source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(threshold_method, threshold_modifier, image, mask=None, labels=None,
threshold_range_min=None, threshold_range_max=None,
threshold_correction_factor=1.0, adaptive_window_size=10, **kwargs):
global_threshold = get_global_threshold(threshold_method, image, mask,
**kwargs)
global_threshold *= threshold_correction_factor
if not threshold_range_min is None:
global_threshold = max(global_threshold, threshold_range_min)
if not threshold_range_max is None:
global_threshold = min(global_threshold, threshold_range_max)
if threshold_modifier == TM_GLOBAL:
local_threshold = global_threshold
elif threshold_modifier == TM_ADAPTIVE:
local_threshold = get_adaptive_threshold(threshold_method, image,
global_threshold, mask, adaptive_window_size=
adaptive_window_size, **kwargs)
local_threshold = local_threshold * threshold_correction_factor
elif threshold_modifier == TM_PER_OBJECT:
local_threshold = get_per_object_threshold(threshold_method, image,
global_threshold, mask, labels, threshold_range_min,
threshold_range_max, **kwargs)
local_threshold = local_threshold * threshold_correction_factor
else:
raise NotImplementedError('%s thresholding is not implemented' %
threshold_modifier)
if isinstance(local_threshold, np.ndarray):
threshold_range_min = max(threshold_range_min, global_threshold * 0.7)
threshold_range_max = min(threshold_range_max, global_threshold * 1.5)
if not threshold_range_min is None:
local_threshold[local_threshold < threshold_range_min
] = threshold_range_min
if not threshold_range_max is None:
local_threshold[local_threshold > threshold_range_max
] = threshold_range_max
if threshold_modifier == TM_PER_OBJECT and labels is not None:
local_threshold[labels == 0] = 1.0
else:
if not threshold_range_min is None:
local_threshold = max(local_threshold, threshold_range_min)
if not threshold_range_max is None:
local_threshold = min(local_threshold, threshold_range_max)
return local_threshold, global_threshold
| get_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(threshold_method, threshold_modifier, image, mask=None, labels=None,\n threshold_range_min=None, threshold_range_max=None,\n threshold_correction_factor=1.0, adaptive_window_size=10, **kwargs):\n global_threshold = get_global_threshold(threshold_method, image, mask,\n **kwargs)\n global_threshold *= threshold_correction_factor\n if not threshold_range_min is None:\n global_threshold = max(global_threshold, threshold_range_min)\n if not threshold_range_max is None:\n global_threshold = min(global_threshold, threshold_range_max)\n if threshold_modifier == TM_GLOBAL:\n local_threshold = global_threshold\n elif threshold_modifier == TM_ADAPTIVE:\n local_threshold = get_adaptive_threshold(threshold_method, image,\n global_threshold, mask, adaptive_window_size=\n adaptive_window_size, **kwargs)\n local_threshold = local_threshold * threshold_correction_factor\n elif threshold_modifier == TM_PER_OBJECT:\n local_threshold = get_per_object_threshold(threshold_method, image,\n global_threshold, mask, labels, threshold_range_min,\n threshold_range_max, **kwargs)\n local_threshold = local_threshold * threshold_correction_factor\n else:\n raise NotImplementedError('%s thresholding is not implemented' %\n threshold_modifier)\n if isinstance(local_threshold, np.ndarray):\n threshold_range_min = max(threshold_range_min, global_threshold * 0.7)\n threshold_range_max = min(threshold_range_max, global_threshold * 1.5)\n if not threshold_range_min is None:\n local_threshold[local_threshold < threshold_range_min\n ] = threshold_range_min\n if not threshold_range_max is None:\n local_threshold[local_threshold > threshold_range_max\n ] = threshold_range_max\n if threshold_modifier == TM_PER_OBJECT and labels is not None:\n local_threshold[labels == 0] = 1.0\n else:\n if not threshold_range_min is None:\n local_threshold = max(local_threshold, threshold_range_min)\n if not threshold_range_max is None:\n local_threshold = min(local_threshold, threshold_range_max)\n return local_threshold, global_threshold\n",
"role": "user"
},
{
"content": "get_threshold",
"role": "assistant"
}
] |
def x(threshold_method, image, mask=None, **kwargs):
if mask is not None and not np.any(mask):
return 1
if threshold_method == TM_OTSU:
fn = get_otsu_threshold
elif threshold_method == TM_MOG:
fn = get_mog_threshold
elif threshold_method == TM_BACKGROUND:
fn = get_background_threshold
elif threshold_method == TM_ROBUST_BACKGROUND:
fn = get_robust_background_threshold
elif threshold_method == TM_RIDLER_CALVARD:
fn = get_ridler_calvard_threshold
elif threshold_method == TM_KAPUR:
fn = get_kapur_threshold
elif threshold_method == TM_MCT:
fn = get_maximum_correlation_threshold
else:
raise NotImplementedError('%s algorithm not implemented' %
threshold_method)
kwargs = dict([(k, v) for k, v in kwargs.items() if k in fn.args])
return fn(image, mask, **kwargs)
| get_global_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(threshold_method, image, mask=None, **kwargs):\n if mask is not None and not np.any(mask):\n return 1\n if threshold_method == TM_OTSU:\n fn = get_otsu_threshold\n elif threshold_method == TM_MOG:\n fn = get_mog_threshold\n elif threshold_method == TM_BACKGROUND:\n fn = get_background_threshold\n elif threshold_method == TM_ROBUST_BACKGROUND:\n fn = get_robust_background_threshold\n elif threshold_method == TM_RIDLER_CALVARD:\n fn = get_ridler_calvard_threshold\n elif threshold_method == TM_KAPUR:\n fn = get_kapur_threshold\n elif threshold_method == TM_MCT:\n fn = get_maximum_correlation_threshold\n else:\n raise NotImplementedError('%s algorithm not implemented' %\n threshold_method)\n kwargs = dict([(k, v) for k, v in kwargs.items() if k in fn.args])\n return fn(image, mask, **kwargs)\n",
"role": "user"
},
{
"content": "get_global_threshold",
"role": "assistant"
}
] |
def x(threshold_method, image, threshold, mask=None, adaptive_window_size=
10, **kwargs):
image_size = np.array(image.shape[:2], dtype=int)
nblocks = image_size // adaptive_window_size
increment = np.array(image_size, dtype=float) / np.array(nblocks, dtype
=float)
thresh_out = np.zeros(image_size, image.dtype)
block_threshold = np.zeros([nblocks[0], nblocks[1]])
for i in range(nblocks[0]):
i0 = int(i * increment[0])
i1 = int((i + 1) * increment[0])
for j in range(nblocks[1]):
j0 = int(j * increment[1])
j1 = int((j + 1) * increment[1])
block = image[i0:i1, j0:j1]
block_mask = None if mask is None else mask[i0:i1, j0:j1]
block_threshold[i, j] = get_global_threshold(threshold_method,
block, mask=block_mask, **kwargs)
spline_order = min(3, np.min(nblocks) - 1)
xStart = int(increment[0] / 2)
xEnd = int((nblocks[0] - 0.5) * increment[0])
yStart = int(increment[1] / 2)
yEnd = int((nblocks[1] - 0.5) * increment[1])
xtStart = 0.5
xtEnd = image.shape[0] - 0.5
ytStart = 0.5
ytEnd = image.shape[1] - 0.5
block_x_coords = np.linspace(xStart, xEnd, nblocks[0])
block_y_coords = np.linspace(yStart, yEnd, nblocks[1])
adaptive_interpolation = scipy.interpolate.RectBivariateSpline(
block_x_coords, block_y_coords, block_threshold, bbox=(xtStart,
xtEnd, ytStart, ytEnd), kx=spline_order, ky=spline_order)
thresh_out_x_coords = np.linspace(0.5, int(nblocks[0] * increment[0]) -
0.5, thresh_out.shape[0])
thresh_out_y_coords = np.linspace(0.5, int(nblocks[1] * increment[1]) -
0.5, thresh_out.shape[1])
thresh_out = adaptive_interpolation(thresh_out_x_coords,
thresh_out_y_coords)
return thresh_out
| get_adaptive_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(threshold_method, image, threshold, mask=None, adaptive_window_size=\n 10, **kwargs):\n image_size = np.array(image.shape[:2], dtype=int)\n nblocks = image_size // adaptive_window_size\n increment = np.array(image_size, dtype=float) / np.array(nblocks, dtype\n =float)\n thresh_out = np.zeros(image_size, image.dtype)\n block_threshold = np.zeros([nblocks[0], nblocks[1]])\n for i in range(nblocks[0]):\n i0 = int(i * increment[0])\n i1 = int((i + 1) * increment[0])\n for j in range(nblocks[1]):\n j0 = int(j * increment[1])\n j1 = int((j + 1) * increment[1])\n block = image[i0:i1, j0:j1]\n block_mask = None if mask is None else mask[i0:i1, j0:j1]\n block_threshold[i, j] = get_global_threshold(threshold_method,\n block, mask=block_mask, **kwargs)\n spline_order = min(3, np.min(nblocks) - 1)\n xStart = int(increment[0] / 2)\n xEnd = int((nblocks[0] - 0.5) * increment[0])\n yStart = int(increment[1] / 2)\n yEnd = int((nblocks[1] - 0.5) * increment[1])\n xtStart = 0.5\n xtEnd = image.shape[0] - 0.5\n ytStart = 0.5\n ytEnd = image.shape[1] - 0.5\n block_x_coords = np.linspace(xStart, xEnd, nblocks[0])\n block_y_coords = np.linspace(yStart, yEnd, nblocks[1])\n adaptive_interpolation = scipy.interpolate.RectBivariateSpline(\n block_x_coords, block_y_coords, block_threshold, bbox=(xtStart,\n xtEnd, ytStart, ytEnd), kx=spline_order, ky=spline_order)\n thresh_out_x_coords = np.linspace(0.5, int(nblocks[0] * increment[0]) -\n 0.5, thresh_out.shape[0])\n thresh_out_y_coords = np.linspace(0.5, int(nblocks[1] * increment[1]) -\n 0.5, thresh_out.shape[1])\n thresh_out = adaptive_interpolation(thresh_out_x_coords,\n thresh_out_y_coords)\n return thresh_out\n",
"role": "user"
},
{
"content": "get_adaptive_threshold",
"role": "assistant"
}
] |
def x(method, image, threshold, mask=None, labels=None, threshold_range_min
=None, threshold_range_max=None, **kwargs):
if labels is None:
labels = np.ones(image.shape, int)
if not mask is None:
labels[np.logical_not(mask)] = 0
label_extents = scipy.ndimage.find_objects(labels, np.max(labels))
local_threshold = np.ones(image.shape, image.dtype)
for i, extent in enumerate(label_extents, start=1):
label_mask = labels[extent] == i
if not mask is None:
label_mask = np.logical_and(mask[extent], label_mask)
values = image[extent]
per_object_threshold = get_global_threshold(method, values, mask=
label_mask, **kwargs)
local_threshold[extent][label_mask] = per_object_threshold
return local_threshold
| get_per_object_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(method, image, threshold, mask=None, labels=None, threshold_range_min\n =None, threshold_range_max=None, **kwargs):\n if labels is None:\n labels = np.ones(image.shape, int)\n if not mask is None:\n labels[np.logical_not(mask)] = 0\n label_extents = scipy.ndimage.find_objects(labels, np.max(labels))\n local_threshold = np.ones(image.shape, image.dtype)\n for i, extent in enumerate(label_extents, start=1):\n label_mask = labels[extent] == i\n if not mask is None:\n label_mask = np.logical_and(mask[extent], label_mask)\n values = image[extent]\n per_object_threshold = get_global_threshold(method, values, mask=\n label_mask, **kwargs)\n local_threshold[extent][label_mask] = per_object_threshold\n return local_threshold\n",
"role": "user"
},
{
"content": "get_per_object_threshold",
"role": "assistant"
}
] |
def x(image, mask=None, object_fraction=0.2):
cropped_image = np.array(image.flat) if mask is None else image[mask]
pixel_count = np.product(cropped_image.shape)
max_count = 512 ** 2
object_fraction = float(object_fraction)
background_fraction = 1.0 - object_fraction
if pixel_count < 3 / min(object_fraction, background_fraction):
return 1
if np.max(cropped_image) == np.min(cropped_image):
return cropped_image[0]
number_of_classes = 3
if pixel_count > max_count:
np.random.seed(0)
pixel_indices = np.random.permutation(pixel_count)[:max_count]
cropped_image = cropped_image[pixel_indices]
cropped_image.sort()
one_percent = (np.product(cropped_image.shape) + 99) // 100
cropped_image = cropped_image[one_percent:-one_percent]
pixel_count = np.product(cropped_image.shape)
bg_pixel = cropped_image[int(round(pixel_count * background_fraction /
2.0))]
fg_pixel = cropped_image[int(round(pixel_count * (1 - object_fraction /
2)))]
class_mean = np.array([bg_pixel, (bg_pixel + fg_pixel) / 2, fg_pixel])
class_std = np.ones((3,)) * 0.15
class_prob = np.array([3.0 / 4.0 * background_fraction, 1.0 / 4.0, 3.0 /
4.0 * object_fraction])
class_count = np.prod(class_mean.shape)
r = np.random.RandomState()
r.seed(np.frombuffer(cropped_image[:100].data, np.uint8).tolist())
for data in (r.permutation(cropped_image)[0:len(cropped_image) // 10],
cropped_image):
delta = 1
pixel_count = len(data)
while delta > 0.001:
old_class_mean = class_mean.copy()
pixel_class_prob = np.ndarray((pixel_count, class_count))
for k in range(class_count):
norm = scipy.stats.norm(class_mean[k], class_std[k])
pixel_class_prob[:, k] = class_prob[k] * norm.pdf(data)
pixel_class_normalizer = np.sum(pixel_class_prob, 1) + 1e-12
for k in range(class_count):
pixel_class_prob[:, k] = pixel_class_prob[:, k
] / pixel_class_normalizer
class_prob[k] = np.mean(pixel_class_prob[:, k])
class_mean[k] = np.sum(pixel_class_prob[:, k] * data) / (
class_prob[k] * pixel_count)
class_std[k] = math.sqrt(np.sum(pixel_class_prob[:, k] * (
data - class_mean[k]) ** 2) / (pixel_count * class_prob[k])
) + 1e-06
delta = np.sum(np.abs(old_class_mean - class_mean))
ndivisions = 10000
level = np.arange(ndivisions) * ((class_mean[2] - class_mean[0]) /
ndivisions) + class_mean[0]
class_gaussian = np.ndarray((ndivisions, class_count))
for k in range(class_count):
norm = scipy.stats.norm(class_mean[k], class_std[k])
class_gaussian[:, k] = class_prob[k] * norm.pdf(level)
if abs(class_prob[1] + class_prob[2] - object_fraction) < abs(
class_prob[2] - object_fraction):
background_distribution = class_gaussian[:, 0]
object_distribution = class_gaussian[:, 1] + class_gaussian[:, 2]
else:
background_distribution = class_gaussian[:, 0] + class_gaussian[:, 1]
object_distribution = class_gaussian[:, 2]
index = np.argmin(np.abs(background_distribution - object_distribution))
return level[index]
| get_mog_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, object_fraction=0.2):\n cropped_image = np.array(image.flat) if mask is None else image[mask]\n pixel_count = np.product(cropped_image.shape)\n max_count = 512 ** 2\n object_fraction = float(object_fraction)\n background_fraction = 1.0 - object_fraction\n if pixel_count < 3 / min(object_fraction, background_fraction):\n return 1\n if np.max(cropped_image) == np.min(cropped_image):\n return cropped_image[0]\n number_of_classes = 3\n if pixel_count > max_count:\n np.random.seed(0)\n pixel_indices = np.random.permutation(pixel_count)[:max_count]\n cropped_image = cropped_image[pixel_indices]\n cropped_image.sort()\n one_percent = (np.product(cropped_image.shape) + 99) // 100\n cropped_image = cropped_image[one_percent:-one_percent]\n pixel_count = np.product(cropped_image.shape)\n bg_pixel = cropped_image[int(round(pixel_count * background_fraction / \n 2.0))]\n fg_pixel = cropped_image[int(round(pixel_count * (1 - object_fraction /\n 2)))]\n class_mean = np.array([bg_pixel, (bg_pixel + fg_pixel) / 2, fg_pixel])\n class_std = np.ones((3,)) * 0.15\n class_prob = np.array([3.0 / 4.0 * background_fraction, 1.0 / 4.0, 3.0 /\n 4.0 * object_fraction])\n class_count = np.prod(class_mean.shape)\n r = np.random.RandomState()\n r.seed(np.frombuffer(cropped_image[:100].data, np.uint8).tolist())\n for data in (r.permutation(cropped_image)[0:len(cropped_image) // 10],\n cropped_image):\n delta = 1\n pixel_count = len(data)\n while delta > 0.001:\n old_class_mean = class_mean.copy()\n pixel_class_prob = np.ndarray((pixel_count, class_count))\n for k in range(class_count):\n norm = scipy.stats.norm(class_mean[k], class_std[k])\n pixel_class_prob[:, k] = class_prob[k] * norm.pdf(data)\n pixel_class_normalizer = np.sum(pixel_class_prob, 1) + 1e-12\n for k in range(class_count):\n pixel_class_prob[:, k] = pixel_class_prob[:, k\n ] / pixel_class_normalizer\n class_prob[k] = np.mean(pixel_class_prob[:, k])\n class_mean[k] = np.sum(pixel_class_prob[:, k] * data) / (\n class_prob[k] * pixel_count)\n class_std[k] = math.sqrt(np.sum(pixel_class_prob[:, k] * (\n data - class_mean[k]) ** 2) / (pixel_count * class_prob[k])\n ) + 1e-06\n delta = np.sum(np.abs(old_class_mean - class_mean))\n ndivisions = 10000\n level = np.arange(ndivisions) * ((class_mean[2] - class_mean[0]) /\n ndivisions) + class_mean[0]\n class_gaussian = np.ndarray((ndivisions, class_count))\n for k in range(class_count):\n norm = scipy.stats.norm(class_mean[k], class_std[k])\n class_gaussian[:, k] = class_prob[k] * norm.pdf(level)\n if abs(class_prob[1] + class_prob[2] - object_fraction) < abs(\n class_prob[2] - object_fraction):\n background_distribution = class_gaussian[:, 0]\n object_distribution = class_gaussian[:, 1] + class_gaussian[:, 2]\n else:\n background_distribution = class_gaussian[:, 0] + class_gaussian[:, 1]\n object_distribution = class_gaussian[:, 2]\n index = np.argmin(np.abs(background_distribution - object_distribution))\n return level[index]\n",
"role": "user"
},
{
"content": "get_mog_threshold",
"role": "assistant"
}
] |
def x(image, mask=None):
cropped_image = np.array(image.flat) if mask is None else image[mask]
if np.product(cropped_image.shape) == 0:
return 0
img_min = np.min(cropped_image)
img_max = np.max(cropped_image)
if img_min == img_max:
return cropped_image[0]
robust_min = 0.02 * (img_max - img_min) + img_min
robust_max = 0.98 * (img_max - img_min) + img_min
nbins = 256
cropped_image = cropped_image[np.logical_and(cropped_image > robust_min,
cropped_image < robust_max)]
if len(cropped_image) == 0:
return robust_min
h = scipy.ndimage.histogram(cropped_image, robust_min, robust_max, nbins)
index = np.argmax(h)
cutoff = float(index) / float(nbins - 1)
cutoff = (cutoff + 0.02) / 1.04
return img_min + cutoff * 2 * (img_max - img_min)
| get_background_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n cropped_image = np.array(image.flat) if mask is None else image[mask]\n if np.product(cropped_image.shape) == 0:\n return 0\n img_min = np.min(cropped_image)\n img_max = np.max(cropped_image)\n if img_min == img_max:\n return cropped_image[0]\n robust_min = 0.02 * (img_max - img_min) + img_min\n robust_max = 0.98 * (img_max - img_min) + img_min\n nbins = 256\n cropped_image = cropped_image[np.logical_and(cropped_image > robust_min,\n cropped_image < robust_max)]\n if len(cropped_image) == 0:\n return robust_min\n h = scipy.ndimage.histogram(cropped_image, robust_min, robust_max, nbins)\n index = np.argmax(h)\n cutoff = float(index) / float(nbins - 1)\n cutoff = (cutoff + 0.02) / 1.04\n return img_min + cutoff * 2 * (img_max - img_min)\n",
"role": "user"
},
{
"content": "get_background_threshold",
"role": "assistant"
}
] |
def x(image, mask=None, lower_outlier_fraction=0.05, upper_outlier_fraction
=0.05, deviations_above_average=2.0, average_fn=np.mean, variance_fn=np.std
):
cropped_image = np.array(image.flat) if mask is None else image[mask]
n_pixels = np.product(cropped_image.shape)
if n_pixels < 3:
return 0
cropped_image.sort()
if cropped_image[0] == cropped_image[-1]:
return cropped_image[0]
low_chop = int(round(n_pixels * lower_outlier_fraction))
hi_chop = n_pixels - int(round(n_pixels * upper_outlier_fraction))
im = cropped_image if low_chop == 0 else cropped_image[low_chop:hi_chop]
mean = average_fn(im)
sd = variance_fn(im)
return mean + sd * deviations_above_average
| get_robust_background_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, lower_outlier_fraction=0.05, upper_outlier_fraction\n =0.05, deviations_above_average=2.0, average_fn=np.mean, variance_fn=np.std\n ):\n cropped_image = np.array(image.flat) if mask is None else image[mask]\n n_pixels = np.product(cropped_image.shape)\n if n_pixels < 3:\n return 0\n cropped_image.sort()\n if cropped_image[0] == cropped_image[-1]:\n return cropped_image[0]\n low_chop = int(round(n_pixels * lower_outlier_fraction))\n hi_chop = n_pixels - int(round(n_pixels * upper_outlier_fraction))\n im = cropped_image if low_chop == 0 else cropped_image[low_chop:hi_chop]\n mean = average_fn(im)\n sd = variance_fn(im)\n return mean + sd * deviations_above_average\n",
"role": "user"
},
{
"content": "get_robust_background_threshold",
"role": "assistant"
}
] |
def x(a):
a = np.asfarray(a).flatten()
return np.median(np.abs(a - np.median(a)))
| mad | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n a = np.asfarray(a).flatten()\n return np.median(np.abs(a - np.median(a)))\n",
"role": "user"
},
{
"content": "mad",
"role": "assistant"
}
] |
def x(a):
a = np.asarray(a).flatten()
a_min = np.min(a)
a_max = np.max(a)
n_bins = np.ceil(np.sqrt(len(a)))
b = ((a - a_min) / (a_max - a_min) * n_bins).astype(int)
idx = np.argmax(np.bincount(b))
return np.percentile(a, 100 * float(idx + 0.5) / n_bins)
| binned_mode | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n a = np.asarray(a).flatten()\n a_min = np.min(a)\n a_max = np.max(a)\n n_bins = np.ceil(np.sqrt(len(a)))\n b = ((a - a_min) / (a_max - a_min) * n_bins).astype(int)\n idx = np.argmax(np.bincount(b))\n return np.percentile(a, 100 * float(idx + 0.5) / n_bins)\n",
"role": "user"
},
{
"content": "binned_mode",
"role": "assistant"
}
] |
def x(image, mask=None):
cropped_image = np.array(image.flat) if mask is None else image[mask]
if np.product(cropped_image.shape) < 3:
return 0
if np.min(cropped_image) == np.max(cropped_image):
return cropped_image[0]
min_val = np.max(cropped_image) / 256
cropped_image[cropped_image < min_val] = min_val
im = np.log(cropped_image)
min_val = np.min(im)
max_val = np.max(im)
im = (im - min_val) / (max_val - min_val)
pre_thresh = 0
new_thresh = otsu(im)
delta = 1e-05
while abs(pre_thresh - new_thresh) > delta:
pre_thresh = new_thresh
mean1 = np.mean(im[im < pre_thresh])
mean2 = np.mean(im[im >= pre_thresh])
new_thresh = np.mean([mean1, mean2])
return math.exp(min_val + (max_val - min_val) * new_thresh)
| get_ridler_calvard_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n cropped_image = np.array(image.flat) if mask is None else image[mask]\n if np.product(cropped_image.shape) < 3:\n return 0\n if np.min(cropped_image) == np.max(cropped_image):\n return cropped_image[0]\n min_val = np.max(cropped_image) / 256\n cropped_image[cropped_image < min_val] = min_val\n im = np.log(cropped_image)\n min_val = np.min(im)\n max_val = np.max(im)\n im = (im - min_val) / (max_val - min_val)\n pre_thresh = 0\n new_thresh = otsu(im)\n delta = 1e-05\n while abs(pre_thresh - new_thresh) > delta:\n pre_thresh = new_thresh\n mean1 = np.mean(im[im < pre_thresh])\n mean2 = np.mean(im[im >= pre_thresh])\n new_thresh = np.mean([mean1, mean2])\n return math.exp(min_val + (max_val - min_val) * new_thresh)\n",
"role": "user"
},
{
"content": "get_ridler_calvard_threshold",
"role": "assistant"
}
] |
def x(image, mask=None):
cropped_image = np.array(image.flat) if mask is None else image[mask]
if np.product(cropped_image.shape) < 3:
return 0
if np.min(cropped_image) == np.max(cropped_image):
return cropped_image[0]
log_image = np.log2(smooth_with_noise(cropped_image, 8))
min_log_image = np.min(log_image)
max_log_image = np.max(log_image)
histogram = scipy.ndimage.histogram(log_image, min_log_image,
max_log_image, 256)
histogram_values = min_log_image + (max_log_image - min_log_image
) * np.arange(256, dtype=float) / 255
keep = histogram != 0
histogram = histogram[keep]
histogram_values = histogram_values[keep]
if np.product(histogram_values) == 1:
return 2 ** histogram_values[0]
p = histogram.astype(float) / float(np.sum(histogram))
lo_sum = np.cumsum(p)
hi_sum = lo_sum[-1] - lo_sum
lo_e = np.cumsum(p * np.log2(p))
hi_e = lo_e[-1] - lo_e
lo_entropy = lo_e / lo_sum - np.log2(lo_sum)
hi_entropy = hi_e / hi_sum - np.log2(hi_sum)
sum_entropy = lo_entropy[:-1] + hi_entropy[:-1]
sum_entropy[np.logical_not(np.isfinite(sum_entropy))] = np.Inf
entry = np.argmin(sum_entropy)
return 2 ** ((histogram_values[entry] + histogram_values[entry + 1]) / 2)
| get_kapur_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n cropped_image = np.array(image.flat) if mask is None else image[mask]\n if np.product(cropped_image.shape) < 3:\n return 0\n if np.min(cropped_image) == np.max(cropped_image):\n return cropped_image[0]\n log_image = np.log2(smooth_with_noise(cropped_image, 8))\n min_log_image = np.min(log_image)\n max_log_image = np.max(log_image)\n histogram = scipy.ndimage.histogram(log_image, min_log_image,\n max_log_image, 256)\n histogram_values = min_log_image + (max_log_image - min_log_image\n ) * np.arange(256, dtype=float) / 255\n keep = histogram != 0\n histogram = histogram[keep]\n histogram_values = histogram_values[keep]\n if np.product(histogram_values) == 1:\n return 2 ** histogram_values[0]\n p = histogram.astype(float) / float(np.sum(histogram))\n lo_sum = np.cumsum(p)\n hi_sum = lo_sum[-1] - lo_sum\n lo_e = np.cumsum(p * np.log2(p))\n hi_e = lo_e[-1] - lo_e\n lo_entropy = lo_e / lo_sum - np.log2(lo_sum)\n hi_entropy = hi_e / hi_sum - np.log2(hi_sum)\n sum_entropy = lo_entropy[:-1] + hi_entropy[:-1]\n sum_entropy[np.logical_not(np.isfinite(sum_entropy))] = np.Inf\n entry = np.argmin(sum_entropy)\n return 2 ** ((histogram_values[entry] + histogram_values[entry + 1]) / 2)\n",
"role": "user"
},
{
"content": "get_kapur_threshold",
"role": "assistant"
}
] |
def x(image, mask=None, bins=256):
if mask is not None:
image = image[mask]
image = image.ravel()
nm = len(image)
if nm == 0:
return 0
min_value = np.min(image)
max_value = np.max(image)
if min_value == max_value:
return min_value
image = ((image - min_value) * (bins - 1) / (max_value - min_value)
).astype(int)
histogram = np.bincount(image)
mean_value = np.mean(image)
diff = np.arange(len(histogram)) - mean_value
diff2 = diff * diff
ndiff = histogram * diff
ndiff2 = histogram * diff2
sndiff2 = np.sum(ndiff2)
cndiff = np.cumsum(ndiff)
numerator = np.hstack([[cndiff[-1]], cndiff[-1] - cndiff[:-1]])
ni = nm - np.hstack([[0], np.cumsum(histogram[:-1])])
denominator = np.sqrt(sndiff2 * (nm - ni) * ni / nm)
mct = numerator / denominator
mct[denominator == 0] = 0
my_bin = np.argmax(mct) - 1
return min_value + my_bin * (max_value - min_value) / (bins - 1)
| get_maximum_correlation_threshold | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, bins=256):\n if mask is not None:\n image = image[mask]\n image = image.ravel()\n nm = len(image)\n if nm == 0:\n return 0\n min_value = np.min(image)\n max_value = np.max(image)\n if min_value == max_value:\n return min_value\n image = ((image - min_value) * (bins - 1) / (max_value - min_value)\n ).astype(int)\n histogram = np.bincount(image)\n mean_value = np.mean(image)\n diff = np.arange(len(histogram)) - mean_value\n diff2 = diff * diff\n ndiff = histogram * diff\n ndiff2 = histogram * diff2\n sndiff2 = np.sum(ndiff2)\n cndiff = np.cumsum(ndiff)\n numerator = np.hstack([[cndiff[-1]], cndiff[-1] - cndiff[:-1]])\n ni = nm - np.hstack([[0], np.cumsum(histogram[:-1])])\n denominator = np.sqrt(sndiff2 * (nm - ni) * ni / nm)\n mct = numerator / denominator\n mct[denominator == 0] = 0\n my_bin = np.argmax(mct) - 1\n return min_value + my_bin * (max_value - min_value) / (bins - 1)\n",
"role": "user"
},
{
"content": "get_maximum_correlation_threshold",
"role": "assistant"
}
] |
def x(image, mask, binary_image):
if not np.any(mask):
return 0
minval = np.max(image[mask]) / 256
if minval == 0:
return 0
fg = np.log2(np.maximum(image[binary_image & mask], minval))
bg = np.log2(np.maximum(image[~binary_image & mask], minval))
nfg = np.product(fg.shape)
nbg = np.product(bg.shape)
if nfg == 0:
return np.var(bg)
elif nbg == 0:
return np.var(fg)
else:
return (np.var(fg) * nfg + np.var(bg) * nbg) / (nfg + nbg)
| weighted_variance | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, binary_image):\n if not np.any(mask):\n return 0\n minval = np.max(image[mask]) / 256\n if minval == 0:\n return 0\n fg = np.log2(np.maximum(image[binary_image & mask], minval))\n bg = np.log2(np.maximum(image[~binary_image & mask], minval))\n nfg = np.product(fg.shape)\n nbg = np.product(bg.shape)\n if nfg == 0:\n return np.var(bg)\n elif nbg == 0:\n return np.var(fg)\n else:\n return (np.var(fg) * nfg + np.var(bg) * nbg) / (nfg + nbg)\n",
"role": "user"
},
{
"content": "weighted_variance",
"role": "assistant"
}
] |
def x(image, mask, binary_image):
mask = mask.copy()
mask[np.isnan(image)] = False
if not np.any(mask):
return 0
minval = np.max(image[mask]) / 256
if minval == 0:
return 0
clamped_image = image.copy()
clamped_image[clamped_image < minval] = minval
image = smooth_with_noise(clamped_image, 8)
im_min = np.min(image)
im_max = np.max(image)
upper = np.log2(im_max)
lower = np.log2(im_min)
if upper == lower:
return math.log(np.sum(mask), 2)
fg = image[binary_image & mask]
bg = image[~binary_image & mask]
if len(fg) == 0 or len(bg) == 0:
return 0
log_fg = np.log2(fg)
log_bg = np.log2(bg)
hfg = numpy_histogram(log_fg, 256, range=(lower, upper))[0]
hbg = numpy_histogram(log_bg, 256, range=(lower, upper))[0]
hfg = hfg[hfg > 0]
hbg = hbg[hbg > 0]
if np.product(hfg.shape) == 0:
hfg = np.ones((1,), int)
if np.product(hbg.shape) == 0:
hbg = np.ones((1,), int)
hfg = hfg.astype(float) / float(np.sum(hfg))
hbg = hbg.astype(float) / float(np.sum(hbg))
return np.sum(hfg * np.log2(hfg)) + np.sum(hbg * np.log2(hbg))
| sum_of_entropies | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, binary_image):\n mask = mask.copy()\n mask[np.isnan(image)] = False\n if not np.any(mask):\n return 0\n minval = np.max(image[mask]) / 256\n if minval == 0:\n return 0\n clamped_image = image.copy()\n clamped_image[clamped_image < minval] = minval\n image = smooth_with_noise(clamped_image, 8)\n im_min = np.min(image)\n im_max = np.max(image)\n upper = np.log2(im_max)\n lower = np.log2(im_min)\n if upper == lower:\n return math.log(np.sum(mask), 2)\n fg = image[binary_image & mask]\n bg = image[~binary_image & mask]\n if len(fg) == 0 or len(bg) == 0:\n return 0\n log_fg = np.log2(fg)\n log_bg = np.log2(bg)\n hfg = numpy_histogram(log_fg, 256, range=(lower, upper))[0]\n hbg = numpy_histogram(log_bg, 256, range=(lower, upper))[0]\n hfg = hfg[hfg > 0]\n hbg = hbg[hbg > 0]\n if np.product(hfg.shape) == 0:\n hfg = np.ones((1,), int)\n if np.product(hbg.shape) == 0:\n hbg = np.ones((1,), int)\n hfg = hfg.astype(float) / float(np.sum(hfg))\n hbg = hbg.astype(float) / float(np.sum(hbg))\n return np.sum(hfg * np.log2(hfg)) + np.sum(hbg * np.log2(hbg))\n",
"role": "user"
},
{
"content": "sum_of_entropies",
"role": "assistant"
}
] |
def x(image):
orig_min, orig_max = scipy.ndimage.extrema(image)[:2]
limage = image.copy()
noise_min = orig_min + (orig_max - orig_min) / 256.0 + np.finfo(image.dtype
).eps
limage[limage < noise_min] = noise_min
d = {'noise_min': noise_min}
limage = np.log(limage)
log_min, log_max = scipy.ndimage.extrema(limage)[:2]
d['log_min'] = log_min
d['log_max'] = log_max
return stretch(limage), d
| log_transform | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image):\n orig_min, orig_max = scipy.ndimage.extrema(image)[:2]\n limage = image.copy()\n noise_min = orig_min + (orig_max - orig_min) / 256.0 + np.finfo(image.dtype\n ).eps\n limage[limage < noise_min] = noise_min\n d = {'noise_min': noise_min}\n limage = np.log(limage)\n log_min, log_max = scipy.ndimage.extrema(limage)[:2]\n d['log_min'] = log_min\n d['log_max'] = log_max\n return stretch(limage), d\n",
"role": "user"
},
{
"content": "log_transform",
"role": "assistant"
}
] |
def x(a, bins=10, range=None, normed=False, weights=None):
args = inspect.getargs(np.histogram.__code__)[0]
if args[-1] == 'new':
return np.histogram(a, bins, range, normed, weights, new=True)
return np.histogram(a, bins, range, normed, weights)
| numpy_histogram | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a, bins=10, range=None, normed=False, weights=None):\n args = inspect.getargs(np.histogram.__code__)[0]\n if args[-1] == 'new':\n return np.histogram(a, bins, range, normed, weights, new=True)\n return np.histogram(a, bins, range, normed, weights)\n",
"role": "user"
},
{
"content": "numpy_histogram",
"role": "assistant"
}
] |
def x(image, nbins=None):
flat_image = image.ravel()
sort_order = flat_image.argsort().astype(np.uint32)
flat_image = flat_image[sort_order]
sort_rank = np.zeros_like(sort_order)
is_different = flat_image[:-1] != flat_image[1:]
np.cumsum(is_different, out=sort_rank[1:])
original_values = np.zeros((sort_rank[-1] + 1,), image.dtype)
original_values[0] = flat_image[0]
original_values[1:] = flat_image[1:][is_different]
int_image = np.zeros_like(sort_order)
int_image[sort_order] = sort_rank
if nbins is not None:
max_ranked_data = np.max(int_image)
while max_ranked_data >= nbins:
hist = np.bincount(int_image)
order = np.argsort(hist)
candidates = order[:max_ranked_data + 2 - nbins]
to_delete = np.zeros(max_ranked_data + 2, bool)
to_delete[candidates] = True
td_mask = to_delete[:-1] & ((np.arange(max_ranked_data + 1) & 2 ==
0) | ~to_delete[1:])
if td_mask[0]:
td_mask[0] = False
rd_translation = np.cumsum(~td_mask) - 1
int_image = rd_translation[int_image]
original_values = original_values[~td_mask]
max_ranked_data = len(original_values) - 1
return int_image.reshape(image.shape), original_values
| rank_order | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, nbins=None):\n flat_image = image.ravel()\n sort_order = flat_image.argsort().astype(np.uint32)\n flat_image = flat_image[sort_order]\n sort_rank = np.zeros_like(sort_order)\n is_different = flat_image[:-1] != flat_image[1:]\n np.cumsum(is_different, out=sort_rank[1:])\n original_values = np.zeros((sort_rank[-1] + 1,), image.dtype)\n original_values[0] = flat_image[0]\n original_values[1:] = flat_image[1:][is_different]\n int_image = np.zeros_like(sort_order)\n int_image[sort_order] = sort_rank\n if nbins is not None:\n max_ranked_data = np.max(int_image)\n while max_ranked_data >= nbins:\n hist = np.bincount(int_image)\n order = np.argsort(hist)\n candidates = order[:max_ranked_data + 2 - nbins]\n to_delete = np.zeros(max_ranked_data + 2, bool)\n to_delete[candidates] = True\n td_mask = to_delete[:-1] & ((np.arange(max_ranked_data + 1) & 2 ==\n 0) | ~to_delete[1:])\n if td_mask[0]:\n td_mask[0] = False\n rd_translation = np.cumsum(~td_mask) - 1\n int_image = rd_translation[int_image]\n original_values = original_values[~td_mask]\n max_ranked_data = len(original_values) - 1\n return int_image.reshape(image.shape), original_values\n",
"role": "user"
},
{
"content": "rank_order",
"role": "assistant"
}
] |
def x(image, labels):
nobjects = labels.max()
objects = np.arange(nobjects + 1)
lmin, lmax = scind.extrema(image, labels, objects)[:2]
divisor = np.ones((nobjects + 1,))
divisor[lmax > lmin] = (lmax - lmin)[lmax > lmin]
return (image - lmin[labels]) / divisor[labels]
| normalized_per_object | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels):\n nobjects = labels.max()\n objects = np.arange(nobjects + 1)\n lmin, lmax = scind.extrema(image, labels, objects)[:2]\n divisor = np.ones((nobjects + 1,))\n divisor[lmax > lmin] = (lmax - lmin)[lmax > lmin]\n return (image - lmin[labels]) / divisor[labels]\n",
"role": "user"
},
{
"content": "normalized_per_object",
"role": "assistant"
}
] |
def x(image, nlevels):
tmp = np.array(image // (1.0 / nlevels), dtype='i1')
return tmp.clip(0, nlevels - 1)
| quantize | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, nlevels):\n tmp = np.array(image // (1.0 / nlevels), dtype='i1')\n return tmp.clip(0, nlevels - 1)\n",
"role": "user"
},
{
"content": "quantize",
"role": "assistant"
}
] |
def x(quantized_image, labels, scale_i=3, scale_j=0):
labels = labels.astype(int)
nlevels = quantized_image.max() + 1
nobjects = labels.max()
if scale_i < 0:
scale_i = -scale_i
scale_j = -scale_j
if scale_i == 0 and scale_j > 0:
image_a = quantized_image[:, :-scale_j]
image_b = quantized_image[:, scale_j:]
labels_ab = labels_a = labels[:, :-scale_j]
labels_b = labels[:, scale_j:]
elif scale_i > 0 and scale_j == 0:
image_a = quantized_image[:-scale_i, :]
image_b = quantized_image[scale_i:, :]
labels_ab = labels_a = labels[:-scale_i, :]
labels_b = labels[scale_i:, :]
elif scale_i > 0 and scale_j > 0:
image_a = quantized_image[:-scale_i, :-scale_j]
image_b = quantized_image[scale_i:, scale_j:]
labels_ab = labels_a = labels[:-scale_i, :-scale_j]
labels_b = labels[scale_i:, scale_j:]
else:
image_a = quantized_image[:-scale_i, -scale_j:]
image_b = quantized_image[scale_i:, :scale_j]
labels_ab = labels_a = labels[:-scale_i, -scale_j:]
labels_b = labels[scale_i:, :scale_j]
equilabel = (labels_a == labels_b) & (labels_a > 0)
if np.any(equilabel):
Q = nlevels * nlevels * (labels_ab[equilabel] - 1) + nlevels * image_a[
equilabel] + image_b[equilabel]
R = np.bincount(Q)
if R.size != nobjects * nlevels * nlevels:
S = np.zeros(nobjects * nlevels * nlevels - R.size)
R = np.hstack((R, S))
P = R.reshape(nobjects, nlevels, nlevels)
pixel_count = fix(scind.sum(equilabel, labels_ab, np.arange(
nobjects, dtype=np.int32) + 1))
pixel_count = np.tile(pixel_count[:, np.newaxis, np.newaxis], (1,
nlevels, nlevels))
return P.astype(float) / pixel_count.astype(float), nlevels
else:
return np.zeros((nobjects, nlevels, nlevels)), nlevels
| cooccurrence | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(quantized_image, labels, scale_i=3, scale_j=0):\n labels = labels.astype(int)\n nlevels = quantized_image.max() + 1\n nobjects = labels.max()\n if scale_i < 0:\n scale_i = -scale_i\n scale_j = -scale_j\n if scale_i == 0 and scale_j > 0:\n image_a = quantized_image[:, :-scale_j]\n image_b = quantized_image[:, scale_j:]\n labels_ab = labels_a = labels[:, :-scale_j]\n labels_b = labels[:, scale_j:]\n elif scale_i > 0 and scale_j == 0:\n image_a = quantized_image[:-scale_i, :]\n image_b = quantized_image[scale_i:, :]\n labels_ab = labels_a = labels[:-scale_i, :]\n labels_b = labels[scale_i:, :]\n elif scale_i > 0 and scale_j > 0:\n image_a = quantized_image[:-scale_i, :-scale_j]\n image_b = quantized_image[scale_i:, scale_j:]\n labels_ab = labels_a = labels[:-scale_i, :-scale_j]\n labels_b = labels[scale_i:, scale_j:]\n else:\n image_a = quantized_image[:-scale_i, -scale_j:]\n image_b = quantized_image[scale_i:, :scale_j]\n labels_ab = labels_a = labels[:-scale_i, -scale_j:]\n labels_b = labels[scale_i:, :scale_j]\n equilabel = (labels_a == labels_b) & (labels_a > 0)\n if np.any(equilabel):\n Q = nlevels * nlevels * (labels_ab[equilabel] - 1) + nlevels * image_a[\n equilabel] + image_b[equilabel]\n R = np.bincount(Q)\n if R.size != nobjects * nlevels * nlevels:\n S = np.zeros(nobjects * nlevels * nlevels - R.size)\n R = np.hstack((R, S))\n P = R.reshape(nobjects, nlevels, nlevels)\n pixel_count = fix(scind.sum(equilabel, labels_ab, np.arange(\n nobjects, dtype=np.int32) + 1))\n pixel_count = np.tile(pixel_count[:, np.newaxis, np.newaxis], (1,\n nlevels, nlevels))\n return P.astype(float) / pixel_count.astype(float), nlevels\n else:\n return np.zeros((nobjects, nlevels, nlevels)), nlevels\n",
"role": "user"
},
{
"content": "cooccurrence",
"role": "assistant"
}
] |
def x(self):
multiplied = np.dot(self.levels[:, np.newaxis] + 1, self.levels[np.
newaxis] + 1)
repeated = np.tile(multiplied[np.newaxis], (self.nobjects, 1, 1))
summed = (repeated * self.P).sum(2).sum(1)
h3 = (summed - self.mux * self.muy) / (self.sigmax * self.sigmay)
h3[np.isinf(h3)] = 0
return h3
| H3 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n multiplied = np.dot(self.levels[:, np.newaxis] + 1, self.levels[np.\n newaxis] + 1)\n repeated = np.tile(multiplied[np.newaxis], (self.nobjects, 1, 1))\n summed = (repeated * self.P).sum(2).sum(1)\n h3 = (summed - self.mux * self.muy) / (self.sigmax * self.sigmay)\n h3[np.isinf(h3)] = 0\n return h3\n",
"role": "user"
},
{
"content": "H3",
"role": "assistant"
}
] |
def x(self):
t = 1 + toeplitz(self.levels) ** 2
repeated = np.tile(t[np.newaxis], (self.nobjects, 1, 1))
return (1.0 / repeated * self.P).sum(2).sum(1)
| H5 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n t = 1 + toeplitz(self.levels) ** 2\n repeated = np.tile(t[np.newaxis], (self.nobjects, 1, 1))\n return (1.0 / repeated * self.P).sum(2).sum(1)\n",
"role": "user"
},
{
"content": "H5",
"role": "assistant"
}
] |
def x(self):
if not hasattr(self, '_H6'):
self._H6 = ((self.rlevels2 + 2) * self.p_xplusy).sum(1)
return self._H6
| H6 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not hasattr(self, '_H6'):\n self._H6 = ((self.rlevels2 + 2) * self.p_xplusy).sum(1)\n return self._H6\n",
"role": "user"
},
{
"content": "H6",
"role": "assistant"
}
] |
def x(self):
h6 = np.tile(self.H6(), (self.rlevels2.shape[1], 1)).transpose()
return ((self.rlevels2 + 2 - h6) ** 2 * self.p_xplusy).sum(1)
| H7 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n h6 = np.tile(self.H6(), (self.rlevels2.shape[1], 1)).transpose()\n return ((self.rlevels2 + 2 - h6) ** 2 * self.p_xplusy).sum(1)\n",
"role": "user"
},
{
"content": "H7",
"role": "assistant"
}
] |
def x(self):
return -(self.p_xplusy * np.log(self.p_xplusy + self.eps)).sum(1)
| H8 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return -(self.p_xplusy * np.log(self.p_xplusy + self.eps)).sum(1)\n",
"role": "user"
},
{
"content": "H8",
"role": "assistant"
}
] |
def x(self):
if not hasattr(self, '_H9'):
self._H9 = -(self.P * np.log(self.P + self.eps)).sum(2).sum(1)
return self._H9
| H9 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not hasattr(self, '_H9'):\n self._H9 = -(self.P * np.log(self.P + self.eps)).sum(2).sum(1)\n return self._H9\n",
"role": "user"
},
{
"content": "H9",
"role": "assistant"
}
] |
def x(self):
c = (self.rlevels * self.p_xminusy).sum(1)
c1 = np.tile(c, (self.nlevels, 1)).transpose()
e = self.rlevels - c1
return (self.p_xminusy * e ** 2).sum(1)
| H10 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n c = (self.rlevels * self.p_xminusy).sum(1)\n c1 = np.tile(c, (self.nlevels, 1)).transpose()\n e = self.rlevels - c1\n return (self.p_xminusy * e ** 2).sum(1)\n",
"role": "user"
},
{
"content": "H10",
"role": "assistant"
}
] |
def x(self):
return -(self.p_xminusy * np.log(self.p_xminusy + self.eps)).sum(1)
| H11 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return -(self.p_xminusy * np.log(self.p_xminusy + self.eps)).sum(1)\n",
"role": "user"
},
{
"content": "H11",
"role": "assistant"
}
] |
def x(self):
maxima = np.vstack((self.hx, self.hy)).max(0)
return (self.H9() - self.hxy1) / maxima
| H12 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n maxima = np.vstack((self.hx, self.hy)).max(0)\n return (self.H9() - self.hxy1) / maxima\n",
"role": "user"
},
{
"content": "H12",
"role": "assistant"
}
] |
def x(self):
return np.sqrt(1 - np.exp(-2 * (self.hxy2 - self.H9())))
| H13 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n return np.sqrt(1 - np.exp(-2 * (self.hxy2 - self.H9())))\n",
"role": "user"
},
{
"content": "H13",
"role": "assistant"
}
] |
def x(zernike_indexes):
n_max = np.max(zernike_indexes[:, 0])
factorial = np.ones((1 + n_max,), dtype=float)
factorial[1:] = np.cumproduct(np.arange(1, 1 + n_max, dtype=float))
width = int(n_max // 2 + 1)
lut = np.zeros((zernike_indexes.shape[0], width), dtype=float)
for idx, (n, m) in enumerate(zernike_indexes):
alt = 1
npmh = (n + m) // 2
nmmh = (n - m) // 2
for k in range(0, nmmh + 1):
lut[idx, k] = alt * factorial[n - k] / (factorial[k] *
factorial[npmh - k] * factorial[nmmh - k])
alt = -alt
return lut
| construct_zernike_lookuptable | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(zernike_indexes):\n n_max = np.max(zernike_indexes[:, 0])\n factorial = np.ones((1 + n_max,), dtype=float)\n factorial[1:] = np.cumproduct(np.arange(1, 1 + n_max, dtype=float))\n width = int(n_max // 2 + 1)\n lut = np.zeros((zernike_indexes.shape[0], width), dtype=float)\n for idx, (n, m) in enumerate(zernike_indexes):\n alt = 1\n npmh = (n + m) // 2\n nmmh = (n - m) // 2\n for k in range(0, nmmh + 1):\n lut[idx, k] = alt * factorial[n - k] / (factorial[k] *\n factorial[npmh - k] * factorial[nmmh - k])\n alt = -alt\n return lut\n",
"role": "user"
},
{
"content": "construct_zernike_lookuptable",
"role": "assistant"
}
] |
def x(x, y, zernike_indexes, mask=None, weight=None):
if x.shape != y.shape:
raise ValueError('X and Y must have the same shape')
if mask is None:
pass
elif mask.shape != x.shape:
raise ValueError('The mask must have the same shape as X and Y')
else:
x = x[mask]
y = y[mask]
if weight is not None:
weight = weight[mask]
lut = construct_zernike_lookuptable(zernike_indexes)
nzernikes = zernike_indexes.shape[0]
r_square = np.square(x)
np.add(r_square, np.square(y), out=r_square)
z = np.empty(x.shape, np.complex)
np.copyto(z.real, y)
np.copyto(z.imag, x)
s = np.empty_like(x)
zf = np.zeros((nzernikes,) + x.shape, np.complex)
z_pows = {}
for idx, (n, m) in enumerate(zernike_indexes):
s[:] = 0
if not m in z_pows:
if m == 0:
z_pows[m] = np.complex(1.0)
else:
z_pows[m] = z if m == 1 else z ** m
z_pow = z_pows[m]
for k in range((n - m) // 2 + 1):
s *= r_square
s += lut[idx, k]
s[r_square > 1] = 0
if weight is not None:
s *= weight.astype(s.dtype)
if m == 0:
np.copyto(zf[idx], s)
else:
np.multiply(s, z_pow, out=zf[idx])
if mask is None:
result = zf.transpose(tuple(range(1, 1 + x.ndim)) + (0,))
else:
result = np.zeros(mask.shape + (nzernikes,), np.complex)
result[mask] = zf.transpose(tuple(range(1, 1 + x.ndim)) + (0,))
return result
| construct_zernike_polynomials | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, zernike_indexes, mask=None, weight=None):\n if x.shape != y.shape:\n raise ValueError('X and Y must have the same shape')\n if mask is None:\n pass\n elif mask.shape != x.shape:\n raise ValueError('The mask must have the same shape as X and Y')\n else:\n x = x[mask]\n y = y[mask]\n if weight is not None:\n weight = weight[mask]\n lut = construct_zernike_lookuptable(zernike_indexes)\n nzernikes = zernike_indexes.shape[0]\n r_square = np.square(x)\n np.add(r_square, np.square(y), out=r_square)\n z = np.empty(x.shape, np.complex)\n np.copyto(z.real, y)\n np.copyto(z.imag, x)\n s = np.empty_like(x)\n zf = np.zeros((nzernikes,) + x.shape, np.complex)\n z_pows = {}\n for idx, (n, m) in enumerate(zernike_indexes):\n s[:] = 0\n if not m in z_pows:\n if m == 0:\n z_pows[m] = np.complex(1.0)\n else:\n z_pows[m] = z if m == 1 else z ** m\n z_pow = z_pows[m]\n for k in range((n - m) // 2 + 1):\n s *= r_square\n s += lut[idx, k]\n s[r_square > 1] = 0\n if weight is not None:\n s *= weight.astype(s.dtype)\n if m == 0:\n np.copyto(zf[idx], s)\n else:\n np.multiply(s, z_pow, out=zf[idx])\n if mask is None:\n result = zf.transpose(tuple(range(1, 1 + x.ndim)) + (0,))\n else:\n result = np.zeros(mask.shape + (nzernikes,), np.complex)\n result[mask] = zf.transpose(tuple(range(1, 1 + x.ndim)) + (0,))\n return result\n",
"role": "user"
},
{
"content": "construct_zernike_polynomials",
"role": "assistant"
}
] |
def x(zf, radii, labels, indexes=None):
if indexes is None:
indexes = np.arange(1, np.max(labels) + 1, dtype=np.int32)
else:
indexes = np.array(indexes, dtype=np.int32)
radii = np.asarray(radii, dtype=float)
n = radii.size
k = zf.shape[2]
score = np.zeros((n, k))
if n == 0:
return score
areas = np.square(radii)
areas *= np.pi
for ki in range(k):
zfk = zf[:, :, ki]
real_score = scipy.ndimage.sum(zfk.real, labels, indexes)
real_score = fixup_scipy_ndimage_result(real_score)
imag_score = scipy.ndimage.sum(zfk.imag, labels, indexes)
imag_score = fixup_scipy_ndimage_result(imag_score)
np.square(real_score, out=real_score)
np.square(imag_score, out=imag_score)
one_score = real_score + imag_score
np.sqrt(one_score, out=one_score)
one_score /= areas
score[:, ki] = one_score
return score
| score_zernike | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(zf, radii, labels, indexes=None):\n if indexes is None:\n indexes = np.arange(1, np.max(labels) + 1, dtype=np.int32)\n else:\n indexes = np.array(indexes, dtype=np.int32)\n radii = np.asarray(radii, dtype=float)\n n = radii.size\n k = zf.shape[2]\n score = np.zeros((n, k))\n if n == 0:\n return score\n areas = np.square(radii)\n areas *= np.pi\n for ki in range(k):\n zfk = zf[:, :, ki]\n real_score = scipy.ndimage.sum(zfk.real, labels, indexes)\n real_score = fixup_scipy_ndimage_result(real_score)\n imag_score = scipy.ndimage.sum(zfk.imag, labels, indexes)\n imag_score = fixup_scipy_ndimage_result(imag_score)\n np.square(real_score, out=real_score)\n np.square(imag_score, out=imag_score)\n one_score = real_score + imag_score\n np.sqrt(one_score, out=one_score)\n one_score /= areas\n score[:, ki] = one_score\n return score\n",
"role": "user"
},
{
"content": "score_zernike",
"role": "assistant"
}
] |
def x(zernike_indexes, labels, indexes):
indexes = np.array(indexes, dtype=np.int32)
nindexes = len(indexes)
reverse_indexes = np.empty((np.max(indexes) + 1,), int)
reverse_indexes.fill(-1)
reverse_indexes[indexes] = np.arange(indexes.shape[0], dtype=int)
mask = reverse_indexes[labels] != -1
centers, radii = minimum_enclosing_circle(labels, indexes)
ny, nx = labels.shape[0:2]
y, x = np.asarray(np.mgrid[0:ny - 1:complex(0, ny), 0:nx - 1:complex(0,
nx)], dtype=float)
xm = x[mask]
ym = y[mask]
lm = labels[mask]
rev_ind = reverse_indexes[lm]
ym -= centers[rev_ind, 0]
ym /= radii[rev_ind]
xm -= centers[rev_ind, 1]
xm /= radii[rev_ind]
x = np.zeros_like(x)
x[mask] = xm
y = np.zeros_like(y)
y[mask] = ym
score = np.zeros((nindexes, len(zernike_indexes)))
zf = construct_zernike_polynomials(x, y, zernike_indexes, mask)
score = score_zernike(zf, radii, labels, indexes)
return score
| zernike | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(zernike_indexes, labels, indexes):\n indexes = np.array(indexes, dtype=np.int32)\n nindexes = len(indexes)\n reverse_indexes = np.empty((np.max(indexes) + 1,), int)\n reverse_indexes.fill(-1)\n reverse_indexes[indexes] = np.arange(indexes.shape[0], dtype=int)\n mask = reverse_indexes[labels] != -1\n centers, radii = minimum_enclosing_circle(labels, indexes)\n ny, nx = labels.shape[0:2]\n y, x = np.asarray(np.mgrid[0:ny - 1:complex(0, ny), 0:nx - 1:complex(0,\n nx)], dtype=float)\n xm = x[mask]\n ym = y[mask]\n lm = labels[mask]\n rev_ind = reverse_indexes[lm]\n ym -= centers[rev_ind, 0]\n ym /= radii[rev_ind]\n xm -= centers[rev_ind, 1]\n xm /= radii[rev_ind]\n x = np.zeros_like(x)\n x[mask] = xm\n y = np.zeros_like(y)\n y[mask] = ym\n score = np.zeros((nindexes, len(zernike_indexes)))\n zf = construct_zernike_polynomials(x, y, zernike_indexes, mask)\n score = score_zernike(zf, radii, labels, indexes)\n return score\n",
"role": "user"
},
{
"content": "zernike",
"role": "assistant"
}
] |
def x(limit=10):
def x(n_max):
for n in range(0, n_max):
for m in range(n % 2, n + 1, 2):
yield n
yield m
z_ind = np.fromiter(zernike_indexes_iter(limit), np.intc)
z_ind = z_ind.reshape((len(z_ind) // 2, 2))
return z_ind
| get_zernike_indexes | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(limit=10):\n\n def x(n_max):\n for n in range(0, n_max):\n for m in range(n % 2, n + 1, 2):\n yield n\n yield m\n z_ind = np.fromiter(zernike_indexes_iter(limit), np.intc)\n z_ind = z_ind.reshape((len(z_ind) // 2, 2))\n return z_ind\n",
"role": "user"
},
{
"content": "get_zernike_indexes",
"role": "assistant"
}
] |
def x(image, labels, mask, weight):
if image.shape != labels.shape:
raise ValueError('Image shape %s != label shape %s' % (repr(image.
shape), repr(labels.shape)))
if image.shape != mask.shape:
raise ValueError('Image shape %s != mask shape %s' % (repr(image.
shape), repr(mask.shape)))
labels_out = np.zeros(labels.shape, np.int32)
distances = -np.ones(labels.shape, np.float64)
distances[labels > 0] = 0
labels_and_mask = np.logical_and(labels != 0, mask)
coords = np.argwhere(labels_and_mask)
i1, i2 = _propagate.convert_to_ints(0.0)
ncoords = coords.shape[0]
pq = np.column_stack((np.ones((ncoords,), int) * i1, np.ones((ncoords,),
int) * i2, labels[labels_and_mask], coords))
_propagate.propagate(np.ascontiguousarray(image, np.float64), np.
ascontiguousarray(pq, np.int32), np.ascontiguousarray(mask, np.int8
), labels_out, distances, float(weight))
labels_out[labels > 0] = labels[labels > 0]
return labels_out, distances
| propagate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels, mask, weight):\n if image.shape != labels.shape:\n raise ValueError('Image shape %s != label shape %s' % (repr(image.\n shape), repr(labels.shape)))\n if image.shape != mask.shape:\n raise ValueError('Image shape %s != mask shape %s' % (repr(image.\n shape), repr(mask.shape)))\n labels_out = np.zeros(labels.shape, np.int32)\n distances = -np.ones(labels.shape, np.float64)\n distances[labels > 0] = 0\n labels_and_mask = np.logical_and(labels != 0, mask)\n coords = np.argwhere(labels_and_mask)\n i1, i2 = _propagate.convert_to_ints(0.0)\n ncoords = coords.shape[0]\n pq = np.column_stack((np.ones((ncoords,), int) * i1, np.ones((ncoords,),\n int) * i2, labels[labels_and_mask], coords))\n _propagate.propagate(np.ascontiguousarray(image, np.float64), np.\n ascontiguousarray(pq, np.int32), np.ascontiguousarray(mask, np.int8\n ), labels_out, distances, float(weight))\n labels_out[labels > 0] = labels[labels > 0]\n return labels_out, distances\n",
"role": "user"
},
{
"content": "propagate",
"role": "assistant"
}
] |
def x(i, j, costs, wants_dual_variables=False, augmenting_row_reductions=2):
import os
i = np.atleast_1d(i).astype(int)
j = np.atleast_1d(j).astype(int)
costs = np.atleast_1d(costs)
assert len(i) == len(j), 'i and j must be the same length'
assert len(i) == len(costs), 'costs must be the same length as i'
j_count = np.bincount(j)
assert not np.any(j_count == 0), 'all j must be paired with at least one i'
j_index = np.hstack([[0], np.cumsum(j_count[:-1])])
i_count = np.bincount(i)
assert not np.any(i_count == 0), 'all i must be paired with at least one j'
i_index = np.hstack([[0], np.cumsum(i_count[:-1])])
n = len(j_count)
assert n == len(i_count), 'There must be the same number of unique i and j'
x = np.ascontiguousarray(np.ones(n, np.uint32) * n)
y = np.ascontiguousarray(np.ones(n, np.uint32) * n, np.uint32)
u = np.ascontiguousarray(np.zeros(n, np.float64))
order = np.lexsort((-i, costs, j))
min_idx = order[j_index]
min_i = i[min_idx]
v = np.ascontiguousarray(costs[min_idx], np.float64)
x[min_i] = np.arange(n).astype(np.uint32)
y[x[x != n]] = np.arange(n).astype(np.uint32)[x != n]
assignment_count = np.bincount(min_i[min_i != n])
assignment_count = np.hstack((assignment_count, np.zeros(n - len(
assignment_count), int)))
free_i = assignment_count == 0
one_i = assignment_count == 1
order = np.lexsort((j, i))
j = np.ascontiguousarray(j[order], np.uint32)
costs = np.ascontiguousarray(costs[order], np.float64)
i_index = np.ascontiguousarray(i_index, np.uint32)
i_count = np.ascontiguousarray(i_count, np.uint32)
if np.any(one_i):
reduction_transfer(np.ascontiguousarray(np.argwhere(one_i).flatten(
), np.uint32), j, i_index, i_count, x, u, v, costs)
ii = np.ascontiguousarray(np.argwhere(free_i).flatten(), np.uint32)
if len(ii) > 0:
for iii in range(augmenting_row_reductions):
ii = augmenting_row_reduction(n, ii, j, i_index, i_count, x, y,
u, v, costs)
augment(n, ii, j, i_index, i_count, x, y, u, v, costs)
if wants_dual_variables:
return x, y, u, v
else:
return x, y
| lapjv | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i, j, costs, wants_dual_variables=False, augmenting_row_reductions=2):\n import os\n i = np.atleast_1d(i).astype(int)\n j = np.atleast_1d(j).astype(int)\n costs = np.atleast_1d(costs)\n assert len(i) == len(j), 'i and j must be the same length'\n assert len(i) == len(costs), 'costs must be the same length as i'\n j_count = np.bincount(j)\n assert not np.any(j_count == 0), 'all j must be paired with at least one i'\n j_index = np.hstack([[0], np.cumsum(j_count[:-1])])\n i_count = np.bincount(i)\n assert not np.any(i_count == 0), 'all i must be paired with at least one j'\n i_index = np.hstack([[0], np.cumsum(i_count[:-1])])\n n = len(j_count)\n assert n == len(i_count), 'There must be the same number of unique i and j'\n x = np.ascontiguousarray(np.ones(n, np.uint32) * n)\n y = np.ascontiguousarray(np.ones(n, np.uint32) * n, np.uint32)\n u = np.ascontiguousarray(np.zeros(n, np.float64))\n order = np.lexsort((-i, costs, j))\n min_idx = order[j_index]\n min_i = i[min_idx]\n v = np.ascontiguousarray(costs[min_idx], np.float64)\n x[min_i] = np.arange(n).astype(np.uint32)\n y[x[x != n]] = np.arange(n).astype(np.uint32)[x != n]\n assignment_count = np.bincount(min_i[min_i != n])\n assignment_count = np.hstack((assignment_count, np.zeros(n - len(\n assignment_count), int)))\n free_i = assignment_count == 0\n one_i = assignment_count == 1\n order = np.lexsort((j, i))\n j = np.ascontiguousarray(j[order], np.uint32)\n costs = np.ascontiguousarray(costs[order], np.float64)\n i_index = np.ascontiguousarray(i_index, np.uint32)\n i_count = np.ascontiguousarray(i_count, np.uint32)\n if np.any(one_i):\n reduction_transfer(np.ascontiguousarray(np.argwhere(one_i).flatten(\n ), np.uint32), j, i_index, i_count, x, u, v, costs)\n ii = np.ascontiguousarray(np.argwhere(free_i).flatten(), np.uint32)\n if len(ii) > 0:\n for iii in range(augmenting_row_reductions):\n ii = augmenting_row_reduction(n, ii, j, i_index, i_count, x, y,\n u, v, costs)\n augment(n, ii, j, i_index, i_count, x, y, u, v, costs)\n if wants_dual_variables:\n return x, y, u, v\n else:\n return x, y\n",
"role": "user"
},
{
"content": "lapjv",
"role": "assistant"
}
] |
def x(ii, j, idx, count, x, u, v, c):
for i in ii:
j1 = x[i]
jj = j[idx[i]:idx[i] + count[i]]
uu = np.min((c[idx[i]:idx[i] + count[i]] - v[jj])[jj != j1])
v[j1] = v[j1] - uu + u[i]
u[i] = uu
| slow_reduction_transfer | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(ii, j, idx, count, x, u, v, c):\n for i in ii:\n j1 = x[i]\n jj = j[idx[i]:idx[i] + count[i]]\n uu = np.min((c[idx[i]:idx[i] + count[i]] - v[jj])[jj != j1])\n v[j1] = v[j1] - uu + u[i]\n u[i] = uu\n",
"role": "user"
},
{
"content": "slow_reduction_transfer",
"role": "assistant"
}
] |
def x(n, ii, jj, idx, count, x, y, u, v, c):
ii = list(ii)
k = 0
limit = len(ii)
free = []
while k < limit:
i = ii[k]
k += 1
j = jj[idx[i]:idx[i] + count[i]]
uu = c[idx[i]:idx[i] + count[i]] - v[j]
order = np.lexsort([uu])
u1, u2 = uu[order[:2]]
j1, j2 = j[order[:2]]
i1 = y[j1]
if u1 < u2:
v[j1] = v[j1] - u2 + u1
elif i1 != n:
j1 = j2
i1 = y[j1]
if i1 != n:
if u1 < u2:
k -= 1
ii[k] = i1
else:
free.append(i1)
x[i] = j1
y[j1] = i
return np.array(free, np.uint32)
| slow_augmenting_row_reduction | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, ii, jj, idx, count, x, y, u, v, c):\n ii = list(ii)\n k = 0\n limit = len(ii)\n free = []\n while k < limit:\n i = ii[k]\n k += 1\n j = jj[idx[i]:idx[i] + count[i]]\n uu = c[idx[i]:idx[i] + count[i]] - v[j]\n order = np.lexsort([uu])\n u1, u2 = uu[order[:2]]\n j1, j2 = j[order[:2]]\n i1 = y[j1]\n if u1 < u2:\n v[j1] = v[j1] - u2 + u1\n elif i1 != n:\n j1 = j2\n i1 = y[j1]\n if i1 != n:\n if u1 < u2:\n k -= 1\n ii[k] = i1\n else:\n free.append(i1)\n x[i] = j1\n y[j1] = i\n return np.array(free, np.uint32)\n",
"role": "user"
},
{
"content": "slow_augmenting_row_reduction",
"role": "assistant"
}
] |
def x(n, ii, jj, idx, count, x, y, u, v, c):
inf = np.sum(c) + 1
d = np.zeros(n)
cc = np.zeros((n, n))
cc[:, :] = inf
for i in range(n):
cc[i, jj[idx[i]:idx[i] + count[i]]] = c[idx[i]:idx[i] + count[i]]
c = cc
for i in ii:
print('Processing i=%d' % i)
j = jj[idx[i]:idx[i] + count[i]]
d = c[i, :] - v
pred = np.ones(n, int) * i
on_deck = []
ready = []
scan = []
to_do = list(range(n))
try:
while True:
print('Evaluating i=%d, n_scan = %d' % (i, len(scan)))
if len(scan) == 0:
ready += on_deck
on_deck = []
umin = np.min([d[jjj] for jjj in to_do])
print('umin = %f' % umin)
scan = [jjj for jjj in to_do if d[jjj] == umin]
to_do = [jjj for jjj in to_do if d[jjj] != umin]
for j1 in scan:
if y[j1] == n:
raise StopIteration()
j1 = scan[0]
iii = y[j1]
print('Consider replacing i=%d, j=%d' % (iii, j1))
scan = scan[1:]
on_deck += [j1]
u1 = c[iii, j1] - v[j1] - umin
for j1 in list(to_do):
h = c[iii, j1] - v[j1] - u1
print(
'Consider j=%d as replacement, c[%d,%d]=%f,v[%d]=%f,h=%f, d[j]= %f'
% (j1, iii, j1, c[iii, j1], j1, v[j1], h, d[j1]))
if h < d[j1]:
print('Add to chain')
pred[j1] = iii
if h == umin:
if y[j1] == n:
raise StopIteration()
print('Add to scan')
scan += [j1]
to_do.remove(j1)
d[j1] = h
except StopIteration:
print('Augmenting %d' % j1)
for k in ready:
temp = v[k]
v[k] = v[k] + d[k] - umin
print('v[%d] %f -> %f' % (k, temp, v[k]))
while True:
iii = pred[j1]
print('y[%d] %d -> %d' % (j1, y[j1], iii))
y[j1] = iii
j1, x[iii] = x[iii], j1
if iii == i:
break
for i in range(n):
j = x[i]
u[i] = c[i, j] - v[j]
| slow_augment | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n, ii, jj, idx, count, x, y, u, v, c):\n inf = np.sum(c) + 1\n d = np.zeros(n)\n cc = np.zeros((n, n))\n cc[:, :] = inf\n for i in range(n):\n cc[i, jj[idx[i]:idx[i] + count[i]]] = c[idx[i]:idx[i] + count[i]]\n c = cc\n for i in ii:\n print('Processing i=%d' % i)\n j = jj[idx[i]:idx[i] + count[i]]\n d = c[i, :] - v\n pred = np.ones(n, int) * i\n on_deck = []\n ready = []\n scan = []\n to_do = list(range(n))\n try:\n while True:\n print('Evaluating i=%d, n_scan = %d' % (i, len(scan)))\n if len(scan) == 0:\n ready += on_deck\n on_deck = []\n umin = np.min([d[jjj] for jjj in to_do])\n print('umin = %f' % umin)\n scan = [jjj for jjj in to_do if d[jjj] == umin]\n to_do = [jjj for jjj in to_do if d[jjj] != umin]\n for j1 in scan:\n if y[j1] == n:\n raise StopIteration()\n j1 = scan[0]\n iii = y[j1]\n print('Consider replacing i=%d, j=%d' % (iii, j1))\n scan = scan[1:]\n on_deck += [j1]\n u1 = c[iii, j1] - v[j1] - umin\n for j1 in list(to_do):\n h = c[iii, j1] - v[j1] - u1\n print(\n 'Consider j=%d as replacement, c[%d,%d]=%f,v[%d]=%f,h=%f, d[j]= %f'\n % (j1, iii, j1, c[iii, j1], j1, v[j1], h, d[j1]))\n if h < d[j1]:\n print('Add to chain')\n pred[j1] = iii\n if h == umin:\n if y[j1] == n:\n raise StopIteration()\n print('Add to scan')\n scan += [j1]\n to_do.remove(j1)\n d[j1] = h\n except StopIteration:\n print('Augmenting %d' % j1)\n for k in ready:\n temp = v[k]\n v[k] = v[k] + d[k] - umin\n print('v[%d] %f -> %f' % (k, temp, v[k]))\n while True:\n iii = pred[j1]\n print('y[%d] %d -> %d' % (j1, y[j1], iii))\n y[j1] = iii\n j1, x[iii] = x[iii], j1\n if iii == i:\n break\n for i in range(n):\n j = x[i]\n u[i] = c[i, j] - v[j]\n",
"role": "user"
},
{
"content": "slow_augment",
"role": "assistant"
}
] |
def x(self, max_dist_kb, size_bin_kb, display_graph):
logger.info('estimation of the parameters of the model')
self.bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb, size_bin_kb)
self.mean_contacts = np.zeros_like(self.bins, dtype=np.float32)
self.dict_collect = dict()
self.gpu_vect_frags.copy_from_gpu()
epsi = self.mean_value_trans
for k in self.bins:
self.dict_collect[k] = []
for i in range(0, self.n_frags // 10):
start = self.sparse_matrix.indptr[i]
end = self.sparse_matrix.indptr[i + 1]
id_j = self.sparse_matrix.indices[start:end]
data = self.sparse_matrix.data[start:end]
info_i = self.np_sub_frags_2_frags[i]
init_id_fi = int(info_i[0])
id_c_i = self.S_o_A_frags['id_c'][init_id_fi]
s_i = self.S_o_A_frags['start_bp'][init_id_fi
] / 1000.0 + self.np_sub_frags_2_frags[i][1]
len_kb_c_i = self.S_o_A_frags['l_cont_bp'][init_id_fi] / 1000
if size_bin_kb < len_kb_c_i:
local_bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb,
size_bin_kb)
local_storage = np.zeros_like(local_bins, dtype=np.int32)
for fj, dj in zip(id_j, data):
info_j = self.np_sub_frags_2_frags[fj]
init_id_fj = int(info_j[0])
id_c_j = self.S_o_A_frags['id_c'][init_id_fj]
if id_c_i == id_c_j:
s_j = self.S_o_A_frags['start_bp'][init_id_fj
] / 1000.0 + self.np_sub_frags_2_frags[fj][1]
d = np.abs(s_i - s_j)
if d < max_dist_kb:
id_bin = int(d / size_bin_kb)
local_storage[id_bin] += dj
for bin, val in zip(local_bins, local_storage):
self.dict_collect[bin].append(val)
for id_bin in range(0, len(self.bins)):
k = self.bins[id_bin]
self.mean_contacts[id_bin] = np.mean(self.dict_collect[k])
for id_bin in range(0, len(self.bins)):
k = self.bins[id_bin]
tmp = np.mean(self.dict_collect[k])
if np.isnan(tmp) or tmp == 0:
self.mean_contacts[id_bin] = np.nan
else:
self.mean_contacts[id_bin] = tmp + epsi
self.mean_contacts_upd = []
self.bins_upd = []
for count, ele in zip(self.mean_contacts, self.bins):
if not np.isnan(count):
self.bins_upd.append(ele)
self.mean_contacts_upd.append(count)
self.bins_upd = np.array(self.bins_upd)
self.mean_contacts_upd = np.array(self.mean_contacts_upd)
p, self.y_estim = opti.estimate_param_rippe(self.mean_contacts_upd,
self.bins_upd)
logger.info('p from estimate parameters = {}'.format(p))
fit_param = p
logger.info('mean value trans = {}'.format(self.mean_value_trans))
logger.info('BEWARE!!! : I will lower mean value trans !!!')
self.mean_value_trans = self.mean_value_trans / 10.0
estim_max_dist = opti.estimate_max_dist_intra(fit_param, self.
mean_value_trans)
logger.info('estimate max dist cis trans = {}'.format(estim_max_dist))
self.param_simu = self.setup_rippe_parameters(fit_param, estim_max_dist)
self.param_simu_test = self.param_simu
self.gpu_param_simu = cuda.mem_alloc(self.param_simu.nbytes)
self.gpu_param_simu_test = cuda.mem_alloc(self.param_simu.nbytes)
cuda.memcpy_htod(self.gpu_param_simu, self.param_simu)
cuda.memcpy_htod(self.gpu_param_simu_test, self.param_simu_test)
display_graph = False
if display_graph:
plt.figure()
plt.loglog(self.bins_upd, self.mean_contacts_upd, '-*b')
plt.loglog(self.bins_upd, self.y_estim, '-*r')
plt.xlabel('genomic distance (kb)')
plt.ylabel('frequency of contact')
plt.title(
'$\\mathrm{Frequency\\ of\\ contact\\ versus\\ genomic\\ distance \\(data\\ tricho test):}\\ slope=%.3f,\\ max\\ cis\\ distance(kb)=%.3f\\ d=%.3f\\ scale\\ factor=%.3f\\ $'
% (self.param_simu['slope'], estim_max_dist, self.param_simu[
'd'], self.param_simu['fact']))
plt.legend(['obs', 'fit'])
plt.savefig()
plt.close()
self.eval_likelihood_init()
| estimate_parameters_rippe | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_dist_kb, size_bin_kb, display_graph):\n logger.info('estimation of the parameters of the model')\n self.bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb, size_bin_kb)\n self.mean_contacts = np.zeros_like(self.bins, dtype=np.float32)\n self.dict_collect = dict()\n self.gpu_vect_frags.copy_from_gpu()\n epsi = self.mean_value_trans\n for k in self.bins:\n self.dict_collect[k] = []\n for i in range(0, self.n_frags // 10):\n start = self.sparse_matrix.indptr[i]\n end = self.sparse_matrix.indptr[i + 1]\n id_j = self.sparse_matrix.indices[start:end]\n data = self.sparse_matrix.data[start:end]\n info_i = self.np_sub_frags_2_frags[i]\n init_id_fi = int(info_i[0])\n id_c_i = self.S_o_A_frags['id_c'][init_id_fi]\n s_i = self.S_o_A_frags['start_bp'][init_id_fi\n ] / 1000.0 + self.np_sub_frags_2_frags[i][1]\n len_kb_c_i = self.S_o_A_frags['l_cont_bp'][init_id_fi] / 1000\n if size_bin_kb < len_kb_c_i:\n local_bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb,\n size_bin_kb)\n local_storage = np.zeros_like(local_bins, dtype=np.int32)\n for fj, dj in zip(id_j, data):\n info_j = self.np_sub_frags_2_frags[fj]\n init_id_fj = int(info_j[0])\n id_c_j = self.S_o_A_frags['id_c'][init_id_fj]\n if id_c_i == id_c_j:\n s_j = self.S_o_A_frags['start_bp'][init_id_fj\n ] / 1000.0 + self.np_sub_frags_2_frags[fj][1]\n d = np.abs(s_i - s_j)\n if d < max_dist_kb:\n id_bin = int(d / size_bin_kb)\n local_storage[id_bin] += dj\n for bin, val in zip(local_bins, local_storage):\n self.dict_collect[bin].append(val)\n for id_bin in range(0, len(self.bins)):\n k = self.bins[id_bin]\n self.mean_contacts[id_bin] = np.mean(self.dict_collect[k])\n for id_bin in range(0, len(self.bins)):\n k = self.bins[id_bin]\n tmp = np.mean(self.dict_collect[k])\n if np.isnan(tmp) or tmp == 0:\n self.mean_contacts[id_bin] = np.nan\n else:\n self.mean_contacts[id_bin] = tmp + epsi\n self.mean_contacts_upd = []\n self.bins_upd = []\n for count, ele in zip(self.mean_contacts, self.bins):\n if not np.isnan(count):\n self.bins_upd.append(ele)\n self.mean_contacts_upd.append(count)\n self.bins_upd = np.array(self.bins_upd)\n self.mean_contacts_upd = np.array(self.mean_contacts_upd)\n p, self.y_estim = opti.estimate_param_rippe(self.mean_contacts_upd,\n self.bins_upd)\n logger.info('p from estimate parameters = {}'.format(p))\n fit_param = p\n logger.info('mean value trans = {}'.format(self.mean_value_trans))\n logger.info('BEWARE!!! : I will lower mean value trans !!!')\n self.mean_value_trans = self.mean_value_trans / 10.0\n estim_max_dist = opti.estimate_max_dist_intra(fit_param, self.\n mean_value_trans)\n logger.info('estimate max dist cis trans = {}'.format(estim_max_dist))\n self.param_simu = self.setup_rippe_parameters(fit_param, estim_max_dist)\n self.param_simu_test = self.param_simu\n self.gpu_param_simu = cuda.mem_alloc(self.param_simu.nbytes)\n self.gpu_param_simu_test = cuda.mem_alloc(self.param_simu.nbytes)\n cuda.memcpy_htod(self.gpu_param_simu, self.param_simu)\n cuda.memcpy_htod(self.gpu_param_simu_test, self.param_simu_test)\n display_graph = False\n if display_graph:\n plt.figure()\n plt.loglog(self.bins_upd, self.mean_contacts_upd, '-*b')\n plt.loglog(self.bins_upd, self.y_estim, '-*r')\n plt.xlabel('genomic distance (kb)')\n plt.ylabel('frequency of contact')\n plt.title(\n '$\\\\mathrm{Frequency\\\\ of\\\\ contact\\\\ versus\\\\ genomic\\\\ distance \\\\(data\\\\ tricho test):}\\\\ slope=%.3f,\\\\ max\\\\ cis\\\\ distance(kb)=%.3f\\\\ d=%.3f\\\\ scale\\\\ factor=%.3f\\\\ $'\n % (self.param_simu['slope'], estim_max_dist, self.param_simu[\n 'd'], self.param_simu['fact']))\n plt.legend(['obs', 'fit'])\n plt.savefig()\n plt.close()\n self.eval_likelihood_init()\n",
"role": "user"
},
{
"content": "estimate_parameters_rippe",
"role": "assistant"
}
] |
def x(self, max_dist_kb, size_bin_kb, display_graph):
logger.info('estimation of the parameters of the model')
self.bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb, size_bin_kb)
self.mean_contacts = np.zeros_like(self.bins, dtype=np.float32)
self.dict_collect = dict()
self.gpu_vect_frags.copy_from_gpu()
epsi = self.mean_value_trans
for k in self.bins:
self.dict_collect[k] = []
for i in range(0, 2000):
start = self.sparse_matrix.indptr[i]
end = self.sparse_matrix.indptr[i + 1]
id_j = self.sparse_matrix.indices[start:end]
data = self.sparse_matrix.data[start:end]
info_i = self.np_sub_frags_2_frags[i]
init_id_fi = info_i[0]
id_c_i = self.S_o_A_frags['id_c'][init_id_fi]
s_i = self.S_o_A_frags['start_bp'][init_id_fi
] / 1000.0 + self.np_sub_frags_2_frags[i][1]
len_kb_c_i = self.S_o_A_frags['l_cont_bp'][init_id_fi] / 1000
local_bins = np.arange(size_bin_kb, min(len_kb_c_i, max_dist_kb) +
size_bin_kb, size_bin_kb)
local_storage = np.zeros_like(local_bins, dtype=np.int32)
for fj, dj in zip(id_j, data):
info_j = self.np_sub_frags_2_frags[fj]
init_id_fj = info_j[0]
id_c_j = self.S_o_A_frags['id_c'][init_id_fj]
if id_c_i == id_c_j:
s_j = self.S_o_A_frags['start_bp'][init_id_fj
] / 1000.0 + self.np_sub_frags_2_frags[fj][1]
d = np.abs(s_i - s_j)
if d < max_dist_kb:
id_bin = d / size_bin_kb
local_storage[id_bin] += dj
for my_bin, val in zip(local_bins, local_storage):
self.dict_collect[my_bin].append(val)
for id_bin in range(0, len(self.bins)):
k = self.bins[id_bin]
self.mean_contacts[id_bin] = np.mean(self.dict_collect[k])
for id_bin in range(0, len(self.bins)):
k = self.bins[id_bin]
tmp = np.mean(self.dict_collect[k])
if np.isnan(tmp) or tmp == 0:
self.mean_contacts[id_bin] = np.nan
else:
self.mean_contacts[id_bin] = tmp + epsi
self.mean_contacts_upd = []
self.bins_upd = []
for count, ele in zip(self.mean_contacts, self.bins):
if not np.isnan(count):
self.bins_upd.append(ele)
self.mean_contacts_upd.append(count)
self.bins_upd = np.array(self.bins_upd)
self.mean_contacts_upd = np.array(self.mean_contacts_upd)
p, self.y_estim = nuis.estimate_param_hic(self.mean_contacts_upd, self.
bins_upd)
fit_param = p.x
logger.info('mean value trans = {}'.format(self.mean_value_trans))
estim_max_dist = nuis.estimate_max_dist_intra(fit_param, self.
mean_value_trans)
logger.info('max distance cis/trans = {}'.format(estim_max_dist))
self.param_simu = self.setup_model_parameters(fit_param, estim_max_dist)
self.gpu_param_simu = cuda.mem_alloc(self.param_simu.nbytes)
self.gpu_param_simu_test = cuda.mem_alloc(self.param_simu.nbytes)
cuda.memcpy_htod(self.gpu_param_simu, self.param_simu)
if display_graph:
plt.loglog(self.bins_upd, self.mean_contacts_upd, '-*b')
plt.loglog(self.bins_upd, self.y_estim, '-*r')
plt.xlabel('genomic distance (kb)')
plt.ylabel('frequency of contact')
plt.legend(['obs', 'fit'])
plt.show()
| estimate_parameters | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, max_dist_kb, size_bin_kb, display_graph):\n logger.info('estimation of the parameters of the model')\n self.bins = np.arange(size_bin_kb, max_dist_kb + size_bin_kb, size_bin_kb)\n self.mean_contacts = np.zeros_like(self.bins, dtype=np.float32)\n self.dict_collect = dict()\n self.gpu_vect_frags.copy_from_gpu()\n epsi = self.mean_value_trans\n for k in self.bins:\n self.dict_collect[k] = []\n for i in range(0, 2000):\n start = self.sparse_matrix.indptr[i]\n end = self.sparse_matrix.indptr[i + 1]\n id_j = self.sparse_matrix.indices[start:end]\n data = self.sparse_matrix.data[start:end]\n info_i = self.np_sub_frags_2_frags[i]\n init_id_fi = info_i[0]\n id_c_i = self.S_o_A_frags['id_c'][init_id_fi]\n s_i = self.S_o_A_frags['start_bp'][init_id_fi\n ] / 1000.0 + self.np_sub_frags_2_frags[i][1]\n len_kb_c_i = self.S_o_A_frags['l_cont_bp'][init_id_fi] / 1000\n local_bins = np.arange(size_bin_kb, min(len_kb_c_i, max_dist_kb) +\n size_bin_kb, size_bin_kb)\n local_storage = np.zeros_like(local_bins, dtype=np.int32)\n for fj, dj in zip(id_j, data):\n info_j = self.np_sub_frags_2_frags[fj]\n init_id_fj = info_j[0]\n id_c_j = self.S_o_A_frags['id_c'][init_id_fj]\n if id_c_i == id_c_j:\n s_j = self.S_o_A_frags['start_bp'][init_id_fj\n ] / 1000.0 + self.np_sub_frags_2_frags[fj][1]\n d = np.abs(s_i - s_j)\n if d < max_dist_kb:\n id_bin = d / size_bin_kb\n local_storage[id_bin] += dj\n for my_bin, val in zip(local_bins, local_storage):\n self.dict_collect[my_bin].append(val)\n for id_bin in range(0, len(self.bins)):\n k = self.bins[id_bin]\n self.mean_contacts[id_bin] = np.mean(self.dict_collect[k])\n for id_bin in range(0, len(self.bins)):\n k = self.bins[id_bin]\n tmp = np.mean(self.dict_collect[k])\n if np.isnan(tmp) or tmp == 0:\n self.mean_contacts[id_bin] = np.nan\n else:\n self.mean_contacts[id_bin] = tmp + epsi\n self.mean_contacts_upd = []\n self.bins_upd = []\n for count, ele in zip(self.mean_contacts, self.bins):\n if not np.isnan(count):\n self.bins_upd.append(ele)\n self.mean_contacts_upd.append(count)\n self.bins_upd = np.array(self.bins_upd)\n self.mean_contacts_upd = np.array(self.mean_contacts_upd)\n p, self.y_estim = nuis.estimate_param_hic(self.mean_contacts_upd, self.\n bins_upd)\n fit_param = p.x\n logger.info('mean value trans = {}'.format(self.mean_value_trans))\n estim_max_dist = nuis.estimate_max_dist_intra(fit_param, self.\n mean_value_trans)\n logger.info('max distance cis/trans = {}'.format(estim_max_dist))\n self.param_simu = self.setup_model_parameters(fit_param, estim_max_dist)\n self.gpu_param_simu = cuda.mem_alloc(self.param_simu.nbytes)\n self.gpu_param_simu_test = cuda.mem_alloc(self.param_simu.nbytes)\n cuda.memcpy_htod(self.gpu_param_simu, self.param_simu)\n if display_graph:\n plt.loglog(self.bins_upd, self.mean_contacts_upd, '-*b')\n plt.loglog(self.bins_upd, self.y_estim, '-*r')\n plt.xlabel('genomic distance (kb)')\n plt.ylabel('frequency of contact')\n plt.legend(['obs', 'fit'])\n plt.show()\n",
"role": "user"
},
{
"content": "estimate_parameters",
"role": "assistant"
}
] |
def x(linkage_records):
def x(linkage_record):
linkage_group, genetic_distance, scaffold = linkage_record[1
], linkage_record[2], linkage_record[3]
return linkage_group, genetic_distance, scaffold
degenerate_records = []
for _, degenerate_group in itertools.groupby(linkage_records, key=
degeneracy):
group_list = list(degenerate_group)
start_record, end_record = group_list[0], group_list[-1]
assert (start_record[1], start_record[2], start_record[3]) == (
end_record[1], end_record[2], end_record[3])
start_position = start_record[-1]
end_position = end_record[-1]
scaffold = start_record[3]
linkage_group = start_record[1]
record = [linkage_group, start_position, end_position, scaffold]
degenerate_records.append(record)
return degenerate_records
| collapse_degenerate_markers | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(linkage_records):\n\n def x(linkage_record):\n linkage_group, genetic_distance, scaffold = linkage_record[1\n ], linkage_record[2], linkage_record[3]\n return linkage_group, genetic_distance, scaffold\n degenerate_records = []\n for _, degenerate_group in itertools.groupby(linkage_records, key=\n degeneracy):\n group_list = list(degenerate_group)\n start_record, end_record = group_list[0], group_list[-1]\n assert (start_record[1], start_record[2], start_record[3]) == (\n end_record[1], end_record[2], end_record[3])\n start_position = start_record[-1]\n end_position = end_record[-1]\n scaffold = start_record[3]\n linkage_group = start_record[1]\n record = [linkage_group, start_position, end_position, scaffold]\n degenerate_records.append(record)\n return degenerate_records\n",
"role": "user"
},
{
"content": "collapse_degenerate_markers",
"role": "assistant"
}
] |
def x(linkage_records):
new_records = dict()
for lg_name, linkage_group in itertools.groupby(linkage_records,
operator.itemgetter(0)):
new_records[lg_name] = []
for record in linkage_group:
init_contig = record[-1]
start = record[1]
end = record[2]
new_record = [init_contig, -3, start, end, 1]
new_records[lg_name].append(new_record)
return new_records
| linkage_group_ordering | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(linkage_records):\n new_records = dict()\n for lg_name, linkage_group in itertools.groupby(linkage_records,\n operator.itemgetter(0)):\n new_records[lg_name] = []\n for record in linkage_group:\n init_contig = record[-1]\n start = record[1]\n end = record[2]\n new_record = [init_contig, -3, start, end, 1]\n new_records[lg_name].append(new_record)\n return new_records\n",
"role": "user"
},
{
"content": "linkage_group_ordering",
"role": "assistant"
}
] |
def x(info_frags_records, linkage_orderings):
scaffolds = info_frags_records.keys()
linkage_groups = linkage_orderings.keys()
best_matching_table = dict()
for scaffold, linkage_group in itertools.product(scaffolds, linkage_groups
):
lg_ordering = [init_contig for init_contig, _ in itertools.groupby(
linkage_orderings[linkage_group], operator.itemgetter(0))]
scaffold_ordering = [init_contig for init_contig, bin_group in
itertools.groupby(info_frags_records[scaffold], operator.
itemgetter(0)) if init_contig in lg_ordering]
overlap = set(lg_ordering).intersection(set(scaffold_ordering))
missing_locations = dict()
for missing_block in sorted(set(lg_ordering) - set(overlap)):
for i, init_contig in enumerate(lg_ordering):
if init_contig == missing_block:
try:
block_before = lg_ordering[i - 1]
except IndexError:
block_before = 'beginning'
missing_locations[missing_block] = block_before
try:
if len(overlap) > best_matching_table[scaffold][0]:
best_matching_table[scaffold] = len(overlap
), linkage_group, missing_locations
except KeyError:
best_matching_table[scaffold] = len(overlap
), linkage_group, missing_locations
return best_matching_table
| compare_orderings | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(info_frags_records, linkage_orderings):\n scaffolds = info_frags_records.keys()\n linkage_groups = linkage_orderings.keys()\n best_matching_table = dict()\n for scaffold, linkage_group in itertools.product(scaffolds, linkage_groups\n ):\n lg_ordering = [init_contig for init_contig, _ in itertools.groupby(\n linkage_orderings[linkage_group], operator.itemgetter(0))]\n scaffold_ordering = [init_contig for init_contig, bin_group in\n itertools.groupby(info_frags_records[scaffold], operator.\n itemgetter(0)) if init_contig in lg_ordering]\n overlap = set(lg_ordering).intersection(set(scaffold_ordering))\n missing_locations = dict()\n for missing_block in sorted(set(lg_ordering) - set(overlap)):\n for i, init_contig in enumerate(lg_ordering):\n if init_contig == missing_block:\n try:\n block_before = lg_ordering[i - 1]\n except IndexError:\n block_before = 'beginning'\n missing_locations[missing_block] = block_before\n try:\n if len(overlap) > best_matching_table[scaffold][0]:\n best_matching_table[scaffold] = len(overlap\n ), linkage_group, missing_locations\n except KeyError:\n best_matching_table[scaffold] = len(overlap\n ), linkage_group, missing_locations\n return best_matching_table\n",
"role": "user"
},
{
"content": "compare_orderings",
"role": "assistant"
}
] |
def x(info_frags_records, matching_pairs, linkage_orderings):
import logging
import sys
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
touched_lgs = set()
def x(key_record_tuple):
return len(key_record_tuple[1])
new_scaffolds = copy.deepcopy(info_frags_records)
for scaffold_name in collections.OrderedDict(sorted(new_scaffolds.items
(), key=record_length, reverse=True)):
scaffold = new_scaffolds[scaffold_name]
new_scaffold = []
corresponding_lg = matching_pairs[scaffold_name][1]
if corresponding_lg in touched_lgs:
continue
else:
touched_lgs.add(corresponding_lg)
scaffold_block_names = {my_bin[0] for my_bin in scaffold}
lg_block_names = [my_block[0] for my_block in linkage_orderings[
corresponding_lg]]
touched_bins = set()
for lg_block_name in lg_block_names:
if lg_block_name in scaffold_block_names:
for my_bin in scaffold:
if tuple(my_bin) in new_scaffold:
continue
elif my_bin[0] == lg_block_name or my_bin[0
] not in lg_block_names:
new_scaffold.append(tuple(my_bin))
touched_bins.add(tuple(my_bin))
else:
break
for other_name, other_scaffold in new_scaffolds.items():
if other_name == scaffold_name:
continue
i = 0
for my_bin in other_scaffold:
if tuple(my_bin) in new_scaffold:
i += 1
continue
elif my_bin[0] == lg_block_name:
moved_bin = tuple(other_scaffold.pop(i))
new_scaffold.append(tuple(moved_bin))
touched_bins.add(tuple(moved_bin))
i -= 1
i += 1
for remaining_bin in scaffold:
if tuple(remaining_bin) not in touched_bins:
new_scaffold.append(tuple(remaining_bin))
touched_bins.add(tuple(remaining_bin))
if len(new_scaffold) > 0:
new_scaffolds[scaffold_name] = new_scaffold
return new_scaffolds
| get_missing_blocks | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(info_frags_records, matching_pairs, linkage_orderings):\n import logging\n import sys\n logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)\n logger = logging.getLogger()\n logger.setLevel(logging.DEBUG)\n touched_lgs = set()\n\n def x(key_record_tuple):\n return len(key_record_tuple[1])\n new_scaffolds = copy.deepcopy(info_frags_records)\n for scaffold_name in collections.OrderedDict(sorted(new_scaffolds.items\n (), key=record_length, reverse=True)):\n scaffold = new_scaffolds[scaffold_name]\n new_scaffold = []\n corresponding_lg = matching_pairs[scaffold_name][1]\n if corresponding_lg in touched_lgs:\n continue\n else:\n touched_lgs.add(corresponding_lg)\n scaffold_block_names = {my_bin[0] for my_bin in scaffold}\n lg_block_names = [my_block[0] for my_block in linkage_orderings[\n corresponding_lg]]\n touched_bins = set()\n for lg_block_name in lg_block_names:\n if lg_block_name in scaffold_block_names:\n for my_bin in scaffold:\n if tuple(my_bin) in new_scaffold:\n continue\n elif my_bin[0] == lg_block_name or my_bin[0\n ] not in lg_block_names:\n new_scaffold.append(tuple(my_bin))\n touched_bins.add(tuple(my_bin))\n else:\n break\n for other_name, other_scaffold in new_scaffolds.items():\n if other_name == scaffold_name:\n continue\n i = 0\n for my_bin in other_scaffold:\n if tuple(my_bin) in new_scaffold:\n i += 1\n continue\n elif my_bin[0] == lg_block_name:\n moved_bin = tuple(other_scaffold.pop(i))\n new_scaffold.append(tuple(moved_bin))\n touched_bins.add(tuple(moved_bin))\n i -= 1\n i += 1\n for remaining_bin in scaffold:\n if tuple(remaining_bin) not in touched_bins:\n new_scaffold.append(tuple(remaining_bin))\n touched_bins.add(tuple(remaining_bin))\n if len(new_scaffold) > 0:\n new_scaffolds[scaffold_name] = new_scaffold\n return new_scaffolds\n",
"role": "user"
},
{
"content": "get_missing_blocks",
"role": "assistant"
}
] |
def x(info_frags):
new_scaffolds = {}
with open(info_frags, 'r') as info_frags_handle:
current_new_contig = None
for line in info_frags_handle:
if line.startswith('>'):
current_new_contig = str(line[1:-1])
new_scaffolds[current_new_contig] = []
elif line.startswith('init_contig'):
pass
else:
init_contig, id_frag, orientation, pos_start, pos_end = str(
line[:-1]).split('\t')
start = int(pos_start)
end = int(pos_end)
ori = int(orientation)
fragid = int(id_frag)
assert start < end
assert ori in {-1, 1}
new_scaffolds[current_new_contig].append([init_contig,
fragid, start, end, ori])
return new_scaffolds
| parse_info_frags | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(info_frags):\n new_scaffolds = {}\n with open(info_frags, 'r') as info_frags_handle:\n current_new_contig = None\n for line in info_frags_handle:\n if line.startswith('>'):\n current_new_contig = str(line[1:-1])\n new_scaffolds[current_new_contig] = []\n elif line.startswith('init_contig'):\n pass\n else:\n init_contig, id_frag, orientation, pos_start, pos_end = str(\n line[:-1]).split('\\t')\n start = int(pos_start)\n end = int(pos_end)\n ori = int(orientation)\n fragid = int(id_frag)\n assert start < end\n assert ori in {-1, 1}\n new_scaffolds[current_new_contig].append([init_contig,\n fragid, start, end, ori])\n return new_scaffolds\n",
"role": "user"
},
{
"content": "parse_info_frags",
"role": "assistant"
}
] |
def x(bed_file):
new_scaffolds = {}
with open(bed_file) as bed_handle:
for line in bed_handle:
chrom, start, end, query, qual, strand = line.split()[:7]
if strand == '+':
ori = 1
elif strand == '-':
ori = -1
else:
raise ValueError('Error when parsing strand orientation: {}'
.format(strand))
if int(qual) > 0:
bed_bin = [query, -2, int(start), int(end), ori]
try:
new_scaffolds[chrom].append(bed_bin)
except KeyError:
new_scaffolds[chrom] = [bed_bin]
return new_scaffolds
| parse_bed | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bed_file):\n new_scaffolds = {}\n with open(bed_file) as bed_handle:\n for line in bed_handle:\n chrom, start, end, query, qual, strand = line.split()[:7]\n if strand == '+':\n ori = 1\n elif strand == '-':\n ori = -1\n else:\n raise ValueError('Error when parsing strand orientation: {}'\n .format(strand))\n if int(qual) > 0:\n bed_bin = [query, -2, int(start), int(end), ori]\n try:\n new_scaffolds[chrom].append(bed_bin)\n except KeyError:\n new_scaffolds[chrom] = [bed_bin]\n return new_scaffolds\n",
"role": "user"
},
{
"content": "parse_bed",
"role": "assistant"
}
] |
def x(scaffolds, corrector):
new_scaffolds = {}
def x(bin1, bin2):
if bin2 is None:
return False
init1, _, start1, end1, _ = bin1
init2, _, start2, end2, _ = bin2
if init1 != init2:
return False
else:
return start2 <= start1 <= end2 or start1 <= start2 <= end1
def x(bin1, bin2, ignore_ori=True):
init1, _, start1, end1, ori1 = bin1
init2, _, start2, end2, ori2 = bin2
assert init1 == init2
start = min(start1, start2)
end = max(end1, end2)
if ignore_ori:
ori = ori1
else:
len1 = end1 - start1
len2 = end2 - start2
if len2 > len1:
ori = ori2
else:
ori = ori1
new_bin = [init1, -3, start, end, ori]
return new_bin
corrector_bins = copy.deepcopy(corrector)
for name, scaffold in scaffolds.items():
new_scaffold = []
for _, blocks in itertools.groupby(scaffold, operator.itemgetter(0)):
merged_bin = None
while 'Reading blocks':
try:
my_bin = next(blocks)
if are_overlapping(my_bin, merged_bin):
merged_bin = merge_bins(my_bin, merged_bin)
continue
else:
if merged_bin is not None:
new_scaffold.append(merged_bin)
merged_bin = my_bin
i = 0
for correct_bin in corrector_bins:
if are_overlapping(my_bin, correct_bin):
merged_bin = merge_bins(my_bin, correct_bin)
corrector_bins.pop(i)
i -= 1
i += 1
except StopIteration:
if merged_bin is not None:
new_scaffold.append(merged_bin)
break
new_scaffolds[name] = new_scaffold
return new_scaffolds
| correct_scaffolds | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scaffolds, corrector):\n new_scaffolds = {}\n\n def x(bin1, bin2):\n if bin2 is None:\n return False\n init1, _, start1, end1, _ = bin1\n init2, _, start2, end2, _ = bin2\n if init1 != init2:\n return False\n else:\n return start2 <= start1 <= end2 or start1 <= start2 <= end1\n\n def x(bin1, bin2, ignore_ori=True):\n init1, _, start1, end1, ori1 = bin1\n init2, _, start2, end2, ori2 = bin2\n assert init1 == init2\n start = min(start1, start2)\n end = max(end1, end2)\n if ignore_ori:\n ori = ori1\n else:\n len1 = end1 - start1\n len2 = end2 - start2\n if len2 > len1:\n ori = ori2\n else:\n ori = ori1\n new_bin = [init1, -3, start, end, ori]\n return new_bin\n corrector_bins = copy.deepcopy(corrector)\n for name, scaffold in scaffolds.items():\n new_scaffold = []\n for _, blocks in itertools.groupby(scaffold, operator.itemgetter(0)):\n merged_bin = None\n while 'Reading blocks':\n try:\n my_bin = next(blocks)\n if are_overlapping(my_bin, merged_bin):\n merged_bin = merge_bins(my_bin, merged_bin)\n continue\n else:\n if merged_bin is not None:\n new_scaffold.append(merged_bin)\n merged_bin = my_bin\n i = 0\n for correct_bin in corrector_bins:\n if are_overlapping(my_bin, correct_bin):\n merged_bin = merge_bins(my_bin, correct_bin)\n corrector_bins.pop(i)\n i -= 1\n i += 1\n except StopIteration:\n if merged_bin is not None:\n new_scaffold.append(merged_bin)\n break\n new_scaffolds[name] = new_scaffold\n return new_scaffolds\n",
"role": "user"
},
{
"content": "correct_scaffolds",
"role": "assistant"
}
] |
def x(info_frags):
if isinstance(info_frags, dict):
return info_frags
else:
try:
scaffolds = parse_info_frags(info_frags)
return scaffolds
except OSError:
print('Error when opening info_frags.txt')
raise
| format_info_frags | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(info_frags):\n if isinstance(info_frags, dict):\n return info_frags\n else:\n try:\n scaffolds = parse_info_frags(info_frags)\n return scaffolds\n except OSError:\n print('Error when opening info_frags.txt')\n raise\n",
"role": "user"
},
{
"content": "format_info_frags",
"role": "assistant"
}
] |
def x(scaffolds):
scaffolds = format_info_frags(scaffolds)
for name, scaffold in scaffolds.items():
plt.figure()
xs = range(len(scaffold))
color = []
names = {}
ys = []
for my_bin in scaffold:
current_color = 'r' if my_bin[4] > 0 else 'g'
color += [current_color]
name = my_bin[0]
if name in names:
ys.append(names[name])
else:
names[name] = len(names)
ys.append(names[name])
plt.scatter(xs, ys, c=color)
plt.show()
| plot_info_frags | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scaffolds):\n scaffolds = format_info_frags(scaffolds)\n for name, scaffold in scaffolds.items():\n plt.figure()\n xs = range(len(scaffold))\n color = []\n names = {}\n ys = []\n for my_bin in scaffold:\n current_color = 'r' if my_bin[4] > 0 else 'g'\n color += [current_color]\n name = my_bin[0]\n if name in names:\n ys.append(names[name])\n else:\n names[name] = len(names)\n ys.append(names[name])\n plt.scatter(xs, ys, c=color)\n plt.show()\n",
"role": "user"
},
{
"content": "plot_info_frags",
"role": "assistant"
}
] |
def x(scaffolds):
scaffolds = format_info_frags(scaffolds)
new_scaffolds = {}
for name, scaffold in scaffolds.items():
new_scaffold = []
if len(scaffold) > 2:
for i in range(len(scaffold)):
if i == 0:
if not (scaffold[i][0] != scaffold[i + 1][0] and
scaffold[i + 1][0] == scaffold[i + 2][0]):
new_scaffold.append(scaffold[i])
elif i == len(scaffold) - 1:
if not (scaffold[i][0] != scaffold[i - 1][0] and
scaffold[i - 1][0] == scaffold[i - 2][0]):
new_scaffold.append(scaffold[i])
elif not (scaffold[i - 1][0] == scaffold[i + 1][0] and
scaffold[i - 1][0] != scaffold[i][0]):
new_scaffold.append(scaffold[i])
else:
new_scaffold = copy.deepcopy(scaffold)
new_scaffolds[name] = new_scaffold
return new_scaffolds
| remove_spurious_insertions | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scaffolds):\n scaffolds = format_info_frags(scaffolds)\n new_scaffolds = {}\n for name, scaffold in scaffolds.items():\n new_scaffold = []\n if len(scaffold) > 2:\n for i in range(len(scaffold)):\n if i == 0:\n if not (scaffold[i][0] != scaffold[i + 1][0] and \n scaffold[i + 1][0] == scaffold[i + 2][0]):\n new_scaffold.append(scaffold[i])\n elif i == len(scaffold) - 1:\n if not (scaffold[i][0] != scaffold[i - 1][0] and \n scaffold[i - 1][0] == scaffold[i - 2][0]):\n new_scaffold.append(scaffold[i])\n elif not (scaffold[i - 1][0] == scaffold[i + 1][0] and \n scaffold[i - 1][0] != scaffold[i][0]):\n new_scaffold.append(scaffold[i])\n else:\n new_scaffold = copy.deepcopy(scaffold)\n new_scaffolds[name] = new_scaffold\n return new_scaffolds\n",
"role": "user"
},
{
"content": "remove_spurious_insertions",
"role": "assistant"
}
] |
def x(scaffolds, criterion='colinear'):
scaffolds = format_info_frags(scaffolds)
new_scaffolds = {}
def x(bin1, bin2):
return bin1[0] == bin2[0]
def x(bin1, bin2):
return is_cis(bin1, bin2) and bin1[3] == bin2[2]
def x(bin1, bin2):
return is_cis(bin1, bin2) and bin1[3] <= bin2[2]
condition_callables = {'cis': is_cis, 'colinear': is_colinear,
'contiguous': is_contiguous}
block_test = condition_callables.get(criterion, 'colinear')
for name, scaffold in scaffolds.items():
new_scaffold = []
block_cumulative_ori = 0
if len(scaffold) > 2:
current_bin = scaffold[0]
block_buffer = []
for my_bin in scaffold:
if not block_buffer:
new_bin = copy.deepcopy(my_bin)
block_buffer.append(new_bin)
block_cumulative_ori = my_bin[-1]
continue
elif not block_test(current_bin, my_bin):
for my_buf_bin in block_buffer:
new_bin = copy.deepcopy(my_buf_bin)
if block_cumulative_ori >= 0:
new_bin[-1] = 1
else:
new_bin[-1] = -1
new_scaffold.append(new_bin)
block_cumulative_ori = my_bin[-1]
current_bin = copy.deepcopy(my_bin)
block_buffer = copy.deepcopy([my_bin])
else:
block_cumulative_ori += my_bin[-1]
new_bin = copy.deepcopy(my_bin)
block_buffer.append(new_bin)
current_bin = my_bin
for my_bin in block_buffer:
new_bin = copy.deepcopy(my_bin)
if block_cumulative_ori >= 0:
new_bin[-1] = 1
else:
new_bin[-1] = -1
new_scaffold.append(new_bin)
new_scaffolds[name] = copy.deepcopy(new_scaffold)
else:
new_scaffolds[name] = copy.deepcopy(scaffold)
return new_scaffolds
| correct_spurious_inversions | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scaffolds, criterion='colinear'):\n scaffolds = format_info_frags(scaffolds)\n new_scaffolds = {}\n\n def x(bin1, bin2):\n return bin1[0] == bin2[0]\n\n def x(bin1, bin2):\n return is_cis(bin1, bin2) and bin1[3] == bin2[2]\n\n def x(bin1, bin2):\n return is_cis(bin1, bin2) and bin1[3] <= bin2[2]\n condition_callables = {'cis': is_cis, 'colinear': is_colinear,\n 'contiguous': is_contiguous}\n block_test = condition_callables.get(criterion, 'colinear')\n for name, scaffold in scaffolds.items():\n new_scaffold = []\n block_cumulative_ori = 0\n if len(scaffold) > 2:\n current_bin = scaffold[0]\n block_buffer = []\n for my_bin in scaffold:\n if not block_buffer:\n new_bin = copy.deepcopy(my_bin)\n block_buffer.append(new_bin)\n block_cumulative_ori = my_bin[-1]\n continue\n elif not block_test(current_bin, my_bin):\n for my_buf_bin in block_buffer:\n new_bin = copy.deepcopy(my_buf_bin)\n if block_cumulative_ori >= 0:\n new_bin[-1] = 1\n else:\n new_bin[-1] = -1\n new_scaffold.append(new_bin)\n block_cumulative_ori = my_bin[-1]\n current_bin = copy.deepcopy(my_bin)\n block_buffer = copy.deepcopy([my_bin])\n else:\n block_cumulative_ori += my_bin[-1]\n new_bin = copy.deepcopy(my_bin)\n block_buffer.append(new_bin)\n current_bin = my_bin\n for my_bin in block_buffer:\n new_bin = copy.deepcopy(my_bin)\n if block_cumulative_ori >= 0:\n new_bin[-1] = 1\n else:\n new_bin[-1] = -1\n new_scaffold.append(new_bin)\n new_scaffolds[name] = copy.deepcopy(new_scaffold)\n else:\n new_scaffolds[name] = copy.deepcopy(scaffold)\n return new_scaffolds\n",
"role": "user"
},
{
"content": "correct_spurious_inversions",
"role": "assistant"
}
] |
def x(scaffolds):
scaffolds = format_info_frags(scaffolds)
new_scaffolds = {}
ordering = dict()
for name, scaffold in scaffolds.items():
new_scaffold = []
ordering = dict()
order = 0
my_blocks = []
for _, my_block in itertools.groupby(scaffold, operator.itemgetter(0)):
my_bins = list(my_block)
my_blocks.append(my_bins)
block_length = len(my_bins)
block_name = my_bins[0][0]
if block_name in ordering.keys():
if block_length > ordering[block_name][1]:
ordering[block_name] = order, block_length
else:
ordering[block_name] = order, block_length
order += 1
def x(block):
return ordering[block[0][0]][0]
for my_block in sorted(my_blocks, key=block_order):
for my_bin in my_block:
new_scaffold.append(my_bin)
new_scaffolds[name] = copy.deepcopy(new_scaffold)
return new_scaffolds
| rearrange_intra_scaffolds | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(scaffolds):\n scaffolds = format_info_frags(scaffolds)\n new_scaffolds = {}\n ordering = dict()\n for name, scaffold in scaffolds.items():\n new_scaffold = []\n ordering = dict()\n order = 0\n my_blocks = []\n for _, my_block in itertools.groupby(scaffold, operator.itemgetter(0)):\n my_bins = list(my_block)\n my_blocks.append(my_bins)\n block_length = len(my_bins)\n block_name = my_bins[0][0]\n if block_name in ordering.keys():\n if block_length > ordering[block_name][1]:\n ordering[block_name] = order, block_length\n else:\n ordering[block_name] = order, block_length\n order += 1\n\n def x(block):\n return ordering[block[0][0]][0]\n for my_block in sorted(my_blocks, key=block_order):\n for my_bin in my_block:\n new_scaffold.append(my_bin)\n new_scaffolds[name] = copy.deepcopy(new_scaffold)\n return new_scaffolds\n",
"role": "user"
},
{
"content": "rearrange_intra_scaffolds",
"role": "assistant"
}
] |
def x(init_fasta, info_frags, output=DEFAULT_NEW_GENOME_NAME, junction=False):
init_genome = {record.id: record.seq for record in SeqIO.parse(
init_fasta, 'fasta')}
my_new_records = []
with open(info_frags, 'r') as info_frags_handle:
current_seq = ''
current_id = None
previous_contig = None
for line in info_frags_handle:
if line.startswith('>'):
previous_contig = None
if current_id is not None:
new_record = SeqRecord(current_seq, id=current_id,
description='')
my_new_records.append(new_record)
current_seq = ''
current_id = str(line[1:])
elif line.startswith('init_contig'):
previous_contig = None
else:
init_contig, _, orientation, pos_start, pos_end = str(line[:-1]
).split('\t')
start = int(pos_start)
end = int(pos_end)
ori = int(orientation)
assert start < end
assert ori in {-1, 1}
seq_to_add = init_genome[init_contig][start:end]
if ori == 1:
current_seq += seq_to_add
elif ori == -1:
current_seq += seq_to_add.reverse_complement()
if junction and previous_contig not in {init_contig, None}:
error_was_raised = False
try:
extra_seq = Seq(junction, IUPAC.ambiguous_dna)
current_seq = extra_seq + current_seq
except TypeError:
if not error_was_raised:
print('Invalid junction sequence')
error_was_raised = True
previous_contig = init_contig
new_record = SeqRecord(current_seq, id=current_id, description='')
my_new_records.append(new_record)
SeqIO.write(my_new_records, output, 'fasta')
| write_fasta | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(init_fasta, info_frags, output=DEFAULT_NEW_GENOME_NAME, junction=False):\n init_genome = {record.id: record.seq for record in SeqIO.parse(\n init_fasta, 'fasta')}\n my_new_records = []\n with open(info_frags, 'r') as info_frags_handle:\n current_seq = ''\n current_id = None\n previous_contig = None\n for line in info_frags_handle:\n if line.startswith('>'):\n previous_contig = None\n if current_id is not None:\n new_record = SeqRecord(current_seq, id=current_id,\n description='')\n my_new_records.append(new_record)\n current_seq = ''\n current_id = str(line[1:])\n elif line.startswith('init_contig'):\n previous_contig = None\n else:\n init_contig, _, orientation, pos_start, pos_end = str(line[:-1]\n ).split('\\t')\n start = int(pos_start)\n end = int(pos_end)\n ori = int(orientation)\n assert start < end\n assert ori in {-1, 1}\n seq_to_add = init_genome[init_contig][start:end]\n if ori == 1:\n current_seq += seq_to_add\n elif ori == -1:\n current_seq += seq_to_add.reverse_complement()\n if junction and previous_contig not in {init_contig, None}:\n error_was_raised = False\n try:\n extra_seq = Seq(junction, IUPAC.ambiguous_dna)\n current_seq = extra_seq + current_seq\n except TypeError:\n if not error_was_raised:\n print('Invalid junction sequence')\n error_was_raised = True\n previous_contig = init_contig\n new_record = SeqRecord(current_seq, id=current_id, description='')\n my_new_records.append(new_record)\n SeqIO.write(my_new_records, output, 'fasta')\n",
"role": "user"
},
{
"content": "write_fasta",
"role": "assistant"
}
] |
def x(bin_list):
id_set = set(my_bin[1] for my_bin in bin_list)
start_id, end_id = min(id_set), max(id_set)
return id_set == set(range(start_id, end_id + 1))
| is_block | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(bin_list):\n id_set = set(my_bin[1] for my_bin in bin_list)\n start_id, end_id = min(id_set), max(id_set)\n return id_set == set(range(start_id, end_id + 1))\n",
"role": "user"
},
{
"content": "is_block",
"role": "assistant"
}
] |
def x(xi, bounds):
ge = np.empty_like(xi)
for i, (v, bound) in enumerate(zip(xi, bounds)):
a = bound[0]
b = bound[1]
if a == None and b == None:
ge[i] = 1.0
elif b == None:
ge[i] = v / np.sqrt(v ** 2 + 1)
elif a == None:
ge[i] = -v / np.sqrt(v ** 2 + 1)
else:
ge[i] = (b - a) * np.cos(v) / 2.0
return ge
| internal2external_grad | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xi, bounds):\n ge = np.empty_like(xi)\n for i, (v, bound) in enumerate(zip(xi, bounds)):\n a = bound[0]\n b = bound[1]\n if a == None and b == None:\n ge[i] = 1.0\n elif b == None:\n ge[i] = v / np.sqrt(v ** 2 + 1)\n elif a == None:\n ge[i] = -v / np.sqrt(v ** 2 + 1)\n else:\n ge[i] = (b - a) * np.cos(v) / 2.0\n return ge\n",
"role": "user"
},
{
"content": "internal2external_grad",
"role": "assistant"
}
] |
def x(xi, bounds):
xe = np.empty_like(xi)
for i, (v, bound) in enumerate(zip(xi, bounds)):
a = bound[0]
b = bound[1]
if a == None and b == None:
xe[i] = v
elif b == None:
xe[i] = a - 1.0 + np.sqrt(v ** 2.0 + 1.0)
elif a == None:
xe[i] = b + 1.0 - np.sqrt(v ** 2.0 + 1.0)
else:
xe[i] = a + (b - a) / 2.0 * (np.sin(v) + 1.0)
return xe
| internal2external | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xi, bounds):\n xe = np.empty_like(xi)\n for i, (v, bound) in enumerate(zip(xi, bounds)):\n a = bound[0]\n b = bound[1]\n if a == None and b == None:\n xe[i] = v\n elif b == None:\n xe[i] = a - 1.0 + np.sqrt(v ** 2.0 + 1.0)\n elif a == None:\n xe[i] = b + 1.0 - np.sqrt(v ** 2.0 + 1.0)\n else:\n xe[i] = a + (b - a) / 2.0 * (np.sin(v) + 1.0)\n return xe\n",
"role": "user"
},
{
"content": "internal2external",
"role": "assistant"
}
] |
def x(xe, bounds):
xi = np.empty_like(xe)
for i, (v, bound) in enumerate(zip(xe, bounds)):
a = bound[0]
b = bound[1]
if a == None and b == None:
xi[i] = v
elif b == None:
xi[i] = np.sqrt((v - a + 1.0) ** 2.0 - 1)
elif a == None:
xi[i] = np.sqrt((b - v + 1.0) ** 2.0 - 1)
else:
xi[i] = np.arcsin(2.0 * (v - a) / (b - a) - 1.0)
return xi
| external2internal | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(xe, bounds):\n xi = np.empty_like(xe)\n for i, (v, bound) in enumerate(zip(xe, bounds)):\n a = bound[0]\n b = bound[1]\n if a == None and b == None:\n xi[i] = v\n elif b == None:\n xi[i] = np.sqrt((v - a + 1.0) ** 2.0 - 1)\n elif a == None:\n xi[i] = np.sqrt((b - v + 1.0) ** 2.0 - 1)\n else:\n xi[i] = np.arcsin(2.0 * (v - a) / (b - a) - 1.0)\n return xi\n",
"role": "user"
},
{
"content": "external2internal",
"role": "assistant"
}
] |
def x(infodic, p):
fjac = infodic['fjac']
ipvt = infodic['ipvt']
n = len(p)
perm = np.take(np.eye(n), ipvt - 1, 0)
r = np.triu(np.transpose(fjac)[:n, :])
R = np.dot(r, perm)
try:
cov_x = np.linalg.inv(np.dot(np.transpose(R), R))
except LinAlgError:
cov_x = None
return cov_x
| calc_cov_x | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(infodic, p):\n fjac = infodic['fjac']\n ipvt = infodic['ipvt']\n n = len(p)\n perm = np.take(np.eye(n), ipvt - 1, 0)\n r = np.triu(np.transpose(fjac)[:n, :])\n R = np.dot(r, perm)\n try:\n cov_x = np.linalg.inv(np.dot(np.transpose(R), R))\n except LinAlgError:\n cov_x = None\n return cov_x\n",
"role": "user"
},
{
"content": "calc_cov_x",
"role": "assistant"
}
] |
def x(func, x0, bounds, args=(), **kw):
if 'full_output' in kw and kw['full_output']:
full = True
else:
full = False
i0 = external2internal(x0, bounds)
r = leastsq(err, i0, args=(bounds, func, args), **kw)
if full:
xi, cov_xi, infodic, mesg, ier = r
xe = internal2external(xi, bounds)
cov_xe = i2e_cov_x(xi, bounds, cov_xi)
return xe, cov_xe, infodic, mesg, ier
else:
xi, ier = r
xe = internal2external(xi, bounds)
return xe, ier
| leastsqbound | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(func, x0, bounds, args=(), **kw):\n if 'full_output' in kw and kw['full_output']:\n full = True\n else:\n full = False\n i0 = external2internal(x0, bounds)\n r = leastsq(err, i0, args=(bounds, func, args), **kw)\n if full:\n xi, cov_xi, infodic, mesg, ier = r\n xe = internal2external(xi, bounds)\n cov_xe = i2e_cov_x(xi, bounds, cov_xi)\n return xe, cov_xe, infodic, mesg, ier\n else:\n xi, ier = r\n xe = internal2external(xi, bounds)\n return xe, ier\n",
"role": "user"
},
{
"content": "leastsqbound",
"role": "assistant"
}
] |
def x(self):
if self.set_status:
self.github_repo.create_status(state='pending', description=
'Static analysis in progress.', context='inline-plz', sha=self.
last_sha)
| start_review | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if self.set_status:\n self.github_repo.create_status(state='pending', description=\n 'Static analysis in progress.', context='inline-plz', sha=self.\n last_sha)\n",
"role": "user"
},
{
"content": "start_review",
"role": "assistant"
}
] |
def x(self, success=True, error=False):
if self.set_status:
if error:
self.github_repo.create_status(state='error', description=
'Static analysis error! inline-plz failed to run.', context
='inline-plz', sha=self.last_sha)
elif success:
self.github_repo.create_status(state='success', description=
'Static analysis complete! No errors found in your PR.',
context='inline-plz', sha=self.last_sha)
else:
self.github_repo.create_status(state='failure', description=
'Static analysis complete! Found errors in your PR.',
context='inline-plz', sha=self.last_sha)
| finish_review | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, success=True, error=False):\n if self.set_status:\n if error:\n self.github_repo.create_status(state='error', description=\n 'Static analysis error! inline-plz failed to run.', context\n ='inline-plz', sha=self.last_sha)\n elif success:\n self.github_repo.create_status(state='success', description=\n 'Static analysis complete! No errors found in your PR.',\n context='inline-plz', sha=self.last_sha)\n else:\n self.github_repo.create_status(state='failure', description=\n 'Static analysis complete! Found errors in your PR.',\n context='inline-plz', sha=self.last_sha)\n",
"role": "user"
},
{
"content": "finish_review",
"role": "assistant"
}
] |
def x(self):
try:
latest_remote_sha = self.pr_commits(self.pull_request.refresh(True))[-1
].sha
print('Latest remote sha: {}'.format(latest_remote_sha))
try:
print('Ratelimit remaining: {}'.format(self.github.
ratelimit_remaining))
except Exception:
print('Failed to look up ratelimit remaining')
return self.last_sha != latest_remote_sha
except IndexError:
return False
| out_of_date | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n try:\n latest_remote_sha = self.pr_commits(self.pull_request.refresh(True))[-1\n ].sha\n print('Latest remote sha: {}'.format(latest_remote_sha))\n try:\n print('Ratelimit remaining: {}'.format(self.github.\n ratelimit_remaining))\n except Exception:\n print('Failed to look up ratelimit remaining')\n return self.last_sha != latest_remote_sha\n except IndexError:\n return False\n",
"role": "user"
},
{
"content": "out_of_date",
"role": "assistant"
}
] |
def x(self, message):
if not message.line_number:
message.line_number = 1
for patched_file in self.patch:
target = patched_file.target_file.lstrip('b/')
if target == message.path:
offset = 1
for hunk in patched_file:
for position, hunk_line in enumerate(hunk):
if hunk_line.target_line_no == message.line_number:
if not hunk_line.is_added:
return
return position + offset
offset += len(hunk) + 1
| position | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, message):\n if not message.line_number:\n message.line_number = 1\n for patched_file in self.patch:\n target = patched_file.target_file.lstrip('b/')\n if target == message.path:\n offset = 1\n for hunk in patched_file:\n for position, hunk_line in enumerate(hunk):\n if hunk_line.target_line_no == message.line_number:\n if not hunk_line.is_added:\n return\n return position + offset\n offset += len(hunk) + 1\n",
"role": "user"
},
{
"content": "position",
"role": "assistant"
}
] |
def x(self):
OpenGL.GL.glFlush()
OpenGL.GL.glClear(OpenGL.GL.GL_COLOR_BUFFER_BIT | OpenGL.GL.
GL_DEPTH_BUFFER_BIT)
if self.white == -1:
OpenGL.GL.glClearColor(1, 1, 1, 1)
else:
OpenGL.GL.glClearColor(0, 0, 0, 0)
OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)
OpenGL.GL.glLoadIdentity()
OpenGL.GL.glTranslatef(self.initrans.x, self.initrans.y, self.initrans.z)
OpenGL.GL.glRotatef(self.rotate.x, 1, 0, 0)
OpenGL.GL.glRotatef(self.rotate.y, 0, 1, 0)
OpenGL.GL.glTranslatef(self.translate.x, self.translate.y, self.translate.z
)
self.render_image()
self.render()
glutil.draw_axes()
OpenGL.GL.glMatrixMode(OpenGL.GL.GL_PROJECTION)
OpenGL.GL.glPushMatrix()
OpenGL.GL.glLoadIdentity()
OpenGL.GL.glOrtho(0.0, self.width, self.height, 0.0, -1.0, 10.0)
OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)
OpenGL.GL.glLoadIdentity()
OpenGL.GL.glDisable(OpenGL.GL.GL_CULL_FACE)
OpenGL.GL.glClear(OpenGL.GL.GL_DEPTH_BUFFER_BIT)
if self.white == 1:
self.glut_print(10, 15, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_cycle, 0.0, 1.0, 0.0, 1.0)
self.glut_print(10, 30, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_temp, 0.0, 1.0, 0.0, 1.0)
self.glut_print(10, 45, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_id_frag, 0.0, 1.0, 0.0, 1.0)
self.glut_print(10, 60, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_likelihood, 0.0, 1.0, 0.0, 1.0)
self.glut_print(10, 75, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_n_contigs, 0.0, 1.0, 0.0, 1.0)
self.glut_print(10, 90, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_dist, 0.0, 1.0, 0.0, 1.0)
else:
self.glut_print(10, 15, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_cycle, 0.0, 0.0, 0.0, 1.0)
self.glut_print(10, 30, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_temp, 0.0, 0.0, 0.0, 1.0)
self.glut_print(10, 45, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_id_frag, 0.0, 0.0, 0.0, 1.0)
self.glut_print(10, 60, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_likelihood, 0.0, 0.0, 0.0, 1.0)
self.glut_print(10, 75, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_n_contigs, 0.0, 0.0, 0.0, 1.0)
self.glut_print(10, 90, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.
str_curr_dist, 0.0, 0.0, 0.0, 1.0)
OpenGL.GL.glMatrixMode(OpenGL.GL.GL_PROJECTION)
OpenGL.GL.glPopMatrix()
OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)
OpenGL.GLUT.glutSwapBuffers()
| draw | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n OpenGL.GL.glFlush()\n OpenGL.GL.glClear(OpenGL.GL.GL_COLOR_BUFFER_BIT | OpenGL.GL.\n GL_DEPTH_BUFFER_BIT)\n if self.white == -1:\n OpenGL.GL.glClearColor(1, 1, 1, 1)\n else:\n OpenGL.GL.glClearColor(0, 0, 0, 0)\n OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)\n OpenGL.GL.glLoadIdentity()\n OpenGL.GL.glTranslatef(self.initrans.x, self.initrans.y, self.initrans.z)\n OpenGL.GL.glRotatef(self.rotate.x, 1, 0, 0)\n OpenGL.GL.glRotatef(self.rotate.y, 0, 1, 0)\n OpenGL.GL.glTranslatef(self.translate.x, self.translate.y, self.translate.z\n )\n self.render_image()\n self.render()\n glutil.draw_axes()\n OpenGL.GL.glMatrixMode(OpenGL.GL.GL_PROJECTION)\n OpenGL.GL.glPushMatrix()\n OpenGL.GL.glLoadIdentity()\n OpenGL.GL.glOrtho(0.0, self.width, self.height, 0.0, -1.0, 10.0)\n OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)\n OpenGL.GL.glLoadIdentity()\n OpenGL.GL.glDisable(OpenGL.GL.GL_CULL_FACE)\n OpenGL.GL.glClear(OpenGL.GL.GL_DEPTH_BUFFER_BIT)\n if self.white == 1:\n self.glut_print(10, 15, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_cycle, 0.0, 1.0, 0.0, 1.0)\n self.glut_print(10, 30, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_temp, 0.0, 1.0, 0.0, 1.0)\n self.glut_print(10, 45, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_id_frag, 0.0, 1.0, 0.0, 1.0)\n self.glut_print(10, 60, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_likelihood, 0.0, 1.0, 0.0, 1.0)\n self.glut_print(10, 75, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_n_contigs, 0.0, 1.0, 0.0, 1.0)\n self.glut_print(10, 90, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_dist, 0.0, 1.0, 0.0, 1.0)\n else:\n self.glut_print(10, 15, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_cycle, 0.0, 0.0, 0.0, 1.0)\n self.glut_print(10, 30, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_temp, 0.0, 0.0, 0.0, 1.0)\n self.glut_print(10, 45, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_id_frag, 0.0, 0.0, 0.0, 1.0)\n self.glut_print(10, 60, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_likelihood, 0.0, 0.0, 0.0, 1.0)\n self.glut_print(10, 75, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_n_contigs, 0.0, 0.0, 0.0, 1.0)\n self.glut_print(10, 90, OpenGL.GLUT.GLUT_BITMAP_9_BY_15, self.\n str_curr_dist, 0.0, 0.0, 0.0, 1.0)\n OpenGL.GL.glMatrixMode(OpenGL.GL.GL_PROJECTION)\n OpenGL.GL.glPopMatrix()\n OpenGL.GL.glMatrixMode(OpenGL.GL.GL_MODELVIEW)\n OpenGL.GLUT.glutSwapBuffers()\n",
"role": "user"
},
{
"content": "draw",
"role": "assistant"
}
] |
def x(base_folder, size_pyramid, factor, min_bin_per_contig):
fact_sub_sampling = factor
contig_info = os.path.join(base_folder, 'info_contigs.txt')
fragments_list = os.path.join(base_folder, 'fragments_list.txt')
init_abs_fragments_contacts = os.path.join(base_folder,
'abs_fragments_contacts_weighted.txt')
all_pyramid_folder = os.path.join(base_folder, 'pyramids')
pyramid_folder = os.path.join(all_pyramid_folder, 'pyramid_' + str(
size_pyramid) + '_no_thresh')
if not os.path.exists(all_pyramid_folder):
os.mkdir(all_pyramid_folder)
if not os.path.exists(pyramid_folder):
os.mkdir(pyramid_folder)
hdf5_pyramid_file = os.path.join(pyramid_folder, 'pyramid.hdf5')
pyramid_handle = h5py.File(hdf5_pyramid_file)
level = 0
pyramid_level_folder = os.path.join(pyramid_folder, 'level_' + str(level))
if not os.path.exists(pyramid_level_folder):
os.mkdir(pyramid_level_folder)
current_contig_info = os.path.join(pyramid_level_folder, str(level) +
'_contig_info.txt')
current_frag_list = os.path.join(pyramid_level_folder, str(level) +
'_fragments_list.txt')
current_abs_fragments_contacts = os.path.join(pyramid_level_folder, str
(level) + '_abs_frag_contacts.txt')
for level in range(0, size_pyramid):
pyramid_level_folder = os.path.join(pyramid_folder, 'level_' + str(
level))
if not os.path.exists(pyramid_level_folder):
os.mkdir(pyramid_level_folder)
level_pyramid = str(level) + '_'
if level == 0:
shutil.copyfile(contig_info, current_contig_info)
shutil.copyfile(init_abs_fragments_contacts,
current_abs_fragments_contacts)
nfrags = init_frag_list(fragments_list, current_frag_list)
new_abs_fragments_contacts_file = current_abs_fragments_contacts
new_contig_list_file = current_contig_info
new_fragments_list_file = current_frag_list
sub_2_super_frag_index_file = os.path.join(pyramid_level_folder,
level_pyramid + 'sub_2_super_index_frag.txt')
else:
new_contig_list_file = os.path.join(pyramid_level_folder,
level_pyramid + 'contig_info.txt')
new_fragments_list_file = os.path.join(pyramid_level_folder,
level_pyramid + 'fragments_list.txt')
new_abs_fragments_contacts_file = os.path.join(pyramid_level_folder
, level_pyramid + 'abs_frag_contacts.txt')
if os.path.exists(new_contig_list_file) and os.path.exists(
new_fragments_list_file) and os.path.exists(
new_abs_fragments_contacts_file) and os.path.exists(
sub_2_super_frag_index_file):
logger.info('level already built...')
nfrags = file_len(new_fragments_list_file) - 1
else:
logger.info('writing new_files..')
nfrags = subsample_data_set(current_contig_info,
current_frag_list, fact_sub_sampling,
current_abs_fragments_contacts,
new_abs_fragments_contacts_file, min_bin_per_contig,
new_contig_list_file, new_fragments_list_file,
sub_2_super_frag_index_file)
try:
status = pyramid_handle.attrs[str(level)] == 'done'
except KeyError:
pyramid_handle.attrs[str(level)] = 'pending'
status = False
if not status:
logger.info('Start filling the pyramid')
fill_sparse_pyramid_level(pyramid_handle, level,
new_abs_fragments_contacts_file, nfrags)
pyramid_handle.attrs[str(level)] = 'done'
current_frag_list = new_fragments_list_file
current_contig_info = new_contig_list_file
current_abs_fragments_contacts = new_abs_fragments_contacts_file
sub_2_super_frag_index_file = os.path.join(pyramid_level_folder,
level_pyramid + 'sub_2_super_index_frag.txt')
logger.info('pyramid built.')
pyramid_handle.close()
| build | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(base_folder, size_pyramid, factor, min_bin_per_contig):\n fact_sub_sampling = factor\n contig_info = os.path.join(base_folder, 'info_contigs.txt')\n fragments_list = os.path.join(base_folder, 'fragments_list.txt')\n init_abs_fragments_contacts = os.path.join(base_folder,\n 'abs_fragments_contacts_weighted.txt')\n all_pyramid_folder = os.path.join(base_folder, 'pyramids')\n pyramid_folder = os.path.join(all_pyramid_folder, 'pyramid_' + str(\n size_pyramid) + '_no_thresh')\n if not os.path.exists(all_pyramid_folder):\n os.mkdir(all_pyramid_folder)\n if not os.path.exists(pyramid_folder):\n os.mkdir(pyramid_folder)\n hdf5_pyramid_file = os.path.join(pyramid_folder, 'pyramid.hdf5')\n pyramid_handle = h5py.File(hdf5_pyramid_file)\n level = 0\n pyramid_level_folder = os.path.join(pyramid_folder, 'level_' + str(level))\n if not os.path.exists(pyramid_level_folder):\n os.mkdir(pyramid_level_folder)\n current_contig_info = os.path.join(pyramid_level_folder, str(level) +\n '_contig_info.txt')\n current_frag_list = os.path.join(pyramid_level_folder, str(level) +\n '_fragments_list.txt')\n current_abs_fragments_contacts = os.path.join(pyramid_level_folder, str\n (level) + '_abs_frag_contacts.txt')\n for level in range(0, size_pyramid):\n pyramid_level_folder = os.path.join(pyramid_folder, 'level_' + str(\n level))\n if not os.path.exists(pyramid_level_folder):\n os.mkdir(pyramid_level_folder)\n level_pyramid = str(level) + '_'\n if level == 0:\n shutil.copyfile(contig_info, current_contig_info)\n shutil.copyfile(init_abs_fragments_contacts,\n current_abs_fragments_contacts)\n nfrags = init_frag_list(fragments_list, current_frag_list)\n new_abs_fragments_contacts_file = current_abs_fragments_contacts\n new_contig_list_file = current_contig_info\n new_fragments_list_file = current_frag_list\n sub_2_super_frag_index_file = os.path.join(pyramid_level_folder,\n level_pyramid + 'sub_2_super_index_frag.txt')\n else:\n new_contig_list_file = os.path.join(pyramid_level_folder, \n level_pyramid + 'contig_info.txt')\n new_fragments_list_file = os.path.join(pyramid_level_folder, \n level_pyramid + 'fragments_list.txt')\n new_abs_fragments_contacts_file = os.path.join(pyramid_level_folder\n , level_pyramid + 'abs_frag_contacts.txt')\n if os.path.exists(new_contig_list_file) and os.path.exists(\n new_fragments_list_file) and os.path.exists(\n new_abs_fragments_contacts_file) and os.path.exists(\n sub_2_super_frag_index_file):\n logger.info('level already built...')\n nfrags = file_len(new_fragments_list_file) - 1\n else:\n logger.info('writing new_files..')\n nfrags = subsample_data_set(current_contig_info,\n current_frag_list, fact_sub_sampling,\n current_abs_fragments_contacts,\n new_abs_fragments_contacts_file, min_bin_per_contig,\n new_contig_list_file, new_fragments_list_file,\n sub_2_super_frag_index_file)\n try:\n status = pyramid_handle.attrs[str(level)] == 'done'\n except KeyError:\n pyramid_handle.attrs[str(level)] = 'pending'\n status = False\n if not status:\n logger.info('Start filling the pyramid')\n fill_sparse_pyramid_level(pyramid_handle, level,\n new_abs_fragments_contacts_file, nfrags)\n pyramid_handle.attrs[str(level)] = 'done'\n current_frag_list = new_fragments_list_file\n current_contig_info = new_contig_list_file\n current_abs_fragments_contacts = new_abs_fragments_contacts_file\n sub_2_super_frag_index_file = os.path.join(pyramid_level_folder, \n level_pyramid + 'sub_2_super_index_frag.txt')\n logger.info('pyramid built.')\n pyramid_handle.close()\n",
"role": "user"
},
{
"content": "build",
"role": "assistant"
}
] |
def x(abs_contact_file, coo_file):
sparse_dict = dict()
h = open(abs_contact_file, 'r')
all_lines = h.readlines()
n_lines = len(all_lines)
for i in range(1, n_lines):
line = all_lines[i]
dat = line.split()
mates = [int(dat[0]), int(dat[1])]
mates.sort()
f1 = mates[0] - 1
f2 = mates[1] - 1
if f1 in sparse_dict:
if f2 in sparse_dict[f1]:
sparse_dict[f1][f2] += 1
else:
sparse_dict[f1][f2] = 1
else:
sparse_dict[f1] = dict()
sparse_dict[f1][f2] = 1
keys = list(sparse_dict.keys())
keys.sort()
h.close()
h_coo = open(coo_file, 'w')
h_coo.write('%s\t%s\t%s\n' % ('id_frag_a', 'id_frag_b', 'n_contact'))
for fa in keys:
d_fb = sparse_dict[fa]
keys_b = list(d_fb.keys())
keys_b.sort()
for fb in keys_b:
nc = d_fb[fb]
h_coo.write('%s\t%s\t%s\n' % (str(fa), str(fb), str(nc)))
h_coo.close()
h.close()
| abs_contact_2_coo_file | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(abs_contact_file, coo_file):\n sparse_dict = dict()\n h = open(abs_contact_file, 'r')\n all_lines = h.readlines()\n n_lines = len(all_lines)\n for i in range(1, n_lines):\n line = all_lines[i]\n dat = line.split()\n mates = [int(dat[0]), int(dat[1])]\n mates.sort()\n f1 = mates[0] - 1\n f2 = mates[1] - 1\n if f1 in sparse_dict:\n if f2 in sparse_dict[f1]:\n sparse_dict[f1][f2] += 1\n else:\n sparse_dict[f1][f2] = 1\n else:\n sparse_dict[f1] = dict()\n sparse_dict[f1][f2] = 1\n keys = list(sparse_dict.keys())\n keys.sort()\n h.close()\n h_coo = open(coo_file, 'w')\n h_coo.write('%s\\t%s\\t%s\\n' % ('id_frag_a', 'id_frag_b', 'n_contact'))\n for fa in keys:\n d_fb = sparse_dict[fa]\n keys_b = list(d_fb.keys())\n keys_b.sort()\n for fb in keys_b:\n nc = d_fb[fb]\n h_coo.write('%s\\t%s\\t%s\\n' % (str(fa), str(fb), str(nc)))\n h_coo.close()\n h.close()\n",
"role": "user"
},
{
"content": "abs_contact_2_coo_file",
"role": "assistant"
}
] |
def x(pyramid_handle, level, contact_file, nfrags):
sparse_dict = dict()
h = open(contact_file, 'r')
all_lines = h.readlines()
n_lines = len(all_lines)
for i in range(1, n_lines):
line = all_lines[i]
dat = line.split()
mates = [int(dat[0]), int(dat[1])]
nc = int(dat[2])
mates.sort()
f1 = mates[0]
f2 = mates[1]
if f1 in sparse_dict:
if f2 in sparse_dict[f1]:
sparse_dict[f1][f2] += nc
else:
sparse_dict[f1][f2] = nc
else:
sparse_dict[f1] = dict()
sparse_dict[f1][f2] = nc
keys = list(sparse_dict.keys())
keys.sort()
out_r = []
out_c = []
out_d = []
for r in keys:
data = sparse_dict[r]
for c in list(data.keys()):
out_r.append(r)
out_c.append(c)
out_d.append(data[c])
n_on_pxls = len(out_d)
level_hdf5 = pyramid_handle.create_group(str(level))
data_2_sparse = level_hdf5.create_dataset('data', (3, n_on_pxls), 'i')
data_nfrags = level_hdf5.create_dataset('nfrags', (1, 1), 'i')
np_csr = np.zeros((3, n_on_pxls), dtype=np.int32)
np_csr[0, :] = out_r
np_csr[1, :] = out_c
np_csr[2, :] = out_d
data_2_sparse[0, :] = out_r
data_2_sparse[1, :] = out_c
data_2_sparse[2, :] = out_d
data_nfrags[:] = nfrags
| fill_sparse_pyramid_level | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pyramid_handle, level, contact_file, nfrags):\n sparse_dict = dict()\n h = open(contact_file, 'r')\n all_lines = h.readlines()\n n_lines = len(all_lines)\n for i in range(1, n_lines):\n line = all_lines[i]\n dat = line.split()\n mates = [int(dat[0]), int(dat[1])]\n nc = int(dat[2])\n mates.sort()\n f1 = mates[0]\n f2 = mates[1]\n if f1 in sparse_dict:\n if f2 in sparse_dict[f1]:\n sparse_dict[f1][f2] += nc\n else:\n sparse_dict[f1][f2] = nc\n else:\n sparse_dict[f1] = dict()\n sparse_dict[f1][f2] = nc\n keys = list(sparse_dict.keys())\n keys.sort()\n out_r = []\n out_c = []\n out_d = []\n for r in keys:\n data = sparse_dict[r]\n for c in list(data.keys()):\n out_r.append(r)\n out_c.append(c)\n out_d.append(data[c])\n n_on_pxls = len(out_d)\n level_hdf5 = pyramid_handle.create_group(str(level))\n data_2_sparse = level_hdf5.create_dataset('data', (3, n_on_pxls), 'i')\n data_nfrags = level_hdf5.create_dataset('nfrags', (1, 1), 'i')\n np_csr = np.zeros((3, n_on_pxls), dtype=np.int32)\n np_csr[0, :] = out_r\n np_csr[1, :] = out_c\n np_csr[2, :] = out_d\n data_2_sparse[0, :] = out_r\n data_2_sparse[1, :] = out_c\n data_2_sparse[2, :] = out_d\n data_nfrags[:] = nfrags\n",
"role": "user"
},
{
"content": "fill_sparse_pyramid_level",
"role": "assistant"
}
] |
def x(fragment_list, new_frag_list):
handle_frag_list = open(fragment_list, 'r')
handle_new_frag_list = open(new_frag_list, 'w')
handle_new_frag_list.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' % (
'id', 'chrom', 'start_pos', 'end_pos', 'size', 'gc_content',
'accu_frag', 'frag_start', 'frag_end'))
handle_frag_list.readline()
i = 0
while 1:
line_frag = handle_frag_list.readline()
if not line_frag:
handle_frag_list.close()
handle_new_frag_list.close()
break
i += 1
data = line_frag.split('\t')
id_init = data[0]
contig_name = data[1]
start_pos = data[2]
end_pos = data[3]
length_kb = data[4]
gc_content = str(float(data[5]))
accu_frag = str(1)
frag_start = id_init
frag_end = id_init
handle_new_frag_list.write('%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n' %
(id_init, contig_name, start_pos, end_pos, length_kb,
gc_content, accu_frag, frag_start, frag_end))
return i
| init_frag_list | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(fragment_list, new_frag_list):\n handle_frag_list = open(fragment_list, 'r')\n handle_new_frag_list = open(new_frag_list, 'w')\n handle_new_frag_list.write('%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\n' % (\n 'id', 'chrom', 'start_pos', 'end_pos', 'size', 'gc_content',\n 'accu_frag', 'frag_start', 'frag_end'))\n handle_frag_list.readline()\n i = 0\n while 1:\n line_frag = handle_frag_list.readline()\n if not line_frag:\n handle_frag_list.close()\n handle_new_frag_list.close()\n break\n i += 1\n data = line_frag.split('\\t')\n id_init = data[0]\n contig_name = data[1]\n start_pos = data[2]\n end_pos = data[3]\n length_kb = data[4]\n gc_content = str(float(data[5]))\n accu_frag = str(1)\n frag_start = id_init\n frag_end = id_init\n handle_new_frag_list.write('%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\t%s\\n' %\n (id_init, contig_name, start_pos, end_pos, length_kb,\n gc_content, accu_frag, frag_start, frag_end))\n return i\n",
"role": "user"
},
{
"content": "init_frag_list",
"role": "assistant"
}
] |
def x(self, curr_frag):
level = curr_frag[1]
frag = curr_frag[0]
output = []
if level > 0:
str_level = str(level)
sub_low = self.spec_level[str_level]['fragments_dict'][frag][
'sub_low_index']
sub_high = self.spec_level[str_level]['fragments_dict'][frag][
'sub_high_index']
new_level = level - 1
for i in range(sub_low, sub_high + 1):
output.append((i, new_level))
else:
output.append(curr_frag)
return output
| zoom_in_frag | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curr_frag):\n level = curr_frag[1]\n frag = curr_frag[0]\n output = []\n if level > 0:\n str_level = str(level)\n sub_low = self.spec_level[str_level]['fragments_dict'][frag][\n 'sub_low_index']\n sub_high = self.spec_level[str_level]['fragments_dict'][frag][\n 'sub_high_index']\n new_level = level - 1\n for i in range(sub_low, sub_high + 1):\n output.append((i, new_level))\n else:\n output.append(curr_frag)\n return output\n",
"role": "user"
},
{
"content": "zoom_in_frag",
"role": "assistant"
}
] |
def x(self, curr_frag):
level = curr_frag[1]
frag = curr_frag[0]
output = []
if level > 0:
str_level = str(level)
high_frag = self.spec_level[str_level]['fragments_dict'][frag][
'super_index']
new_level = level + 1
output = high_frag, new_level
else:
output = curr_frag
return output
| zoom_out_frag | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curr_frag):\n level = curr_frag[1]\n frag = curr_frag[0]\n output = []\n if level > 0:\n str_level = str(level)\n high_frag = self.spec_level[str_level]['fragments_dict'][frag][\n 'super_index']\n new_level = level + 1\n output = high_frag, new_level\n else:\n output = curr_frag\n return output\n",
"role": "user"
},
{
"content": "zoom_out_frag",
"role": "assistant"
}
] |
def x(self, curr_pixel):
low_frag = curr_pixel[0]
high_frag = curr_pixel[1]
level = curr_pixel[2]
if level > 0:
str_level = str(level)
low_sub_low = self.spec_level[str_level]['fragments_dict'][low_frag][
'sub_low_index']
low_sub_high = self.spec_level[str_level]['fragments_dict'][low_frag][
'sub_high_index']
high_sub_low = self.spec_level[str_level]['fragments_dict'][high_frag][
'sub_low_index']
high_sub_high = self.spec_level[str_level]['fragments_dict'][high_frag
]['sub_high_index']
vect = [low_sub_low, low_sub_high, high_sub_low, high_sub_high]
new_pix_low = min(vect)
new_pix_high = max(vect)
new_level = level - 1
new_pixel = [new_pix_low, new_pix_high, new_level]
else:
new_pixel = curr_pixel
return new_pixel
| zoom_in_pixel | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curr_pixel):\n low_frag = curr_pixel[0]\n high_frag = curr_pixel[1]\n level = curr_pixel[2]\n if level > 0:\n str_level = str(level)\n low_sub_low = self.spec_level[str_level]['fragments_dict'][low_frag][\n 'sub_low_index']\n low_sub_high = self.spec_level[str_level]['fragments_dict'][low_frag][\n 'sub_high_index']\n high_sub_low = self.spec_level[str_level]['fragments_dict'][high_frag][\n 'sub_low_index']\n high_sub_high = self.spec_level[str_level]['fragments_dict'][high_frag\n ]['sub_high_index']\n vect = [low_sub_low, low_sub_high, high_sub_low, high_sub_high]\n new_pix_low = min(vect)\n new_pix_high = max(vect)\n new_level = level - 1\n new_pixel = [new_pix_low, new_pix_high, new_level]\n else:\n new_pixel = curr_pixel\n return new_pixel\n",
"role": "user"
},
{
"content": "zoom_in_pixel",
"role": "assistant"
}
] |
def x(self, curr_pixel):
low_frag = curr_pixel[0]
high_frag = curr_pixel[1]
level = curr_pixel[2]
str_level = str(level)
if level < self.n_level - 1:
low_super = self.spec_level[str_level]['fragments_dict'][low_frag][
'super_index']
high_super = self.spec_level[str_level]['fragments_dict'][high_frag][
'sub_index']
new_pix_low = min([low_super, high_super])
new_pix_high = max([low_super, high_super])
new_level = level + 1
new_pixel = [new_pix_low, new_pix_high, new_level]
else:
new_pixel = curr_pixel
return new_pixel
| zoom_out_pixel | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, curr_pixel):\n low_frag = curr_pixel[0]\n high_frag = curr_pixel[1]\n level = curr_pixel[2]\n str_level = str(level)\n if level < self.n_level - 1:\n low_super = self.spec_level[str_level]['fragments_dict'][low_frag][\n 'super_index']\n high_super = self.spec_level[str_level]['fragments_dict'][high_frag][\n 'sub_index']\n new_pix_low = min([low_super, high_super])\n new_pix_high = max([low_super, high_super])\n new_level = level + 1\n new_pixel = [new_pix_low, new_pix_high, new_level]\n else:\n new_pixel = curr_pixel\n return new_pixel\n",
"role": "user"
},
{
"content": "zoom_out_pixel",
"role": "assistant"
}
] |
def x(self, area):
x = area[0]
y = area[1]
level = x[2]
logger.debug('x = {}'.format(x))
logger.debug('y = {}'.format(y))
logger.debug('level = {}'.format(level))
if level == y[2] and level > 0:
new_level = level - 1
high_x = self.zoom_in_pixel(x)
high_y = self.zoom_in_pixel(y)
new_x = [min([high_x[0], high_y[0]]), min([high_x[1], high_y[1]]),
new_level]
new_y = [max([high_x[0], high_y[0]]), max([high_x[1], high_y[1]]),
new_level]
new_area = [new_x, new_y]
else:
new_area = area
return new_area
| zoom_in_area | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, area):\n x = area[0]\n y = area[1]\n level = x[2]\n logger.debug('x = {}'.format(x))\n logger.debug('y = {}'.format(y))\n logger.debug('level = {}'.format(level))\n if level == y[2] and level > 0:\n new_level = level - 1\n high_x = self.zoom_in_pixel(x)\n high_y = self.zoom_in_pixel(y)\n new_x = [min([high_x[0], high_y[0]]), min([high_x[1], high_y[1]]),\n new_level]\n new_y = [max([high_x[0], high_y[0]]), max([high_x[1], high_y[1]]),\n new_level]\n new_area = [new_x, new_y]\n else:\n new_area = area\n return new_area\n",
"role": "user"
},
{
"content": "zoom_in_area",
"role": "assistant"
}
] |
def x(args, config_path='.inlineplz.yml'):
config = {}
try:
with open(config_path) as configfile:
config = yaml.safe_load(configfile) or {}
if config:
print('Loaded config from {}'.format(config_path))
pprint.pprint(config)
except (IOError, OSError, yaml.parser.ParserError):
traceback.print_exc()
args = update_from_config(args, config)
args.ignore_paths = args.__dict__.get('ignore_paths') or ['node_modules',
'.git', '.tox', 'godeps', 'vendor', 'site-packages', 'venv', '.env',
'spec', 'migrate', 'bin', 'fixtures', 'cassettes', '.cache',
'.idea', '.pytest_cache', '__pycache__', 'dist']
if config_path != '.inlineplz.yml':
return args
if args.config_dir and not config:
new_config_path = os.path.join(args.config_dir, config_path)
if os.path.exists(new_config_path):
return load_config(args, new_config_path)
return args
| load_config | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args, config_path='.inlineplz.yml'):\n config = {}\n try:\n with open(config_path) as configfile:\n config = yaml.safe_load(configfile) or {}\n if config:\n print('Loaded config from {}'.format(config_path))\n pprint.pprint(config)\n except (IOError, OSError, yaml.parser.ParserError):\n traceback.print_exc()\n args = update_from_config(args, config)\n args.ignore_paths = args.__dict__.get('ignore_paths') or ['node_modules',\n '.git', '.tox', 'godeps', 'vendor', 'site-packages', 'venv', '.env',\n 'spec', 'migrate', 'bin', 'fixtures', 'cassettes', '.cache',\n '.idea', '.pytest_cache', '__pycache__', 'dist']\n if config_path != '.inlineplz.yml':\n return args\n if args.config_dir and not config:\n new_config_path = os.path.join(args.config_dir, config_path)\n if os.path.exists(new_config_path):\n return load_config(args, new_config_path)\n return args\n",
"role": "user"
},
{
"content": "load_config",
"role": "assistant"
}
] |
def x(args):
trusted = args.trusted
args = load_config(args)
print('Args:')
pprint.pprint(args)
ret_code = 0
url = args.url
if args.repo_slug:
owner = args.repo_slug.split('/')[0]
repo = args.repo_slug.split('/')[1]
else:
owner = args.owner
repo = args.repo
if args.url:
try:
url_to_parse = args.url
if not url_to_parse.endswith('.git'):
url_to_parse += '.git'
parsed = giturlparse.parse(str(url_to_parse))
url = parsed.resource
if not url.startswith('https://'):
url = 'https://' + url
if parsed.owner:
owner = parsed.owner
if parsed.name:
repo = parsed.name
except giturlparse.parser.ParserError:
pass
if not args.dryrun and args.interface not in interfaces.INTERFACES:
print('Valid inline-plz config not found')
return 1
print('Using interface: {0}'.format(args.interface))
my_interface = None
filenames = None
if not args.dryrun:
my_interface = interfaces.INTERFACES[args.interface](owner, repo,
args.pull_request, args.branch, args.token, url, args.commit,
args.ignore_paths, args.prefix, args.autofix, args.set_status)
if not my_interface.is_valid():
print('Invalid review. Exiting.')
return 0
filenames = my_interface.filenames
my_interface.start_review()
try:
linter_runner = LinterRunner(args.install, args.autorun, args.
ignore_paths, args.config_dir, args.enabled_linters, args.
disabled_linters, args.autofix, trusted, filenames)
messages = linter_runner.run_linters()
except Exception:
print('Linting failed:\n{}'.format(traceback.format_exc()))
print('inline-plz version: {}'.format(__version__))
print('Python version: {}'.format(sys.version))
ret_code = 1
if my_interface:
my_interface.finish_review(error=True)
return ret_code
print('{} lint messages found'.format(len(messages)))
print('inline-plz version: {}'.format(__version__))
print('Python version: {}'.format(sys.version))
if args.dryrun:
print_messages(messages)
write_messages_to_json(messages)
return ret_code
try:
if my_interface.post_messages(messages, args.max_comments):
if not args.zero_exit:
ret_code = 1
if args.delete_outdated:
my_interface.clear_outdated_messages()
my_interface.finish_review(success=False)
write_messages_to_json(messages)
return ret_code
if args.delete_outdated:
my_interface.clear_outdated_messages()
my_interface.finish_review(success=True)
except KeyError:
print('Interface not found: {}'.format(args.interface))
traceback.print_exc()
write_messages_to_json(messages)
return ret_code
| inline | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(args):\n trusted = args.trusted\n args = load_config(args)\n print('Args:')\n pprint.pprint(args)\n ret_code = 0\n url = args.url\n if args.repo_slug:\n owner = args.repo_slug.split('/')[0]\n repo = args.repo_slug.split('/')[1]\n else:\n owner = args.owner\n repo = args.repo\n if args.url:\n try:\n url_to_parse = args.url\n if not url_to_parse.endswith('.git'):\n url_to_parse += '.git'\n parsed = giturlparse.parse(str(url_to_parse))\n url = parsed.resource\n if not url.startswith('https://'):\n url = 'https://' + url\n if parsed.owner:\n owner = parsed.owner\n if parsed.name:\n repo = parsed.name\n except giturlparse.parser.ParserError:\n pass\n if not args.dryrun and args.interface not in interfaces.INTERFACES:\n print('Valid inline-plz config not found')\n return 1\n print('Using interface: {0}'.format(args.interface))\n my_interface = None\n filenames = None\n if not args.dryrun:\n my_interface = interfaces.INTERFACES[args.interface](owner, repo,\n args.pull_request, args.branch, args.token, url, args.commit,\n args.ignore_paths, args.prefix, args.autofix, args.set_status)\n if not my_interface.is_valid():\n print('Invalid review. Exiting.')\n return 0\n filenames = my_interface.filenames\n my_interface.start_review()\n try:\n linter_runner = LinterRunner(args.install, args.autorun, args.\n ignore_paths, args.config_dir, args.enabled_linters, args.\n disabled_linters, args.autofix, trusted, filenames)\n messages = linter_runner.run_linters()\n except Exception:\n print('Linting failed:\\n{}'.format(traceback.format_exc()))\n print('inline-plz version: {}'.format(__version__))\n print('Python version: {}'.format(sys.version))\n ret_code = 1\n if my_interface:\n my_interface.finish_review(error=True)\n return ret_code\n print('{} lint messages found'.format(len(messages)))\n print('inline-plz version: {}'.format(__version__))\n print('Python version: {}'.format(sys.version))\n if args.dryrun:\n print_messages(messages)\n write_messages_to_json(messages)\n return ret_code\n try:\n if my_interface.post_messages(messages, args.max_comments):\n if not args.zero_exit:\n ret_code = 1\n if args.delete_outdated:\n my_interface.clear_outdated_messages()\n my_interface.finish_review(success=False)\n write_messages_to_json(messages)\n return ret_code\n if args.delete_outdated:\n my_interface.clear_outdated_messages()\n my_interface.finish_review(success=True)\n except KeyError:\n print('Interface not found: {}'.format(args.interface))\n traceback.print_exc()\n write_messages_to_json(messages)\n return ret_code\n",
"role": "user"
},
{
"content": "inline",
"role": "assistant"
}
] |
def x():
for install_dir in linters.INSTALL_DIRS:
try:
shutil.rmtree(install_dir, ignore_errors=True)
except Exception:
print('{0}\nFailed to delete {1}'.format(traceback.format_exc(),
install_dir))
sys.stdout.flush()
| cleanup | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n for install_dir in linters.INSTALL_DIRS:\n try:\n shutil.rmtree(install_dir, ignore_errors=True)\n except Exception:\n print('{0}\\nFailed to delete {1}'.format(traceback.format_exc(),\n install_dir))\n sys.stdout.flush()\n",
"role": "user"
},
{
"content": "cleanup",
"role": "assistant"
}
] |
async def apply_json(self, data):
"""Apply a JSON data object for a service
"""
if not isinstance(data, list):
data = [data]
result = []
for entry in data:
if not isinstance(entry, dict):
raise KongError('dictionary required')
ensure = entry.pop('ensure', None)
name = entry.pop('name', None)
routes = entry.pop('routes', [])
plugins = entry.pop('plugins', [])
host = entry.pop('host', None)
if host in LOCAL_HOST:
host = local_ip()
if not name:
raise KongError('Service name is required')
if ensure in REMOVE:
if await self.has(name):
await self.delete(name)
continue
config = entry.pop('config', None)
if isinstance(config, dict):
entry.update(config)
if await self.has(name):
srv = await self.update(name, host=host, **entry)
else:
srv = await self.create(name=name, host=host, **entry)
srv.data['routes'] = await srv.routes.apply_json(routes)
srv.data['plugins'] = await srv.plugins.apply_json(plugins)
result.append(srv.data)
return result
| apply_json | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def apply_json(self, data):\n \"\"\"Apply a JSON data object for a service\n \"\"\"\n if not isinstance(data, list):\n data = [data]\n result = []\n for entry in data:\n if not isinstance(entry, dict):\n raise KongError('dictionary required')\n ensure = entry.pop('ensure', None)\n name = entry.pop('name', None)\n routes = entry.pop('routes', [])\n plugins = entry.pop('plugins', [])\n host = entry.pop('host', None)\n if host in LOCAL_HOST:\n host = local_ip()\n if not name:\n raise KongError('Service name is required')\n if ensure in REMOVE:\n if await self.has(name):\n await self.delete(name)\n continue\n config = entry.pop('config', None)\n if isinstance(config, dict):\n entry.update(config)\n if await self.has(name):\n srv = await self.update(name, host=host, **entry)\n else:\n srv = await self.create(name=name, host=host, **entry)\n srv.data['routes'] = await srv.routes.apply_json(routes)\n srv.data['plugins'] = await srv.plugins.apply_json(plugins)\n result.append(srv.data)\n return result\n",
"role": "user"
},
{
"content": "apply_json",
"role": "assistant"
}
] |
async def apply_json(self, data):
"""Apply a JSON data object for a service
"""
if not isinstance(data, list):
data = [data]
result = []
for entry in data:
name = entry.pop('name')
if await self.has(name):
sni = await self.update(name, **entry)
else:
sni = await self.create(name=name, **entry)
result.append(sni.data)
return result
| apply_json | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "async def apply_json(self, data):\n \"\"\"Apply a JSON data object for a service\n \"\"\"\n if not isinstance(data, list):\n data = [data]\n result = []\n for entry in data:\n name = entry.pop('name')\n if await self.has(name):\n sni = await self.update(name, **entry)\n else:\n sni = await self.create(name=name, **entry)\n result.append(sni.data)\n return result\n",
"role": "user"
},
{
"content": "apply_json",
"role": "assistant"
}
] |
def x(self, size):
self.instance.resize_volume(size)
self.size = size
| resize | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, size):\n self.instance.resize_volume(size)\n self.size = size\n",
"role": "user"
},
{
"content": "resize",
"role": "assistant"
}
] |
def x(self, item):
resource = super(CloudDatabaseManager, self).get(item)
resource.volume = CloudDatabaseVolume(resource, resource.volume)
return resource
| get | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, item):\n resource = super(CloudDatabaseManager, self).get(item)\n resource.volume = CloudDatabaseVolume(resource, resource.volume)\n return resource\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, name, flavor=None, volume=None, databases=None, users=None,
version=None, type=None):
if flavor is None:
flavor = 1
flavor_ref = self.api._get_flavor_ref(flavor)
if volume is None:
volume = 1
if databases is None:
databases = []
if users is None:
users = []
body = {'instance': {'name': name, 'flavorRef': flavor_ref, 'volume': {
'size': volume}, 'databases': databases, 'users': users}}
if type is not None or version is not None:
required = type, version
if all(required):
body['instance']['datastore'] = {'type': type, 'version': version}
else:
raise exc.MissingCloudDatabaseParameter(
'Specifying a datastore requires both the datastore type as well as the version.'
)
return body
| create_body | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, flavor=None, volume=None, databases=None, users=None,\n version=None, type=None):\n if flavor is None:\n flavor = 1\n flavor_ref = self.api._get_flavor_ref(flavor)\n if volume is None:\n volume = 1\n if databases is None:\n databases = []\n if users is None:\n users = []\n body = {'instance': {'name': name, 'flavorRef': flavor_ref, 'volume': {\n 'size': volume}, 'databases': databases, 'users': users}}\n if type is not None or version is not None:\n required = type, version\n if all(required):\n body['instance']['datastore'] = {'type': type, 'version': version}\n else:\n raise exc.MissingCloudDatabaseParameter(\n 'Specifying a datastore requires both the datastore type as well as the version.'\n )\n return body\n",
"role": "user"
},
{
"content": "create_body",
"role": "assistant"
}
] |
def x(self, instance, name, description=None):
body = {'backup': {'instance': utils.get_id(instance), 'name': name}}
if description is not None:
body['backup']['description'] = description
uri = '/backups'
resp, resp_body = self.api.method_post(uri, body=body)
mgr = self.api._backup_manager
return CloudDatabaseBackup(mgr, body.get('backup'))
| create_backup | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, name, description=None):\n body = {'backup': {'instance': utils.get_id(instance), 'name': name}}\n if description is not None:\n body['backup']['description'] = description\n uri = '/backups'\n resp, resp_body = self.api.method_post(uri, body=body)\n mgr = self.api._backup_manager\n return CloudDatabaseBackup(mgr, body.get('backup'))\n",
"role": "user"
},
{
"content": "create_backup",
"role": "assistant"
}
] |
def x(self, backup, name, flavor, volume):
flavor_ref = self.api._get_flavor_ref(flavor)
body = {'instance': {'name': name, 'flavorRef': flavor_ref, 'volume': {
'size': volume}, 'restorePoint': {'backupRef': utils.get_id(backup)}}}
uri = '/%s' % self.uri_base
resp, resp_body = self.api.method_post(uri, body=body)
return CloudDatabaseInstance(self, resp_body.get('instance', {}))
| restore_backup | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, backup, name, flavor, volume):\n flavor_ref = self.api._get_flavor_ref(flavor)\n body = {'instance': {'name': name, 'flavorRef': flavor_ref, 'volume': {\n 'size': volume}, 'restorePoint': {'backupRef': utils.get_id(backup)}}}\n uri = '/%s' % self.uri_base\n resp, resp_body = self.api.method_post(uri, body=body)\n return CloudDatabaseInstance(self, resp_body.get('instance', {}))\n",
"role": "user"
},
{
"content": "restore_backup",
"role": "assistant"
}
] |
def x(self, instance=None, marker=0, limit=20):
return self.api._backup_manager.list(instance=instance, limit=limit,
marker=marker)
| list_backups | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance=None, marker=0, limit=20):\n return self.api._backup_manager.list(instance=instance, limit=limit,\n marker=marker)\n",
"role": "user"
},
{
"content": "list_backups",
"role": "assistant"
}
] |
def x(self, instance, marker=0, limit=20):
uri = '/%s/%s/backups?limit=%d&marker=%d' % (self.uri_base, utils.
get_id(instance), int(limit), int(marker))
resp, resp_body = self.api.method_get(uri)
mgr = self.api._backup_manager
return [CloudDatabaseBackup(mgr, backup) for backup in resp_body.get(
'backups')]
| list_backups_for_instance | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance, marker=0, limit=20):\n uri = '/%s/%s/backups?limit=%d&marker=%d' % (self.uri_base, utils.\n get_id(instance), int(limit), int(marker))\n resp, resp_body = self.api.method_get(uri)\n mgr = self.api._backup_manager\n return [CloudDatabaseBackup(mgr, backup) for backup in resp_body.get(\n 'backups')]\n",
"role": "user"
},
{
"content": "list_backups_for_instance",
"role": "assistant"
}
] |
def x(self, dbs, strict=True):
dbs = utils.coerce_to_list(dbs)
db_names = [utils.get_name(db) for db in dbs]
if strict:
good_dbs = self.instance.list_databases()
good_names = [utils.get_name(good_db) for good_db in good_dbs]
bad_names = [db_name for db_name in db_names if db_name not in
good_names]
if bad_names:
bad = ', '.join(bad_names)
raise exc.NoSuchDatabase(
'The following database(s) were not found: %s' % bad)
return db_names
| get_db_names | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, dbs, strict=True):\n dbs = utils.coerce_to_list(dbs)\n db_names = [utils.get_name(db) for db in dbs]\n if strict:\n good_dbs = self.instance.list_databases()\n good_names = [utils.get_name(good_db) for good_db in good_dbs]\n bad_names = [db_name for db_name in db_names if db_name not in\n good_names]\n if bad_names:\n bad = ', '.join(bad_names)\n raise exc.NoSuchDatabase(\n 'The following database(s) were not found: %s' % bad)\n return db_names\n",
"role": "user"
},
{
"content": "get_db_names",
"role": "assistant"
}
] |
def x(self, user, name=None, password=None, host=None):
if not any((name, password, host)):
raise exc.MissingDBUserParameters(
'You must supply at least one of the following: new username, new password, or new host specification.'
)
if not isinstance(user, CloudDatabaseUser):
user = self.get(user)
dct = {}
if name and name != user.name:
dct['name'] = name
if host and host != user.host:
dct['host'] = host
if password:
dct['password'] = password
if not dct:
raise exc.DBUpdateUnchanged(
'You must supply at least one changed value when updating a user.')
uri = '/%s/%s' % (self.uri_base, user.name)
body = {'user': dct}
resp, resp_body = self.api.method_put(uri, body=body)
return None
| update | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, user, name=None, password=None, host=None):\n if not any((name, password, host)):\n raise exc.MissingDBUserParameters(\n 'You must supply at least one of the following: new username, new password, or new host specification.'\n )\n if not isinstance(user, CloudDatabaseUser):\n user = self.get(user)\n dct = {}\n if name and name != user.name:\n dct['name'] = name\n if host and host != user.host:\n dct['host'] = host\n if password:\n dct['password'] = password\n if not dct:\n raise exc.DBUpdateUnchanged(\n 'You must supply at least one changed value when updating a user.')\n uri = '/%s/%s' % (self.uri_base, user.name)\n body = {'user': dct}\n resp, resp_body = self.api.method_put(uri, body=body)\n return None\n",
"role": "user"
},
{
"content": "update",
"role": "assistant"
}
] |
def x(self, user):
user = utils.get_name(user)
uri = '/%s/%s/databases' % (self.uri_base, user)
try:
resp, resp_body = self.api.method_get(uri)
except exc.NotFound as e:
raise exc.NoSuchDatabaseUser("User '%s' does not exist." % user)
dbs = resp_body.get('databases', {})
return [CloudDatabaseDatabase(self, db) for db in dbs]
| list_user_access | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, user):\n user = utils.get_name(user)\n uri = '/%s/%s/databases' % (self.uri_base, user)\n try:\n resp, resp_body = self.api.method_get(uri)\n except exc.NotFound as e:\n raise exc.NoSuchDatabaseUser(\"User '%s' does not exist.\" % user)\n dbs = resp_body.get('databases', {})\n return [CloudDatabaseDatabase(self, db) for db in dbs]\n",
"role": "user"
},
{
"content": "list_user_access",
"role": "assistant"
}
] |
def x(self, user, db_names, strict=True):
user = utils.get_name(user)
uri = '/%s/%s/databases' % (self.uri_base, user)
db_names = self._get_db_names(db_names, strict=strict)
dbs = [{'name': db_name} for db_name in db_names]
body = {'databases': dbs}
try:
resp, resp_body = self.api.method_put(uri, body=body)
except exc.NotFound as e:
raise exc.NoSuchDatabaseUser("User '%s' does not exist." % user)
| grant_user_access | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, user, db_names, strict=True):\n user = utils.get_name(user)\n uri = '/%s/%s/databases' % (self.uri_base, user)\n db_names = self._get_db_names(db_names, strict=strict)\n dbs = [{'name': db_name} for db_name in db_names]\n body = {'databases': dbs}\n try:\n resp, resp_body = self.api.method_put(uri, body=body)\n except exc.NotFound as e:\n raise exc.NoSuchDatabaseUser(\"User '%s' does not exist.\" % user)\n",
"role": "user"
},
{
"content": "grant_user_access",
"role": "assistant"
}
] |
def x(self, user, db_names, strict=True):
user = utils.get_name(user)
db_names = self._get_db_names(db_names, strict=strict)
bad_names = []
for db_name in db_names:
uri = '/%s/%s/databases/%s' % (self.uri_base, user, db_name)
resp, resp_body = self.api.method_delete(uri)
| revoke_user_access | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, user, db_names, strict=True):\n user = utils.get_name(user)\n db_names = self._get_db_names(db_names, strict=strict)\n bad_names = []\n for db_name in db_names:\n uri = '/%s/%s/databases/%s' % (self.uri_base, user, db_name)\n resp, resp_body = self.api.method_delete(uri)\n",
"role": "user"
},
{
"content": "revoke_user_access",
"role": "assistant"
}
] |
def x(self, instance=None, limit=20, marker=0):
if instance is None:
return super(CloudDatabaseBackupManager, self).list()
return self.api._manager._list_backups_for_instance(instance, limit=
limit, marker=marker)
| list | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, instance=None, limit=20, marker=0):\n if instance is None:\n return super(CloudDatabaseBackupManager, self).list()\n return self.api._manager._list_backups_for_instance(instance, limit=\n limit, marker=marker)\n",
"role": "user"
},
{
"content": "list",
"role": "assistant"
}
] |
def x(self):
super(CloudDatabaseInstance, self).get()
self.volume = CloudDatabaseVolume(self, self.volume)
| get | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n super(CloudDatabaseInstance, self).get()\n self.volume = CloudDatabaseVolume(self, self.volume)\n",
"role": "user"
},
{
"content": "get",
"role": "assistant"
}
] |
def x(self, limit=None, marker=None):
return self._database_manager.list(limit=limit, marker=marker)
| list_databases | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, limit=None, marker=None):\n return self._database_manager.list(limit=limit, marker=marker)\n",
"role": "user"
},
{
"content": "list_databases",
"role": "assistant"
}
] |
def x(self, limit=None, marker=None):
return self._user_manager.list(limit=limit, marker=marker)
| list_users | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, limit=None, marker=None):\n return self._user_manager.list(limit=limit, marker=marker)\n",
"role": "user"
},
{
"content": "list_users",
"role": "assistant"
}
] |
def x(self, name):
try:
return self._user_manager.get(name)
except exc.NotFound:
raise exc.NoSuchDatabaseUser("No user by the name '%s' exists." % name)
| get_user | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n try:\n return self._user_manager.get(name)\n except exc.NotFound:\n raise exc.NoSuchDatabaseUser(\"No user by the name '%s' exists.\" % name)\n",
"role": "user"
},
{
"content": "get_user",
"role": "assistant"
}
] |
def x(self, name):
try:
return [db for db in self.list_databases() if db.name == name][0]
except IndexError:
raise exc.NoSuchDatabase("No database by the name '%s' exists." % name)
| get_database | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name):\n try:\n return [db for db in self.list_databases() if db.name == name][0]\n except IndexError:\n raise exc.NoSuchDatabase(\"No database by the name '%s' exists.\" % name)\n",
"role": "user"
},
{
"content": "get_database",
"role": "assistant"
}
] |
def x(self, name, character_set=None, collate=None):
if character_set is None:
character_set = 'utf8'
if collate is None:
collate = 'utf8_general_ci'
self._database_manager.create(name=name, character_set=character_set,
collate=collate, return_none=True)
return self._database_manager.find(name=name)
| create_database | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, character_set=None, collate=None):\n if character_set is None:\n character_set = 'utf8'\n if collate is None:\n collate = 'utf8_general_ci'\n self._database_manager.create(name=name, character_set=character_set,\n collate=collate, return_none=True)\n return self._database_manager.find(name=name)\n",
"role": "user"
},
{
"content": "create_database",
"role": "assistant"
}
] |
def x(self, name, password, database_names, host=None):
if not isinstance(database_names, (list, tuple)):
database_names = [database_names]
database_names = [(db if isinstance(db, six.string_types) else db.name) for
db in database_names]
self._user_manager.create(name=name, password=password, database_names=
database_names, host=host, return_none=True)
return self._user_manager.find(name=name)
| create_user | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, name, password, database_names, host=None):\n if not isinstance(database_names, (list, tuple)):\n database_names = [database_names]\n database_names = [(db if isinstance(db, six.string_types) else db.name) for\n db in database_names]\n self._user_manager.create(name=name, password=password, database_names=\n database_names, host=host, return_none=True)\n return self._user_manager.find(name=name)\n",
"role": "user"
},
{
"content": "create_user",
"role": "assistant"
}
] |