malleti</td>\n",
617
+ " </tr>\n",
618
+ " <tr>\n",
619
+ " <th>45062</th>\n",
620
+ " <td>CAM044423</td>\n",
621
+ " <td>34391</td>\n",
622
+ " <td>CAM044423_d.CR2</td>\n",
623
+ " <td>dorsal</td>\n",
624
+ " <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
625
+ " <td>https://zenodo.org/record/4287444</td>\n",
626
+ " <td>44,423</td>\n",
627
+ " <td>Taygetis cleopatra</td>\n",
628
+ " <td>B6old6</td>\n",
629
+ " <td>NaN</td>\n",
630
+ " <td>...</td>\n",
631
+ " <td>NaN</td>\n",
632
+ " <td>NaN</td>\n",
633
+ " <td>NaN</td>\n",
634
+ " <td>NaN</td>\n",
635
+ " <td>NaN</td>\n",
636
+ " <td>NaN</td>\n",
637
+ " <td>raw</td>\n",
638
+ " <td>4287444</td>\n",
639
+ " <td>Taygetis cleopatra</td>\n",
640
+ " <td>None</td>\n",
641
+ " </tr>\n",
642
+ " <tr>\n",
643
+ " <th>48534</th>\n",
644
+ " <td>E23</td>\n",
645
+ " <td>37555</td>\n",
646
+ " <td>E23_d.CR2</td>\n",
647
+ " <td>dorsal</td>\n",
648
+ " <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
649
+ " <td>https://zenodo.org/record/2554218</td>\n",
650
+ " <td>NaN</td>\n",
651
+ " <td>NaN</td>\n",
652
+ " <td>NaN</td>\n",
653
+ " <td>NaN</td>\n",
654
+ " <td>...</td>\n",
655
+ " <td>NaN</td>\n",
656
+ " <td>NaN</td>\n",
657
+ " <td>NaN</td>\n",
658
+ " <td>NaN</td>\n",
659
+ " <td>NaN</td>\n",
660
+ " <td>NaN</td>\n",
661
+ " <td>raw</td>\n",
662
+ " <td>2554218</td>\n",
663
+ " <td>NaN</td>\n",
664
+ " <td>None</td>\n",
665
+ " </tr>\n",
666
+ " <tr>\n",
667
+ " <th>45206</th>\n",
668
+ " <td>CAM044445</td>\n",
669
+ " <td>37132</td>\n",
670
+ " <td>CAM044445_d.JPG</td>\n",
671
+ " <td>dorsal</td>\n",
672
+ " <td>batch3.Peru.image.names.Zenodo.csv</td>\n",
673
+ " <td>https://zenodo.org/record/4288250</td>\n",
674
+ " <td>44,445</td>\n",
675
+ " <td>Taygetis cleopatra</td>\n",
676
+ " <td>B4old2</td>\n",
677
+ " <td>NaN</td>\n",
678
+ " <td>...</td>\n",
679
+ " <td>NaN</td>\n",
680
+ " <td>NaN</td>\n",
681
+ " <td>NaN</td>\n",
682
+ " <td>NaN</td>\n",
683
+ " <td>NaN</td>\n",
684
+ " <td>NaN</td>\n",
685
+ " <td>jpg</td>\n",
686
+ " <td>4288250</td>\n",
687
+ " <td>Taygetis cleopatra</td>\n",
688
+ " <td>None</td>\n",
689
+ " </tr>\n",
690
+ " <tr>\n",
691
+ " <th>12212</th>\n",
692
+ " <td>CAM010238</td>\n",
693
+ " <td>23307</td>\n",
694
+ " <td>10238v.jpg</td>\n",
695
+ " <td>ventral</td>\n",
696
+ " <td>Heliconius_wing_old_photos_2001_2019_part1.csv</td>\n",
697
+ " <td>https://zenodo.org/record/2552371</td>\n",
698
+ " <td>10,238</td>\n",
699
+ " <td>Heliconius sp.</td>\n",
700
+ " <td>NaN</td>\n",
701
+ " <td>NaN</td>\n",
702
+ " <td>...</td>\n",
703
+ " <td>B043</td>\n",
704
+ " <td>NaN</td>\n",
705
+ " <td>NaN</td>\n",
706
+ " <td>NaN</td>\n",
707
+ " <td>Female</td>\n",
708
+ " <td>reared</td>\n",
709
+ " <td>jpg</td>\n",
710
+ " <td>2552371</td>\n",
711
+ " <td>Heliconius sp.</td>\n",
712
+ " <td>None</td>\n",
713
+ " </tr>\n",
714
+ " <tr>\n",
715
+ " <th>39059</th>\n",
716
+ " <td>CAM043418</td>\n",
717
+ " <td>30654</td>\n",
718
+ " <td>CAM043418_v.JPG</td>\n",
719
+ " <td>ventral</td>\n",
720
+ " <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
721
+ " <td>https://zenodo.org/record/3569598</td>\n",
722
+ " <td>43,418</td>\n",
723
+ " <td>Archaeoprepona licomedes</td>\n",
724
+ " <td>B6rec6</td>\n",
725
+ " <td>NaN</td>\n",
726
+ " <td>...</td>\n",
727
+ " <td>NaN</td>\n",
728
+ " <td>NaN</td>\n",
729
+ " <td>NaN</td>\n",
730
+ " <td>NaN</td>\n",
731
+ " <td>NaN</td>\n",
732
+ " <td>NaN</td>\n",
733
+ " <td>jpg</td>\n",
734
+ " <td>3569598</td>\n",
735
+ " <td>Archaeoprepona licomedes</td>\n",
736
+ " <td>None</td>\n",
737
+ " </tr>\n",
738
+ " <tr>\n",
739
+ " <th>38163</th>\n",
740
+ " <td>CAM043170</td>\n",
741
+ " <td>29755</td>\n",
742
+ " <td>CAM043170_d.CR2</td>\n",
743
+ " <td>dorsal</td>\n",
744
+ " <td>batch1.Peru.image.names.Zenodo.csv</td>\n",
745
+ " <td>https://zenodo.org/record/3569598</td>\n",
746
+ " <td>43,170</td>\n",
747
+ " <td>Adelpha mesentina</td>\n",
748
+ " <td>F3rec2</td>\n",
749
+ " <td>NaN</td>\n",
750
+ " <td>...</td>\n",
751
+ " <td>NaN</td>\n",
752
+ " <td>NaN</td>\n",
753
+ " <td>NaN</td>\n",
754
+ " <td>NaN</td>\n",
755
+ " <td>NaN</td>\n",
756
+ " <td>NaN</td>\n",
757
+ " <td>raw</td>\n",
758
+ " <td>3569598</td>\n",
759
+ " <td>Adelpha mesentina</td>\n",
760
+ " <td>None</td>\n",
761
+ " </tr>\n",
762
+ " </tbody>\n",
763
+ "</table>\n",
764
+ "<p>7 rows × 25 columns</p>\n",
765
+ "</div>"
766
+ ],
767
+ "text/plain": [
768
+ " CAMID X Image_name View \\\n",
769
+ "1986 19N1989 21369 19N1989_v.JPG ventral \n",
770
+ "45062 CAM044423 34391 CAM044423_d.CR2 dorsal \n",
771
+ "48534 E23 37555 E23_d.CR2 dorsal \n",
772
+ "45206 CAM044445 37132 CAM044445_d.JPG dorsal \n",
773
+ "12212 CAM010238 23307 10238v.jpg ventral \n",
774
+ "39059 CAM043418 30654 CAM043418_v.JPG ventral \n",
775
+ "38163 CAM043170 29755 CAM043170_d.CR2 dorsal \n",
776
+ "\n",
777
+ " zenodo_name \\\n",
778
+ "1986 0.sheffield.ps.nn.ikiam.batch2.csv \n",
779
+ "45062 batch2.Peru.image.names.Zenodo.csv \n",
780
+ "48534 Anniina.Matilla.Field.Caught.E.csv \n",
781
+ "45206 batch3.Peru.image.names.Zenodo.csv \n",
782
+ "12212 Heliconius_wing_old_photos_2001_2019_part1.csv \n",
783
+ "39059 batch1.Peru.image.names.Zenodo.csv \n",
784
+ "38163 batch1.Peru.image.names.Zenodo.csv \n",
785
+ "\n",
786
+ " zenodo_link Sequence \\\n",
787
+ "1986 https://zenodo.org/record/4288311 1,989 \n",
788
+ "45062 https://zenodo.org/record/4287444 44,423 \n",
789
+ "48534 https://zenodo.org/record/2554218 NaN \n",
790
+ "45206 https://zenodo.org/record/4288250 44,445 \n",
791
+ "12212 https://zenodo.org/record/2552371 10,238 \n",
792
+ "39059 https://zenodo.org/record/3569598 43,418 \n",
793
+ "38163 https://zenodo.org/record/3569598 43,170 \n",
794
+ "\n",
795
+ " Taxonomic_Name Locality Sample_accession \\\n",
796
+ "1986 Heliconius melpomene ssp. malleti Ikiam Mariposario NaN \n",
797
+ "45062 Taygetis cleopatra B6old6 NaN \n",
798
+ "48534 NaN NaN NaN \n",
799
+ "45206 Taygetis cleopatra B4old2 NaN \n",
800
+ "12212 Heliconius sp. NaN NaN \n",
801
+ "39059 Archaeoprepona licomedes B6rec6 NaN \n",
802
+ "38163 Adelpha mesentina F3rec2 NaN \n",
803
+ "\n",
804
+ " ... Brood Death_Date Cross_Type Stage Sex Unit_Type file_type \\\n",
805
+ "1986 ... IKIAM.P44 NaN NaN NaN Male reared jpg \n",
806
+ "45062 ... NaN NaN NaN NaN NaN NaN raw \n",
807
+ "48534 ... NaN NaN NaN NaN NaN NaN raw \n",
808
+ "45206 ... NaN NaN NaN NaN NaN NaN jpg \n",
809
+ "12212 ... B043 NaN NaN NaN Female reared jpg \n",
810
+ "39059 ... NaN NaN NaN NaN NaN NaN jpg \n",
811
+ "38163 ... NaN NaN NaN NaN NaN NaN raw \n",
812
+ "\n",
813
+ " record_number species subspecies \n",
814
+ "1986 4288311 Heliconius melpomene malleti \n",
815
+ "45062 4287444 Taygetis cleopatra None \n",
816
+ "48534 2554218 NaN None \n",
817
+ "45206 4288250 Taygetis cleopatra None \n",
818
+ "12212 2552371 Heliconius sp. None \n",
819
+ "39059 3569598 Archaeoprepona licomedes None \n",
820
+ "38163 3569598 Adelpha mesentina None \n",
821
+ "\n",
822
+ "[7 rows x 25 columns]"
823
+ ]
824
+ },
825
+ "execution_count": 22,
826
+ "metadata": {},
827
+ "output_type": "execute_result"
828
+ }
829
+ ],
830
+ "source": [
831
+ "df.sample(7)"
832
+ ]
833
+ },
834
+ {
835
+ "cell_type": "markdown",
836
+ "metadata": {},
837
+ "source": [
838
+ "### Add Genus Column\n",
839
+ "\n",
840
+ "This willl allow us to easily remove all non Heliconius samples, and make some image stats easier to see."
841
+ ]
842
+ },
843
+ {
844
+ "cell_type": "code",
845
+ "execution_count": 23,
846
+ "metadata": {},
847
+ "outputs": [],
848
+ "source": [
849
+ "def get_genus(species):\n",
850
+ " if type(species) != float: #taxa name not null\n",
851
+ " return species.split(sep = \" \")[0]\n",
852
+ " return species"
853
+ ]
854
+ },
855
+ {
856
+ "cell_type": "code",
857
+ "execution_count": 24,
858
+ "metadata": {},
859
+ "outputs": [
860
+ {
861
+ "data": {
862
+ "text/plain": [
863
+ "94"
864
+ ]
865
+ },
866
+ "execution_count": 24,
867
+ "metadata": {},
868
+ "output_type": "execute_result"
869
+ }
870
+ ],
871
+ "source": [
872
+ "df[\"genus\"] = df[\"species\"].apply(get_genus)\n",
873
+ "df.genus.nunique()"
874
+ ]
875
+ },
876
+ {
877
+ "cell_type": "markdown",
878
+ "metadata": {},
879
+ "source": [
880
+ "Final stats for all data summarized here."
881
+ ]
882
+ },
883
+ {
884
+ "cell_type": "code",
885
+ "execution_count": 25,
886
+ "metadata": {},
887
+ "outputs": [
888
+ {
889
+ "data": {
890
+ "text/plain": [
891
+ "CAMID 12586\n",
892
+ "X 49359\n",
893
+ "Image_name 37821\n",
894
+ "View 7\n",
895
+ "zenodo_name 36\n",
896
+ "zenodo_link 32\n",
897
+ "Sequence 11301\n",
898
+ "Taxonomic_Name 363\n",
899
+ "Locality 645\n",
900
+ "Sample_accession 1571\n",
901
+ "Collected_by 12\n",
902
+ "Other_ID 3088\n",
903
+ "Date 810\n",
904
+ "Dataset 8\n",
905
+ "Store 142\n",
906
+ "Brood 226\n",
907
+ "Death_Date 82\n",
908
+ "Cross_Type 30\n",
909
+ "Stage 1\n",
910
+ "Sex 3\n",
911
+ "Unit_Type 6\n",
912
+ "file_type 3\n",
913
+ "record_number 32\n",
914
+ "species 246\n",
915
+ "subspecies 156\n",
916
+ "genus 94\n",
917
+ "dtype: int64"
918
+ ]
919
+ },
920
+ "execution_count": 25,
921
+ "metadata": {},
922
+ "output_type": "execute_result"
923
+ }
924
+ ],
925
+ "source": [
926
+ "df.nunique()"
927
+ ]
928
+ },
929
+ {
930
+ "cell_type": "code",
931
+ "execution_count": 26,
932
+ "metadata": {},
933
+ "outputs": [
934
+ {
935
+ "name": "stdout",
936
+ "output_type": "stream",
937
+ "text": [
938
+ "<class 'pandas.core.frame.DataFrame'>\n",
939
+ "RangeIndex: 49359 entries, 0 to 49358\n",
940
+ "Data columns (total 26 columns):\n",
941
+ " # Column Non-Null Count Dtype \n",
942
+ "--- ------ -------------- ----- \n",
943
+ " 0 CAMID 49359 non-null object\n",
944
+ " 1 X 49359 non-null int64 \n",
945
+ " 2 Image_name 49359 non-null object\n",
946
+ " 3 View 48288 non-null object\n",
947
+ " 4 zenodo_name 49359 non-null object\n",
948
+ " 5 zenodo_link 49359 non-null object\n",
949
+ " 6 Sequence 48424 non-null object\n",
950
+ " 7 Taxonomic_Name 45473 non-null object\n",
951
+ " 8 Locality 34015 non-null object\n",
952
+ " 9 Sample_accession 5884 non-null object\n",
953
+ " 10 Collected_by 5280 non-null object\n",
954
+ " 11 Other_ID 14382 non-null object\n",
955
+ " 12 Date 33718 non-null object\n",
956
+ " 13 Dataset 40405 non-null object\n",
957
+ " 14 Store 39485 non-null object\n",
958
+ " 15 Brood 14942 non-null object\n",
959
+ " 16 Death_Date 318 non-null object\n",
960
+ " 17 Cross_Type 5133 non-null object\n",
961
+ " 18 Stage 15 non-null object\n",
962
+ " 19 Sex 36243 non-null object\n",
963
+ " 20 Unit_Type 33890 non-null object\n",
964
+ " 21 file_type 49359 non-null object\n",
965
+ " 22 record_number 49359 non-null object\n",
966
+ " 23 species 45473 non-null object\n",
967
+ " 24 subspecies 25715 non-null object\n",
968
+ " 25 genus 45473 non-null object\n",
969
+ "dtypes: int64(1), object(25)\n",
970
+ "memory usage: 9.8+ MB\n"
971
+ ]
972
+ }
973
+ ],
974
+ "source": [
975
+ "df.info()"
976
+ ]
977
+ },
978
+ {
979
+ "cell_type": "markdown",
980
+ "metadata": {},
981
+ "source": [
982
+ "Observe that not all images have a species label."
983
+ ]
984
+ },
985
+ {
986
+ "cell_type": "code",
987
+ "execution_count": 27,
988
+ "metadata": {},
989
+ "outputs": [
990
+ {
991
+ "data": {
992
+ "text/html": [
993
+ "<div>\n",
994
+ "<style scoped>\n",
995
+ " .dataframe tbody tr th:only-of-type {\n",
996
+ " vertical-align: middle;\n",
997
+ " }\n",
998
+ "\n",
999
+ " .dataframe tbody tr th {\n",
1000
+ " vertical-align: top;\n",
1001
+ " }\n",
1002
+ "\n",
1003
+ " .dataframe thead th {\n",
1004
+ " text-align: right;\n",
1005
+ " }\n",
1006
+ "</style>\n",
1007
+ "<table border=\"1\" class=\"dataframe\">\n",
1008
+ " <thead>\n",
1009
+ " <tr style=\"text-align: right;\">\n",
1010
+ " <th></th>\n",
1011
+ " <th>CAMID</th>\n",
1012
+ " <th>X</th>\n",
1013
+ " <th>Image_name</th>\n",
1014
+ " <th>View</th>\n",
1015
+ " <th>zenodo_name</th>\n",
1016
+ " <th>zenodo_link</th>\n",
1017
+ " <th>Sequence</th>\n",
1018
+ " <th>Taxonomic_Name</th>\n",
1019
+ " <th>Locality</th>\n",
1020
+ " <th>Sample_accession</th>\n",
1021
+ " <th>...</th>\n",
1022
+ " <th>Death_Date</th>\n",
1023
+ " <th>Cross_Type</th>\n",
1024
+ " <th>Stage</th>\n",
1025
+ " <th>Sex</th>\n",
1026
+ " <th>Unit_Type</th>\n",
1027
+ " <th>file_type</th>\n",
1028
+ " <th>record_number</th>\n",
1029
+ " <th>species</th>\n",
1030
+ " <th>subspecies</th>\n",
1031
+ " <th>genus</th>\n",
1032
+ " </tr>\n",
1033
+ " </thead>\n",
1034
+ " <tbody>\n",
1035
+ " <tr>\n",
1036
+ " <th>48538</th>\n",
1037
+ " <td>E24</td>\n",
1038
+ " <td>37559</td>\n",
1039
+ " <td>E24_d.CR2</td>\n",
1040
+ " <td>dorsal</td>\n",
1041
+ " <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
1042
+ " <td>https://zenodo.org/record/2554218</td>\n",
1043
+ " <td>NaN</td>\n",
1044
+ " <td>NaN</td>\n",
1045
+ " <td>NaN</td>\n",
1046
+ " <td>NaN</td>\n",
1047
+ " <td>...</td>\n",
1048
+ " <td>NaN</td>\n",
1049
+ " <td>NaN</td>\n",
1050
+ " <td>NaN</td>\n",
1051
+ " <td>NaN</td>\n",
1052
+ " <td>NaN</td>\n",
1053
+ " <td>raw</td>\n",
1054
+ " <td>2554218</td>\n",
1055
+ " <td>NaN</td>\n",
1056
+ " <td>None</td>\n",
1057
+ " <td>NaN</td>\n",
1058
+ " </tr>\n",
1059
+ " <tr>\n",
1060
+ " <th>37246</th>\n",
1061
+ " <td>CAM042045</td>\n",
1062
+ " <td>43973</td>\n",
1063
+ " <td>CAM042045_v.JPG</td>\n",
1064
+ " <td>ventral</td>\n",
1065
+ " <td>Collection_August2019.csv</td>\n",
1066
+ " <td>https://zenodo.org/record/5731587</td>\n",
1067
+ " <td>42,045</td>\n",
1068
+ " <td>NaN</td>\n",
1069
+ " <td>NaN</td>\n",
1070
+ " <td>NaN</td>\n",
1071
+ " <td>...</td>\n",
1072
+ " <td>NaN</td>\n",
1073
+ " <td>NaN</td>\n",
1074
+ " <td>NaN</td>\n",
1075
+ " <td>NaN</td>\n",
1076
+ " <td>NaN</td>\n",
1077
+ " <td>jpg</td>\n",
1078
+ " <td>5731587</td>\n",
1079
+ " <td>NaN</td>\n",
1080
+ " <td>None</td>\n",
1081
+ " <td>NaN</td>\n",
1082
+ " </tr>\n",
1083
+ " <tr>\n",
1084
+ " <th>37484</th>\n",
1085
+ " <td>CAM042166</td>\n",
1086
+ " <td>44211</td>\n",
1087
+ " <td>CAM042166_v.JPG</td>\n",
1088
+ " <td>ventral</td>\n",
1089
+ " <td>Collection_August2019.csv</td>\n",
1090
+ " <td>https://zenodo.org/record/5731587</td>\n",
1091
+ " <td>42,166</td>\n",
1092
+ " <td>NaN</td>\n",
1093
+ " <td>NaN</td>\n",
1094
+ " <td>NaN</td>\n",
1095
+ " <td>...</td>\n",
1096
+ " <td>NaN</td>\n",
1097
+ " <td>NaN</td>\n",
1098
+ " <td>NaN</td>\n",
1099
+ " <td>NaN</td>\n",
1100
+ " <td>NaN</td>\n",
1101
+ " <td>jpg</td>\n",
1102
+ " <td>5731587</td>\n",
1103
+ " <td>NaN</td>\n",
1104
+ " <td>None</td>\n",
1105
+ " <td>NaN</td>\n",
1106
+ " </tr>\n",
1107
+ " <tr>\n",
1108
+ " <th>48780</th>\n",
1109
+ " <td>E83</td>\n",
1110
+ " <td>37777</td>\n",
1111
+ " <td>E83_v.CR2</td>\n",
1112
+ " <td>ventral</td>\n",
1113
+ " <td>Anniina.Matilla.Field.Caught.E.csv</td>\n",
1114
+ " <td>https://zenodo.org/record/2554218</td>\n",
1115
+ " <td>NaN</td>\n",
1116
+ " <td>NaN</td>\n",
1117
+ " <td>NaN</td>\n",
1118
+ " <td>NaN</td>\n",
1119
+ " <td>...</td>\n",
1120
+ " <td>NaN</td>\n",
1121
+ " <td>NaN</td>\n",
1122
+ " <td>NaN</td>\n",
1123
+ " <td>NaN</td>\n",
1124
+ " <td>NaN</td>\n",
1125
+ " <td>raw</td>\n",
1126
+ " <td>2554218</td>\n",
1127
+ " <td>NaN</td>\n",
1128
+ " <td>None</td>\n",
1129
+ " <td>NaN</td>\n",
1130
+ " </tr>\n",
1131
+ " <tr>\n",
1132
+ " <th>3118</th>\n",
1133
+ " <td>19N2627</td>\n",
1134
+ " <td>22498</td>\n",
1135
+ " <td>19N2627_v.CR2</td>\n",
1136
+ " <td>NaN</td>\n",
1137
+ " <td>0.sheffield.ps.nn.ikiam.batch2.csv</td>\n",
1138
+ " <td>https://zenodo.org/record/4288311</td>\n",
1139
+ " <td>0</td>\n",
1140
+ " <td>NaN</td>\n",
1141
+ " <td>NaN</td>\n",
1142
+ " <td>NaN</td>\n",
1143
+ " <td>...</td>\n",
1144
+ " <td>NaN</td>\n",
1145
+ " <td>NaN</td>\n",
1146
+ " <td>NaN</td>\n",
1147
+ " <td>NaN</td>\n",
1148
+ " <td>NaN</td>\n",
1149
+ " <td>raw</td>\n",
1150
+ " <td>4288311</td>\n",
1151
+ " <td>NaN</td>\n",
1152
+ " <td>None</td>\n",
1153
+ " <td>NaN</td>\n",
1154
+ " </tr>\n",
1155
+ " <tr>\n",
1156
+ " <th>46111</th>\n",
1157
+ " <td>CAM045060</td>\n",
1158
+ " <td>42806</td>\n",
1159
+ " <td>CAM045060_v.CR2</td>\n",
1160
+ " <td>ventral</td>\n",
1161
+ " <td>image.names.cook.island.erato.csv</td>\n",
1162
+ " <td>https://zenodo.org/record/5526257</td>\n",
1163
+ " <td>45,060</td>\n",
1164
+ " <td>NaN</td>\n",
1165
+ " <td>NaN</td>\n",
1166
+ " <td>NaN</td>\n",
1167
+ " <td>...</td>\n",
1168
+ " <td>NaN</td>\n",
1169
+ " <td>NaN</td>\n",
1170
+ " <td>NaN</td>\n",
1171
+ " <td>NaN</td>\n",
1172
+ " <td>NaN</td>\n",
1173
+ " <td>raw</td>\n",
1174
+ " <td>5526257</td>\n",
1175
+ " <td>NaN</td>\n",
1176
+ " <td>None</td>\n",
1177
+ " <td>NaN</td>\n",
1178
+ " </tr>\n",
1179
+ " <tr>\n",
1180
+ " <th>39502</th>\n",
1181
+ " <td>CAM043576</td>\n",
1182
+ " <td>31097</td>\n",
1183
+ " <td>CAM043576_v.CR2</td>\n",
1184
+ " <td>ventral</td>\n",
1185
+ " <td>batch2.Peru.image.names.Zenodo.csv</td>\n",
1186
+ " <td>https://zenodo.org/record/4287444</td>\n",
1187
+ " <td>43,576</td>\n",
1188
+ " <td>NaN</td>\n",
1189
+ " <td>NaN</td>\n",
1190
+ " <td>NaN</td>\n",
1191
+ " <td>...</td>\n",
1192
+ " <td>NaN</td>\n",
1193
+ " <td>NaN</td>\n",
1194
+ " <td>NaN</td>\n",
1195
+ " <td>NaN</td>\n",
1196
+ " <td>NaN</td>\n",
1197
+ " <td>raw</td>\n",
1198
+ " <td>4287444</td>\n",
1199
+ " <td>NaN</td>\n",
1200
+ " <td>None</td>\n",
1201
+ " <td>NaN</td>\n",
1202
+ " </tr>\n",
1203
+ " </tbody>\n",
1204
+ "</table>\n",
1205
+ "<p>7 rows × 26 columns</p>\n",
1206
+ "</div>"
1207
+ ],
1208
+ "text/plain": [
1209
+ " CAMID X Image_name View \\\n",
1210
+ "48538 E24 37559 E24_d.CR2 dorsal \n",
1211
+ "37246 CAM042045 43973 CAM042045_v.JPG ventral \n",
1212
+ "37484 CAM042166 44211 CAM042166_v.JPG ventral \n",
1213
+ "48780 E83 37777 E83_v.CR2 ventral \n",
1214
+ "3118 19N2627 22498 19N2627_v.CR2 NaN \n",
1215
+ "46111 CAM045060 42806 CAM045060_v.CR2 ventral \n",
1216
+ "39502 CAM043576 31097 CAM043576_v.CR2 ventral \n",
1217
+ "\n",
1218
+ " zenodo_name zenodo_link \\\n",
1219
+ "48538 Anniina.Matilla.Field.Caught.E.csv https://zenodo.org/record/2554218 \n",
1220
+ "37246 Collection_August2019.csv https://zenodo.org/record/5731587 \n",
1221
+ "37484 Collection_August2019.csv https://zenodo.org/record/5731587 \n",
1222
+ "48780 Anniina.Matilla.Field.Caught.E.csv https://zenodo.org/record/2554218 \n",
1223
+ "3118 0.sheffield.ps.nn.ikiam.batch2.csv https://zenodo.org/record/4288311 \n",
1224
+ "46111 image.names.cook.island.erato.csv https://zenodo.org/record/5526257 \n",
1225
+ "39502 batch2.Peru.image.names.Zenodo.csv https://zenodo.org/record/4287444 \n",
1226
+ "\n",
1227
+ " Sequence Taxonomic_Name Locality Sample_accession ... Death_Date \\\n",
1228
+ "48538 NaN NaN NaN NaN ... NaN \n",
1229
+ "37246 42,045 NaN NaN NaN ... NaN \n",
1230
+ "37484 42,166 NaN NaN NaN ... NaN \n",
1231
+ "48780 NaN NaN NaN NaN ... NaN \n",
1232
+ "3118 0 NaN NaN NaN ... NaN \n",
1233
+ "46111 45,060 NaN NaN NaN ... NaN \n",
1234
+ "39502 43,576 NaN NaN NaN ... NaN \n",
1235
+ "\n",
1236
+ " Cross_Type Stage Sex Unit_Type file_type record_number species \\\n",
1237
+ "48538 NaN NaN NaN NaN raw 2554218 NaN \n",
1238
+ "37246 NaN NaN NaN NaN jpg 5731587 NaN \n",
1239
+ "37484 NaN NaN NaN NaN jpg 5731587 NaN \n",
1240
+ "48780 NaN NaN NaN NaN raw 2554218 NaN \n",
1241
+ "3118 NaN NaN NaN NaN raw 4288311 NaN \n",
1242
+ "46111 NaN NaN NaN NaN raw 5526257 NaN \n",
1243
+ "39502 NaN NaN NaN NaN raw 4287444 NaN \n",
1244
+ "\n",
1245
+ " subspecies genus \n",
1246
+ "48538 None NaN \n",
1247
+ "37246 None NaN \n",
1248
+ "37484 None NaN \n",
1249
+ "48780 None NaN \n",
1250
+ "3118 None NaN \n",
1251
+ "46111 None NaN \n",
1252
+ "39502 None NaN \n",
1253
+ "\n",
1254
+ "[7 rows x 26 columns]"
1255
+ ]
1256
+ },
1257
+ "execution_count": 27,
1258
+ "metadata": {},
1259
+ "output_type": "execute_result"
1260
+ }
1261
+ ],
1262
+ "source": [
1263
+ "df.loc[df.species.isna()].sample(7)"
1264
+ ]
1265
+ },
1266
+ {
1267
+ "cell_type": "markdown",
1268
+ "metadata": {},
1269
+ "source": [
1270
+ "### Update Master File with Genus through Subspecies Columns"
1271
+ ]
1272
+ },
1273
+ {
1274
+ "cell_type": "code",
1275
+ "execution_count": 28,
1276
+ "metadata": {},
1277
+ "outputs": [],
1278
+ "source": [
1279
+ "df.to_csv(\"../Jiggins_Zenodo_Img_Master.csv\", index = False)"
1280
+ ]
1281
+ },
1282
+ {
1283
+ "cell_type": "markdown",
1284
+ "metadata": {},
1285
+ "source": [
1286
+ "### Make Heliconius Subset"
1287
+ ]
1288
+ },
1289
+ {
1290
+ "cell_type": "code",
1291
+ "execution_count": 29,
1292
+ "metadata": {},
1293
+ "outputs": [
1294
+ {
1295
+ "name": "stdout",
1296
+ "output_type": "stream",
1297
+ "text": [
1298
+ "<class 'pandas.core.frame.DataFrame'>\n",
1299
+ "Index: 34929 entries, 6 to 49358\n",
1300
+ "Data columns (total 26 columns):\n",
1301
+ " # Column Non-Null Count Dtype \n",
1302
+ "--- ------ -------------- ----- \n",
1303
+ " 0 CAMID 34929 non-null object\n",
1304
+ " 1 X 34929 non-null int64 \n",
1305
+ " 2 Image_name 34929 non-null object\n",
1306
+ " 3 View 34150 non-null object\n",
1307
+ " 4 zenodo_name 34929 non-null object\n",
1308
+ " 5 zenodo_link 34929 non-null object\n",
1309
+ " 6 Sequence 34929 non-null object\n",
1310
+ " 7 Taxonomic_Name 34929 non-null object\n",
1311
+ " 8 Locality 23417 non-null object\n",
1312
+ " 9 Sample_accession 5860 non-null object\n",
1313
+ " 10 Collected_by 5280 non-null object\n",
1314
+ " 11 Other_ID 6404 non-null object\n",
1315
+ " 12 Date 23162 non-null object\n",
1316
+ " 13 Dataset 32846 non-null object\n",
1317
+ " 14 Store 29446 non-null object\n",
1318
+ " 15 Brood 14921 non-null object\n",
1319
+ " 16 Death_Date 316 non-null object\n",
1320
+ " 17 Cross_Type 5133 non-null object\n",
1321
+ " 18 Stage 6 non-null object\n",
1322
+ " 19 Sex 33880 non-null object\n",
1323
+ " 20 Unit_Type 31975 non-null object\n",
1324
+ " 21 file_type 34929 non-null object\n",
1325
+ " 22 record_number 34929 non-null object\n",
1326
+ " 23 species 34929 non-null object\n",
1327
+ " 24 subspecies 24953 non-null object\n",
1328
+ " 25 genus 34929 non-null object\n",
1329
+ "dtypes: int64(1), object(25)\n",
1330
+ "memory usage: 7.2+ MB\n"
1331
+ ]
1332
+ }
1333
+ ],
1334
+ "source": [
1335
+ "heliconius_subset = df.loc[df.genus.str.lower() == \"heliconius\"]\n",
1336
+ "\n",
1337
+ "heliconius_subset.info()"
1338
+ ]
1339
+ },
1340
+ {
1341
+ "cell_type": "code",
1342
+ "execution_count": 30,
1343
+ "metadata": {},
1344
+ "outputs": [
1345
+ {
1346
+ "data": {
1347
+ "text/plain": [
1348
+ "CAMID 9546\n",
1349
+ "X 34929\n",
1350
+ "Image_name 26946\n",
1351
+ "View 3\n",
1352
+ "zenodo_name 31\n",
1353
+ "zenodo_link 28\n",
1354
+ "Sequence 8701\n",
1355
+ "Taxonomic_Name 129\n",
1356
+ "Locality 472\n",
1357
+ "Sample_accession 1559\n",
1358
+ "Collected_by 12\n",
1359
+ "Other_ID 1865\n",
1360
+ "Date 776\n",
1361
+ "Dataset 8\n",
1362
+ "Store 121\n",
1363
+ "Brood 224\n",
1364
+ "Death_Date 81\n",
1365
+ "Cross_Type 30\n",
1366
+ "Stage 1\n",
1367
+ "Sex 3\n",
1368
+ "Unit_Type 4\n",
1369
+ "file_type 3\n",
1370
+ "record_number 28\n",
1371
+ "species 37\n",
1372
+ "subspecies 110\n",
1373
+ "genus 1\n",
1374
+ "dtype: int64"
1375
+ ]
1376
+ },
1377
+ "execution_count": 30,
1378
+ "metadata": {},
1379
+ "output_type": "execute_result"
1380
+ }
1381
+ ],
1382
+ "source": [
1383
+ "heliconius_subset.nunique()"
1384
+ ]
1385
+ },
1386
+ {
1387
+ "cell_type": "code",
1388
+ "execution_count": 31,
1389
+ "metadata": {},
1390
+ "outputs": [
1391
+ {
1392
+ "data": {
1393
+ "text/plain": [
1394
+ "View\n",
1395
+ "dorsal 17218\n",
1396
+ "ventral 16914\n",
1397
+ "dorsal and ventral 18\n",
1398
+ "Name: count, dtype: int64"
1399
+ ]
1400
+ },
1401
+ "execution_count": 31,
1402
+ "metadata": {},
1403
+ "output_type": "execute_result"
1404
+ }
1405
+ ],
1406
+ "source": [
1407
+ "heliconius_subset.View.value_counts()"
1408
+ ]
1409
+ },
1410
+ {
1411
+ "cell_type": "markdown",
1412
+ "metadata": {},
1413
+ "source": [
1414
+ "Note that this subset is distributed across 28 Zenodo records from the [Butterfly Genetics Group](https://zenodo.org/communities/butterfly?q=&l=list&p=1&s=10&sort=newest)."
1415
+ ]
1416
+ },
1417
+ {
1418
+ "cell_type": "markdown",
1419
+ "metadata": {},
1420
+ "source": [
1421
+ "### Save the Heliconius Subset to CSV\n",
1422
+ "We'll drop the `genus` column, since they're all `Heliconius`."
1423
+ ]
1424
+ },
1425
+ {
1426
+ "cell_type": "code",
1427
+ "execution_count": 32,
1428
+ "metadata": {},
1429
+ "outputs": [],
1430
+ "source": [
1431
+ "heliconius_subset[list(heliconius_subset.columns)[:-1]].to_csv(\"../Jiggins_Heliconius_Master.csv\", index = False)"
1432
+ ]
1433
+ },
1434
+ {
1435
+ "cell_type": "code",
1436
+ "execution_count": null,
1437
+ "metadata": {},
1438
+ "outputs": [],
1439
+ "source": []
1440
+ }
1441
+ ],
1442
+ "metadata": {
1443
+ "kernelspec": {
1444
+ "display_name": "std",
1445
+ "language": "python",
1446
+ "name": "python3"
1447
+ },
1448
+ "language_info": {
1449
+ "codemirror_mode": {
1450
+ "name": "ipython",
1451
+ "version": 3
1452
+ },
1453
+ "file_extension": ".py",
1454
+ "mimetype": "text/x-python",
1455
+ "name": "python",
1456
+ "nbconvert_exporter": "python",
1457
+ "pygments_lexer": "ipython3",
1458
+ "version": "3.11.3"
1459
+ },
1460
+ "orig_nbformat": 4
1461
+ },
1462
+ "nbformat": 4,
1463
+ "nbformat_minor": 2
1464
+ }