Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
10K - 100K
Tags:
sarcasm-detection
License:
File size: 6,435 Bytes
50822a7 6d7ecde 50822a7 6d7ecde 50822a7 4c890f2 6588357 2e5f1fb a100ad9 2e5f1fb a100ad9 2e5f1fb a100ad9 2e5f1fb a100ad9 2e5f1fb 557bf94 2e5f1fb 6d47201 557bf94 6d47201 557bf94 50822a7 c687597 50822a7 6588357 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- ar
license:
- mit
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- extended|other-semeval_2017
- extended|other-astd
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: ArSarcasm
tags:
- sarcasm-detection
dataset_info:
features:
- name: dialect
dtype:
class_label:
names:
'0': egypt
'1': gulf
'2': levant
'3': magreb
'4': msa
- name: sarcasm
dtype:
class_label:
names:
'0': non-sarcastic
'1': sarcastic
- name: sentiment
dtype:
class_label:
names:
'0': negative
'1': neutral
'2': positive
- name: original_sentiment
dtype:
class_label:
names:
'0': negative
'1': neutral
'2': positive
- name: tweet
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 1829159
num_examples: 8437
- name: test
num_bytes: 458210
num_examples: 2110
download_size: 1180619
dataset_size: 2287369
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
# Dataset Card for ArSarcasm
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [GitHub](https://github.com/iabufarha/ArSarcasm)
- **Paper:** https://www.aclweb.org/anthology/2020.osact-1.5/
### Dataset Summary
ArSarcasm is a new Arabic sarcasm detection dataset.
The dataset was created using previously available Arabic sentiment analysis
datasets ([SemEval 2017](https://www.aclweb.org/anthology/S17-2088.pdf)
and [ASTD](https://www.aclweb.org/anthology/D15-1299.pdf)) and adds sarcasm and
dialect labels to them.
The dataset contains 10,547 tweets, 1,682 (16%) of which are sarcastic.
For more details, please check the paper
[From Arabic Sentiment Analysis to Sarcasm Detection: The ArSarcasm Dataset](https://www.aclweb.org/anthology/2020.osact-1.5/)
### Supported Tasks and Leaderboards
You can get more information about an Arabic sarcasm tasks and leaderboard
[here](https://sites.google.com/view/ar-sarcasm-sentiment-detection/).
### Languages
Arabic (multiple dialects)
## Dataset Structure
### Data Instances
```javascript
{'dialect': 1, 'original_sentiment': 0, 'sarcasm': 0, 'sentiment': 0, 'source': 'semeval', 'tweet': 'نصيحه ما عمرك اتنزل لعبة سوبر ماريو مش زي ما كنّا متوقعين الله يرحم ايامات السيقا والفاميلي #SuperMarioRun'}
```
### Data Fields
- tweet: the original tweet text
- sarcasm: 0 for non-sarcastic, 1 for sarcastic
- sentiment: 0 for negative, 1 for neutral, 2 for positive
- original_sentiment: 0 for negative, 1 for neutral, 2 for positive
- source: the original source of tweet: SemEval or ASTD
- dialect: 0 for Egypt, 1 for Gulf, 2 for Levant, 3 for Magreb, 4 for Modern Standard Arabic (MSA)
### Data Splits
The training set contains 8,437 tweets, while the test set contains 2,110 tweets.
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The dataset was created using previously available Arabic sentiment analysis datasets (SemEval 2017 and ASTD) and adds sarcasm and dialect labels to them.
#### Who are the source language producers?
SemEval 2017 and ASTD
### Annotations
#### Annotation process
For the annotation process, we used Figure-Eight
crowdsourcing platform. Our main objective was to annotate the
data for sarcasm detection, but due to the challenges imposed by dialectal variations, we decided to add the annotation for dialects. We also include a new annotation for
sentiment labels in order to have a glimpse of the variability and subjectivity between different annotators. Thus, the
annotators were asked to provide three labels for each tweet
as the following:
- Sarcasm: sarcastic or non-sarcastic.
- Sentiment: positive, negative or neutral.
- Dialect: Egyptian, Gulf, Levantine, Maghrebi or Modern Standard Arabic (MSA).
#### Who are the annotators?
Figure-Eight crowdsourcing platform
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
- Ibrahim Abu-Farha
- Walid Magdy
### Licensing Information
MIT
### Citation Information
```
@inproceedings{abu-farha-magdy-2020-arabic,
title = "From {A}rabic Sentiment Analysis to Sarcasm Detection: The {A}r{S}arcasm Dataset",
author = "Abu Farha, Ibrahim and Magdy, Walid",
booktitle = "Proceedings of the 4th Workshop on Open-Source Arabic Corpora and Processing Tools, with a Shared Task on Offensive Language Detection",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Resource Association",
url = "https://www.aclweb.org/anthology/2020.osact-1.5",
pages = "32--39",
language = "English",
ISBN = "979-10-95546-51-1",
}
```
### Contributions
Thanks to [@mapmeld](https://github.com/mapmeld) for adding this dataset. |