Create transfer.py
Browse files- transfer.py +126 -0
transfer.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import d4rl.gym_mujoco
|
2 |
+
import gym
|
3 |
+
import gymnasium
|
4 |
+
import minari
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
def get_tuple_from_minari_dataset(dataset_name):
|
9 |
+
dt = minari.load_dataset(dataset_name)
|
10 |
+
observations, actions, rewards, next_observations, terminations, truncations = \
|
11 |
+
[], [], [], [], [], []
|
12 |
+
traj_length = []
|
13 |
+
for _ep in dt:
|
14 |
+
observations.append(_ep.observations[:-1])
|
15 |
+
actions.append(_ep.actions)
|
16 |
+
rewards.append(_ep.rewards)
|
17 |
+
next_observations.append(_ep.observations[1:])
|
18 |
+
terminations.append(_ep.terminations)
|
19 |
+
truncations.append(_ep.truncations)
|
20 |
+
traj_length.append(len(_ep.rewards))
|
21 |
+
assert (_ep.truncations[-1] or _ep.terminations[-1])
|
22 |
+
observations, actions, rewards, next_observations, terminations, truncations = \
|
23 |
+
map(np.concatenate, [observations, actions, rewards, next_observations, terminations, truncations])
|
24 |
+
traj_length = np.array(traj_length)
|
25 |
+
return observations, actions, rewards, next_observations, terminations, truncations, traj_length
|
26 |
+
|
27 |
+
|
28 |
+
def step_tuple_to_traj_tuple(obs, act, rew, next_obs, term, trunc):
|
29 |
+
dones = np.logical_or(term, trunc)[:-1] # last one should not be used for split to avoid empty chunk
|
30 |
+
dones_ind = np.where(dones)[0] + 1
|
31 |
+
obs, act, rew, next_obs, term, trunc = \
|
32 |
+
map(lambda x: np.split(x, dones_ind), [obs, act, rew, next_obs, term, trunc])
|
33 |
+
|
34 |
+
obs_new = [np.concatenate([_obs, _next_obs[-1].reshape(1, -1)])
|
35 |
+
for _obs, _next_obs in zip(obs, next_obs)]
|
36 |
+
buffer = []
|
37 |
+
keys = ['observations', 'actions', 'rewards', 'terminations', 'truncations']
|
38 |
+
for _traj_dt in zip(obs_new, act, rew, term, trunc):
|
39 |
+
_buff_i = dict(zip(keys, _traj_dt))
|
40 |
+
buffer.append(_buff_i)
|
41 |
+
return buffer
|
42 |
+
|
43 |
+
|
44 |
+
def make_traj_based_buffer(d4rl_env_name):
|
45 |
+
env = gym.make(d4rl_env_name)
|
46 |
+
dt = env.get_dataset()
|
47 |
+
obs = dt['observations']
|
48 |
+
next_obs = dt['next_observations']
|
49 |
+
rewards = dt['rewards']
|
50 |
+
actions = dt['actions']
|
51 |
+
terminations = dt['terminals']
|
52 |
+
truncations = dt['timeouts']
|
53 |
+
|
54 |
+
buffer = step_tuple_to_traj_tuple(obs, actions, rewards, next_obs, terminations, truncations)
|
55 |
+
|
56 |
+
return buffer, env
|
57 |
+
|
58 |
+
|
59 |
+
def create_standard_d4rl():
|
60 |
+
|
61 |
+
mujoco_envs = ['Hopper', 'HalfCheetah', 'Ant', 'Walker2d']
|
62 |
+
quality_lists = ['expert', 'medium', 'random', 'medium-expert']
|
63 |
+
|
64 |
+
for _env_prefix in mujoco_envs:
|
65 |
+
for _quality in quality_lists:
|
66 |
+
env_name = f'{_env_prefix.lower()}-{_quality}-v2'
|
67 |
+
|
68 |
+
buffer, env = make_traj_based_buffer(env_name)
|
69 |
+
if not (buffer[-1]["terminations"][-1] or buffer[-1]["truncations"][-1]):
|
70 |
+
buffer[-1]["truncations"][-1] = True
|
71 |
+
|
72 |
+
gymnasium_env = gymnasium.make(f'{_env_prefix}-v2')
|
73 |
+
dataset = minari.create_dataset_from_buffers(
|
74 |
+
dataset_id=env_name,
|
75 |
+
env=gymnasium_env,
|
76 |
+
buffer=buffer,
|
77 |
+
algorithm_name='SAC',
|
78 |
+
author='Zhiyuan',
|
79 |
+
# minari_version=f"{minari.__version__}",
|
80 |
+
author_email='[email protected]',
|
81 |
+
code_permalink='TODO',
|
82 |
+
ref_min_score=env.ref_min_score,
|
83 |
+
ref_max_score=env.ref_max_score,
|
84 |
+
)
|
85 |
+
print('dataset created')
|
86 |
+
return
|
87 |
+
|
88 |
+
|
89 |
+
def validate_standard_d4rl():
|
90 |
+
mujoco_envs = ['Hopper', 'HalfCheetah', 'Ant', 'Walker2d']
|
91 |
+
quality_lists = ['expert', 'medium', 'random', 'medium-expert']
|
92 |
+
|
93 |
+
for _env_prefix in mujoco_envs:
|
94 |
+
for _quality in quality_lists:
|
95 |
+
env_name = f'{_env_prefix.lower()}-{_quality}-v2'
|
96 |
+
|
97 |
+
minari_tuple = get_tuple_from_minari_dataset(env_name)
|
98 |
+
m_obs, m_act, m_rew, m_next_obs, m_term, m_trunc, m_traj_len = minari_tuple
|
99 |
+
|
100 |
+
d4rl_data = gym.make(f'{_env_prefix.lower()}-{_quality}-v2').get_dataset()
|
101 |
+
assert np.all(m_act == d4rl_data["actions"])
|
102 |
+
assert np.all(m_obs == d4rl_data["observations"])
|
103 |
+
assert np.all(m_next_obs == d4rl_data["next_observations"])
|
104 |
+
assert np.all(m_rew == d4rl_data["rewards"])
|
105 |
+
assert np.all(m_term == d4rl_data["terminals"])
|
106 |
+
assert np.all(m_trunc[:-1] == d4rl_data["timeouts"][:-1])
|
107 |
+
assert m_trunc[-1]
|
108 |
+
|
109 |
+
d4rl_dones = np.logical_or(d4rl_data["terminals"], d4rl_data["timeouts"])[:-1]
|
110 |
+
# last one will always be added
|
111 |
+
|
112 |
+
d4rl_dones = np.where(d4rl_dones)[0]
|
113 |
+
num_d4rl = len(d4rl_data["rewards"])
|
114 |
+
d4rl_dones = np.concatenate([[-1], d4rl_dones, [num_d4rl - 1]])
|
115 |
+
d4rl_traj_length = d4rl_dones[1:] - d4rl_dones[:-1]
|
116 |
+
assert np.all(d4rl_traj_length == m_traj_len)
|
117 |
+
assert np.sum(m_traj_len) == len(m_rew)
|
118 |
+
print('validation passed')
|
119 |
+
return
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
create_standard_d4rl()
|
126 |
+
validate_standard_d4rl()
|