Datasets:

Languages:
French
ArXiv:
License:
File size: 8,376 Bytes
bab905e
e57941b
 
 
 
 
2f0792c
e57941b
2f0792c
8c92d2d
e57941b
 
 
 
 
 
 
 
 
 
 
 
bb49125
23c403c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32ff1d9
23c403c
 
32ff1d9
23c403c
32ff1d9
 
bab905e
 
d54179d
bab905e
 
 
 
bb49125
bab905e
 
 
 
bb49125
bab905e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227298a
bab905e
 
e57941b
 
0b7f5e3
 
 
bab905e
227298a
bab905e
 
d54179d
e57941b
 
d54179d
e57941b
bab905e
32ff1d9
 
 
 
 
 
 
 
 
 
bb49125
bab905e
e57941b
bab905e
227298a
bab905e
e57941b
bab905e
227298a
bab905e
227298a
bab905e
 
 
0b7f5e3
 
 
bab905e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227298a
bab905e
 
 
 
 
 
 
 
 
 
bb49125
bab905e
d54179d
e57941b
 
 
 
 
 
bab905e
227298a
bab905e
227298a
e57941b
bab905e
227298a
bab905e
e57941b
227298a
bab905e
d54179d
e57941b
 
bab905e
227298a
bab905e
e57941b
bab905e
227298a
bab905e
e57941b
 
227298a
bab905e
e57941b
bab905e
227298a
bab905e
e57941b
bab905e
227298a
bab905e
e57941b
bab905e
227298a
bab905e
227298a
bab905e
e57941b
bab905e
227298a
bab905e
e57941b
bab905e
6467975
 
227298a
bab905e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e57941b
23c403c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
- found
language:
- fr
license:
- cc-by-nc-sa-3.0
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- original
task_categories:
- question-answering
- text-retrieval
task_ids:
- extractive-qa
- closed-domain-qa
paperswithcode_id: fquad
pretty_name: 'FQuAD: French Question Answering Dataset'
dataset_info:
  features:
  - name: context
    dtype: string
  - name: questions
    sequence: string
  - name: answers
    sequence:
    - name: texts
      dtype: string
    - name: answers_starts
      dtype: int32
  splits:
  - name: train
    num_bytes: 5898752
    num_examples: 4921
  - name: validation
    num_bytes: 1031456
    num_examples: 768
  download_size: 0
  dataset_size: 6930208
---

# Dataset Card for FQuAD

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://fquad.illuin.tech/](https://fquad.illuin.tech/)
- **Paper:**  [FQuAD: French Question Answering Dataset](https://arxiv.org/abs/2002.06071)
- **Point of Contact:** [https://www.illuin.tech/contact/](https://www.illuin.tech/contact/)
- **Size of downloaded dataset files:** 3.29 MB
- **Size of the generated dataset:** 6.94 MB
- **Total amount of disk used:** 10.23 MB

### Dataset Summary

FQuAD: French Question Answering Dataset
We introduce FQuAD, a native French Question Answering Dataset.

FQuAD contains 25,000+ question and answer pairs.
Finetuning CamemBERT on FQuAD yields a F1 score of 88% and an exact match of 77.9%.
Developped to provide a SQuAD equivalent in the French language. Questions are original and based on high quality Wikipedia articles.

Please, note this dataset is licensed for non-commercial purposes and users must agree to the following terms and conditions:
1. Use FQuAD only for internal research purposes.
2. Not make any copy except a safety one.
3. Not redistribute it (or part of it) in any way, even for free.
4. Not sell it or use it for any commercial purpose. Contact us for a possible commercial licence.
5. Mention the corpus origin and Illuin Technology in all publications about experiments using FQuAD.
6. Redistribute to Illuin Technology any improved or enriched version you could make of that corpus.

Request manually download of the data from: https://fquad.illuin.tech/

### Supported Tasks and Leaderboards

- `closed-domain-qa`, `text-retrieval`: This dataset is intended to be used for `closed-domain-qa`, but can also be used for information retrieval tasks.

### Languages

This dataset is exclusively in French, with context data from Wikipedia and questions from French university students (`fr`).

## Dataset Structure

### Data Instances

#### default

- **Size of downloaded dataset files:** 3.29 MB
- **Size of the generated dataset:** 6.94 MB
- **Total amount of disk used:** 10.23 MB

An example of 'validation' looks as follows.
```
This example was too long and was cropped:

{
    "answers": {
        "answers_starts": [161, 46, 204],
        "texts": ["La Vierge aux rochers", "documents contemporains", "objets de spéculations"]
    },
    "context": "\"Les deux tableaux sont certes décrits par des documents contemporains à leur création mais ceux-ci ne le font qu'indirectement ...",
    "questions": ["Que concerne principalement les documents ?", "Par quoi sont décrit les deux tableaux ?", "Quels types d'objets sont les deux tableaux aux yeux des chercheurs ?"]
}
```

### Data Fields

The data fields are the same among all splits.

#### default
- `context`: a `string` feature.
- `questions`: a `list` of `string` features.
- `answers`: a dictionary feature containing:
  - `texts`: a `string` feature.
  - `answers_starts`: a `int32` feature.

### Data Splits

The FQuAD dataset has 3 splits: _train_, _validation_, and _test_. The _test_ split is however not released publicly at the moment. The splits contain disjoint sets of articles. The following table contains stats about each split.

Dataset Split | Number of Articles in Split | Number of paragraphs in split | Number of questions in split
--------------|------------------------------|--------------------------|-------------------------
Train | 117 | 4921 | 20731
Validation | 768 | 51.0% | 3188
Test | 10 | 532 | 2189

## Dataset Creation

### Curation Rationale
  The FQuAD dataset was created by Illuin technology. It was developped to provide a SQuAD equivalent in the French language. Questions are original and based on high quality Wikipedia articles.

### Source Data

The text used for the contexts are from the curated list of French High-Quality Wikipedia [articles](https://fr.wikipedia.org/wiki/Cat%C3%A9gorie:Article_de_qualit%C3%A9).
### Annotations

Annotations (spans and questions) are written by students of the CentraleSupélec school of engineering.
Wikipedia articles were scraped and Illuin used an internally-developped tool to help annotators ask questions and indicate the answer spans.
Annotators were given paragraph sized contexts and asked to generate 4/5 non-trivial questions about information in the context.

### Personal and Sensitive Information

No personal or sensitive information is included in this dataset. This has been manually verified by the dataset curators.

## Considerations for Using the Data

Users should consider this dataset is sampled from Wikipedia data which might not be representative of all QA use cases.

### Social Impact of Dataset

The social biases of this dataset have not yet been investigated.

### Discussion of Biases

The social biases of this dataset have not yet been investigated, though articles have been selected by their quality and objectivity.

### Other Known Limitations

The limitations of the FQuAD dataset have not yet been investigated.

## Additional Information

### Dataset Curators

Illuin Technology:  [https://fquad.illuin.tech/](https://fquad.illuin.tech/)

### Licensing Information

The FQuAD dataset is licensed under the [CC BY-NC-SA 3.0](https://creativecommons.org/licenses/by-nc-sa/3.0/fr/) license.

It allows personal and academic research uses of the dataset, but not commercial uses. So concretely, the dataset cannot be used to train a model that is then put into production within a business or a company. For this type of commercial use, we invite FQuAD users to contact [the authors](https://www.illuin.tech/contact/) to discuss possible partnerships.

### Citation Information

```
@ARTICLE{2020arXiv200206071
       author = {Martin, d'Hoffschmidt and Maxime, Vidal and
         Wacim, Belblidia and Tom, Brendlé},
        title = "{FQuAD: French Question Answering Dataset}",
      journal = {arXiv e-prints},
     keywords = {Computer Science - Computation and Language},
         year = "2020",
        month = "Feb",
          eid = {arXiv:2002.06071},
        pages = {arXiv:2002.06071},
archivePrefix = {arXiv},
       eprint = {2002.06071},
 primaryClass = {cs.CL}
}

```


### Contributions

Thanks to [@thomwolf](https://github.com/thomwolf), [@mariamabarham](https://github.com/mariamabarham), [@patrickvonplaten](https://github.com/patrickvonplaten), [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
Thanks to [@ManuelFay](https://github.com/manuelfay) for providing information on the dataset creation process.