source_code
stringlengths
45
7.24k
function_name
stringlengths
1
111
messages
list
def x(pattern): return pattern[0, 0] * 2 ** 0 + pattern[0, 1] * 2 ** 1 + pattern[0, 2 ] * 2 ** 2 + pattern[1, 0] * 2 ** 3 + pattern[1, 1] * 2 ** 4 + pattern[ 1, 2] * 2 ** 5 + pattern[2, 0] * 2 ** 6 + pattern[2, 1 ] * 2 ** 7 + pattern[2, 2] * 2 ** 8
index_of
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pattern):\n return pattern[0, 0] * 2 ** 0 + pattern[0, 1] * 2 ** 1 + pattern[0, 2\n ] * 2 ** 2 + pattern[1, 0] * 2 ** 3 + pattern[1, 1] * 2 ** 4 + pattern[\n 1, 2] * 2 ** 5 + pattern[2, 0] * 2 ** 6 + pattern[2, 1\n ] * 2 ** 7 + pattern[2, 2] * 2 ** 8\n", "role": "user" }, { "content": "index_of", "role": "assistant" } ]
def x(value, pattern, care=np.ones((3, 3), bool)): def x(index, p, i, j): return (index & 2 ** p > 0) == pattern[i, j] or not care[i, j] return np.array([(value if fn(i, 0, 0, 0) and fn(i, 1, 0, 1) and fn(i, 2, 0, 2) and fn(i, 3, 1, 0) and fn(i, 4, 1, 1) and fn(i, 5, 1, 2) and fn(i, 6, 2, 0) and fn(i, 7, 2, 1) and fn(i, 8, 2, 2) else not value ) for i in range(512)], bool)
make_table
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(value, pattern, care=np.ones((3, 3), bool)):\n\n def x(index, p, i, j):\n return (index & 2 ** p > 0) == pattern[i, j] or not care[i, j]\n return np.array([(value if fn(i, 0, 0, 0) and fn(i, 1, 0, 1) and fn(i, \n 2, 0, 2) and fn(i, 3, 1, 0) and fn(i, 4, 1, 1) and fn(i, 5, 1, 2) and\n fn(i, 6, 2, 0) and fn(i, 7, 2, 1) and fn(i, 8, 2, 2) else not value\n ) for i in range(512)], bool)\n", "role": "user" }, { "content": "make_table", "role": "assistant" } ]
def x(image, mask=None): global branchpoints_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, branchpoints_table, False, 1) if not mask is None: result[~mask] = image[~mask] return result
branchpoints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n global branchpoints_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, branchpoints_table, False, 1)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "branchpoints", "role": "assistant" } ]
def x(image, mask=None): global branchings_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False kernel = np.array([[1, 2, 4], [8, 16, 32], [64, 128, 256]]) indexer = scind.convolve(masked_image.astype(int), kernel, mode='constant' ).astype(int) result = branchings_table[indexer] return result
branchings
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n global branchings_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n kernel = np.array([[1, 2, 4], [8, 16, 32], [64, 128, 256]])\n indexer = scind.convolve(masked_image.astype(int), kernel, mode='constant'\n ).astype(int)\n result = branchings_table[indexer]\n return result\n", "role": "user" }, { "content": "branchings", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global bridge_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, bridge_table, False, iterations) if not mask is None: result[~mask] = image[~mask] return result
bridge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global bridge_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, bridge_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "bridge", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global clean_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, clean_table, False, iterations) if not mask is None: result[~mask] = image[~mask] return result
clean
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global clean_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, clean_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "clean", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global diag_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, diag_table, False, iterations) if not mask is None: result[~mask] = image[~mask] return result
diag
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global diag_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, diag_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "diag", "role": "assistant" } ]
def x(image, mask=None): global endpoints_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, endpoints_table, False, 1) if not mask is None: result[~mask] = image[~mask] return result
endpoints
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n global endpoints_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, endpoints_table, False, 1)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "endpoints", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global fill_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = True result = table_lookup(masked_image, fill_table, True, iterations) if not mask is None: result[~mask] = image[~mask] return result
fill
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global fill_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = True\n result = table_lookup(masked_image, fill_table, True, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "fill", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global fill4_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = True result = table_lookup(masked_image, fill4_table, True, iterations) if not mask is None: result[~mask] = image[~mask] return result
fill4
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global fill4_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = True\n result = table_lookup(masked_image, fill4_table, True, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "fill4", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global hbreak_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, hbreak_table, False) if not mask is None: result[~mask] = image[~mask] return result
hbreak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global hbreak_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, hbreak_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "hbreak", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global vbreak_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, vbreak_table, False) if not mask is None: result[~mask] = image[~mask] return result
vbreak
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global vbreak_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, vbreak_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "vbreak", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global majority_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, majority_table, False, iterations) if not mask is None: result[~mask] = image[~mask] return result
majority
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global majority_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, majority_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "majority", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global remove_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, remove_table, False) if not mask is None: result[~mask] = image[~mask] return result
remove
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global remove_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, remove_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "remove", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global spur_table_1, spur_table_2 if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False index_i, index_j, masked_image = prepare_for_index_lookup(masked_image, False) if iterations is None: iterations = len(index_i) for i in range(iterations): for table in (spur_table_1, spur_table_2): index_i, index_j = index_lookup(index_i, index_j, masked_image, table, 1) masked_image = extract_from_image_lookup(image, index_i, index_j) if not mask is None: masked_image[~mask] = image[~mask] return masked_image
spur
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global spur_table_1, spur_table_2\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,\n False)\n if iterations is None:\n iterations = len(index_i)\n for i in range(iterations):\n for table in (spur_table_1, spur_table_2):\n index_i, index_j = index_lookup(index_i, index_j, masked_image,\n table, 1)\n masked_image = extract_from_image_lookup(image, index_i, index_j)\n if not mask is None:\n masked_image[~mask] = image[~mask]\n return masked_image\n", "role": "user" }, { "content": "spur", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global thicken_table if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False result = table_lookup(masked_image, thicken_table, False, iterations) if not mask is None: result[~mask] = image[~mask] return result
thicken
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global thicken_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, thicken_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "thicken", "role": "assistant" } ]
def x(image, mask=None, iterations=1): global thin_table, eight_connect if thin_table is None: thin_table = np.zeros((2, 512), bool) for i in range(512): if i & 16 == 0: continue pat = pattern_of(i & ~16) ipat = pat.astype(int) if scind.label(pat, eight_connect)[1] != 1: thin_table[:, i] = True continue n1 = (ipat[0, 0] or ipat[0, 1]) + (ipat[0, 2] or ipat[1, 2]) + ( ipat[2, 2] or ipat[2, 1]) + (ipat[2, 0] or ipat[1, 0]) n2 = (ipat[0, 1] or ipat[0, 2]) + (ipat[1, 2] or ipat[2, 2]) + ( ipat[2, 1] or ipat[2, 0]) + (ipat[1, 0] or ipat[0, 0]) if min(n1, n2) not in (2, 3): thin_table[:, i] = True continue thin_table[0, i] = (pat[0, 1] or pat[0, 2] or not pat[2, 2] ) and pat[1, 2] thin_table[1, i] = (pat[2, 1] or pat[2, 0] or not pat[0, 0] ) and pat[1, 0] if mask is None: masked_image = image.copy() else: masked_image = image.copy() masked_image[~mask] = False index_i, index_j, masked_image = prepare_for_index_lookup(masked_image, False) if iterations is None: iterations = len(index_i) for i in range(iterations): hit_count = len(index_i) for j in range(2): index_i, index_j = index_lookup(index_i, index_j, masked_image, thin_table[j], 1) if hit_count == len(index_i): break masked_image = extract_from_image_lookup(image, index_i, index_j) if not mask is None: masked_image[~mask] = masked_image[~mask] return masked_image
thin
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, iterations=1):\n global thin_table, eight_connect\n if thin_table is None:\n thin_table = np.zeros((2, 512), bool)\n for i in range(512):\n if i & 16 == 0:\n continue\n pat = pattern_of(i & ~16)\n ipat = pat.astype(int)\n if scind.label(pat, eight_connect)[1] != 1:\n thin_table[:, i] = True\n continue\n n1 = (ipat[0, 0] or ipat[0, 1]) + (ipat[0, 2] or ipat[1, 2]) + (\n ipat[2, 2] or ipat[2, 1]) + (ipat[2, 0] or ipat[1, 0])\n n2 = (ipat[0, 1] or ipat[0, 2]) + (ipat[1, 2] or ipat[2, 2]) + (\n ipat[2, 1] or ipat[2, 0]) + (ipat[1, 0] or ipat[0, 0])\n if min(n1, n2) not in (2, 3):\n thin_table[:, i] = True\n continue\n thin_table[0, i] = (pat[0, 1] or pat[0, 2] or not pat[2, 2]\n ) and pat[1, 2]\n thin_table[1, i] = (pat[2, 1] or pat[2, 0] or not pat[0, 0]\n ) and pat[1, 0]\n if mask is None:\n masked_image = image.copy()\n else:\n masked_image = image.copy()\n masked_image[~mask] = False\n index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,\n False)\n if iterations is None:\n iterations = len(index_i)\n for i in range(iterations):\n hit_count = len(index_i)\n for j in range(2):\n index_i, index_j = index_lookup(index_i, index_j, masked_image,\n thin_table[j], 1)\n if hit_count == len(index_i):\n break\n masked_image = extract_from_image_lookup(image, index_i, index_j)\n if not mask is None:\n masked_image[~mask] = masked_image[~mask]\n return masked_image\n", "role": "user" }, { "content": "thin", "role": "assistant" } ]
def x(labels): max_label = np.max(labels) new_labels = np.zeros(np.array(labels.shape) + 2, labels.dtype) new_labels[1:-1, 1:-1] = labels labels = new_labels adjacent_mask = adjacent(labels) adjacent_i, adjacent_j = np.argwhere(adjacent_mask).transpose() count = len(adjacent_i) if count == 0: return np.zeros(max_label, int), np.zeros(max_label, int), np.zeros( 0, int) v_label = np.hstack([labels[adjacent_i, adjacent_j]] * 8) v_neighbor = np.zeros(count * 8, int) index = 0 for i, j in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)): v_neighbor[index:index + count] = labels[adjacent_i + i, adjacent_j + j ] index += count sort_order = np.lexsort((v_neighbor, v_label)) v_label = v_label[sort_order] v_neighbor = v_neighbor[sort_order] first_occurrence = np.ones(len(v_label), bool) first_occurrence[1:] = (v_label[1:] != v_label[:-1]) | (v_neighbor[1:] != v_neighbor[:-1]) v_label = v_label[first_occurrence] v_neighbor = v_neighbor[first_occurrence] to_remove = (v_label == v_neighbor) | (v_neighbor == 0) v_label = v_label[~to_remove] v_neighbor = v_neighbor[~to_remove] v_count = fixup_scipy_ndimage_result(scind.sum(np.ones(v_label.shape), v_label, np.arange(max_label, dtype=np.int32) + 1)) v_count = v_count.astype(int) v_index = np.cumsum(v_count) v_index[1:] = v_index[:-1] v_index[0] = 0 return v_count, v_index, v_neighbor
find_neighbors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n max_label = np.max(labels)\n new_labels = np.zeros(np.array(labels.shape) + 2, labels.dtype)\n new_labels[1:-1, 1:-1] = labels\n labels = new_labels\n adjacent_mask = adjacent(labels)\n adjacent_i, adjacent_j = np.argwhere(adjacent_mask).transpose()\n count = len(adjacent_i)\n if count == 0:\n return np.zeros(max_label, int), np.zeros(max_label, int), np.zeros(\n 0, int)\n v_label = np.hstack([labels[adjacent_i, adjacent_j]] * 8)\n v_neighbor = np.zeros(count * 8, int)\n index = 0\n for i, j in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, \n 0), (1, 1)):\n v_neighbor[index:index + count] = labels[adjacent_i + i, adjacent_j + j\n ]\n index += count\n sort_order = np.lexsort((v_neighbor, v_label))\n v_label = v_label[sort_order]\n v_neighbor = v_neighbor[sort_order]\n first_occurrence = np.ones(len(v_label), bool)\n first_occurrence[1:] = (v_label[1:] != v_label[:-1]) | (v_neighbor[1:] !=\n v_neighbor[:-1])\n v_label = v_label[first_occurrence]\n v_neighbor = v_neighbor[first_occurrence]\n to_remove = (v_label == v_neighbor) | (v_neighbor == 0)\n v_label = v_label[~to_remove]\n v_neighbor = v_neighbor[~to_remove]\n v_count = fixup_scipy_ndimage_result(scind.sum(np.ones(v_label.shape),\n v_label, np.arange(max_label, dtype=np.int32) + 1))\n v_count = v_count.astype(int)\n v_index = np.cumsum(v_count)\n v_index[1:] = v_index[:-1]\n v_index[0] = 0\n return v_count, v_index, v_neighbor\n", "role": "user" }, { "content": "find_neighbors", "role": "assistant" } ]
def x(labels): colors = color_labels(labels, True) rlabels = labels.ravel() order = np.lexsort((rlabels, colors.ravel())) different = np.hstack([[rlabels[order[0]] > 0], rlabels[order[1:]] != rlabels[order[:-1]]]) rcolor = colors.ravel() rcolor[order] = np.cumsum(different).astype(colors.dtype) return rcolor.reshape(colors.shape).astype(labels.dtype)
distance_color_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n colors = color_labels(labels, True)\n rlabels = labels.ravel()\n order = np.lexsort((rlabels, colors.ravel()))\n different = np.hstack([[rlabels[order[0]] > 0], rlabels[order[1:]] !=\n rlabels[order[:-1]]])\n rcolor = colors.ravel()\n rcolor[order] = np.cumsum(different).astype(colors.dtype)\n return rcolor.reshape(colors.shape).astype(labels.dtype)\n", "role": "user" }, { "content": "distance_color_labels", "role": "assistant" } ]
def x(labels, distance_transform=False): if distance_transform: i, j = scind.distance_transform_edt(labels == 0, return_distances= False, return_indices=True) dt_labels = labels[i, j] else: dt_labels = labels v_count, v_index, v_neighbor = find_neighbors(dt_labels) v_color = np.zeros(len(v_count) + 1, int) zero_count = v_count == 0 if np.all(zero_count): return (labels != 0).astype(int) v_color[1:][zero_count] = 1 v_count = v_count[~zero_count] v_index = v_index[~zero_count] v_label = np.argwhere(~zero_count).transpose()[0] + 1 sort_order = np.lexsort([-v_count]) v_count = v_count[sort_order] v_index = v_index[sort_order] v_label = v_label[sort_order] for i in range(len(v_count)): neighbors = v_neighbor[v_index[i]:v_index[i] + v_count[i]] colors = np.unique(v_color[neighbors]) if colors[0] == 0: if len(colors) == 1: v_color[v_label[i]] = 1 continue else: colors = colors[1:] crange = np.arange(1, len(colors) + 1) misses = crange[colors != crange] if len(misses): color = misses[0] else: color = len(colors) + 1 v_color[v_label[i]] = color return v_color[labels]
color_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, distance_transform=False):\n if distance_transform:\n i, j = scind.distance_transform_edt(labels == 0, return_distances=\n False, return_indices=True)\n dt_labels = labels[i, j]\n else:\n dt_labels = labels\n v_count, v_index, v_neighbor = find_neighbors(dt_labels)\n v_color = np.zeros(len(v_count) + 1, int)\n zero_count = v_count == 0\n if np.all(zero_count):\n return (labels != 0).astype(int)\n v_color[1:][zero_count] = 1\n v_count = v_count[~zero_count]\n v_index = v_index[~zero_count]\n v_label = np.argwhere(~zero_count).transpose()[0] + 1\n sort_order = np.lexsort([-v_count])\n v_count = v_count[sort_order]\n v_index = v_index[sort_order]\n v_label = v_label[sort_order]\n for i in range(len(v_count)):\n neighbors = v_neighbor[v_index[i]:v_index[i] + v_count[i]]\n colors = np.unique(v_color[neighbors])\n if colors[0] == 0:\n if len(colors) == 1:\n v_color[v_label[i]] = 1\n continue\n else:\n colors = colors[1:]\n crange = np.arange(1, len(colors) + 1)\n misses = crange[colors != crange]\n if len(misses):\n color = misses[0]\n else:\n color = len(colors) + 1\n v_color[v_label[i]] = color\n return v_color[labels]\n", "role": "user" }, { "content": "color_labels", "role": "assistant" } ]
def x(image, mask=None, ordering=None): global eight_connect if mask is None: masked_image = image else: masked_image = image.astype(bool).copy() masked_image[~mask] = False table = make_table(True, np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], bool), np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], bool)) & (np. array([(scind.label(pattern_of(index), eight_connect)[1] != scind. label(pattern_of(index & ~2 ** 4), eight_connect)[1]) for index in range(512)]) | np.array([(np.sum(pattern_of(index)) < 3) for index in range(512)])) if ordering is None: distance = scind.distance_transform_edt(masked_image) else: distance = ordering cornerness_table = np.array([(9 - np.sum(pattern_of(index))) for index in range(512)]) corner_score = table_lookup(masked_image, cornerness_table, False, 1) i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]] result = masked_image.copy() distance = distance[result] i = np.ascontiguousarray(i[result], np.int32) j = np.ascontiguousarray(j[result], np.int32) result = np.ascontiguousarray(result, np.uint8) np.random.seed(0) tiebreaker = np.random.permutation(np.arange(np.product(masked_image. shape))) tiebreaker.shape = masked_image.shape order = np.lexsort((tiebreaker[masked_image], corner_score[masked_image ], distance)) order = np.ascontiguousarray(order, np.int32) table = np.ascontiguousarray(table, np.uint8) skeletonize_loop(result, i, j, order, table) result = result.astype(bool) if not mask is None: result[~mask] = image[~mask] return result
skeletonize
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, ordering=None):\n global eight_connect\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n table = make_table(True, np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]],\n bool), np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], bool)) & (np.\n array([(scind.label(pattern_of(index), eight_connect)[1] != scind.\n label(pattern_of(index & ~2 ** 4), eight_connect)[1]) for index in\n range(512)]) | np.array([(np.sum(pattern_of(index)) < 3) for index in\n range(512)]))\n if ordering is None:\n distance = scind.distance_transform_edt(masked_image)\n else:\n distance = ordering\n cornerness_table = np.array([(9 - np.sum(pattern_of(index))) for index in\n range(512)])\n corner_score = table_lookup(masked_image, cornerness_table, False, 1)\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]\n result = masked_image.copy()\n distance = distance[result]\n i = np.ascontiguousarray(i[result], np.int32)\n j = np.ascontiguousarray(j[result], np.int32)\n result = np.ascontiguousarray(result, np.uint8)\n np.random.seed(0)\n tiebreaker = np.random.permutation(np.arange(np.product(masked_image.\n shape)))\n tiebreaker.shape = masked_image.shape\n order = np.lexsort((tiebreaker[masked_image], corner_score[masked_image\n ], distance))\n order = np.ascontiguousarray(order, np.int32)\n table = np.ascontiguousarray(table, np.uint8)\n skeletonize_loop(result, i, j, order, table)\n result = result.astype(bool)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n", "role": "user" }, { "content": "skeletonize", "role": "assistant" } ]
def x(labels): colors = color_labels(labels) max_color = np.max(colors) if max_color == 0: return labels result = np.zeros(labels.shape, labels.dtype) for i in range(1, max_color + 1): mask = skeletonize(colors == i) result[mask] = labels[mask] return result
skeletonize_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n colors = color_labels(labels)\n max_color = np.max(colors)\n if max_color == 0:\n return labels\n result = np.zeros(labels.shape, labels.dtype)\n for i in range(1, max_color + 1):\n mask = skeletonize(colors == i)\n result[mask] = labels[mask]\n return result\n", "role": "user" }, { "content": "skeletonize_labels", "role": "assistant" } ]
def x(skeleton): bpts = branchpoints(skeleton) neighbors = scind.convolve(skeleton.astype(int), np.ones((3, 3), int), mode='constant').astype(int) neighbors[~skeleton] = 0 neighbors[skeleton] -= 1 i, j = np.mgrid[0:skeleton.shape[0], 0:skeleton.shape[1]] skeleton_minus_bpts = skeleton & ~bpts si = i[skeleton_minus_bpts] sj = j[skeleton_minus_bpts] bi = i[bpts] bj = j[bpts] i = np.hstack((bi, si)) j = np.hstack((bj, sj)) b_vnum = np.arange(len(bi)) s_vnum = np.arange(len(si)) + len(bi) all_vnum = np.hstack((b_vnum, s_vnum)) vertex_numbers = np.zeros(skeleton.shape, int) vertex_numbers[i, j] = all_vnum src = all_vnum dest = all_vnum for ioff, joff in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)): consider = np.ones(len(si), bool) if ioff == -1: consider = si > 0 elif ioff == 1: consider = si < skeleton.shape[0] - 1 if joff == -1: consider = consider & (sj > 0) elif joff == 1: consider = consider & (sj < skeleton.shape[1] - 1) ci = si[consider] cj = sj[consider] link = skeleton_minus_bpts[ci + ioff, cj + joff] & ((neighbors[ci, cj] < 3) | (neighbors[ci + ioff, cj + joff] < 3)) ci = ci[link] cj = cj[link] src = np.hstack((src, vertex_numbers[ci, cj])) dest = np.hstack((dest, vertex_numbers[ci + ioff, cj + joff])) labeling = all_connected_components(src, dest) vertex_numbers[i, j] = labeling + 1 return vertex_numbers, 0 if len(labeling) == 0 else int(np.max(labeling) ) + 1
label_skeleton
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(skeleton):\n bpts = branchpoints(skeleton)\n neighbors = scind.convolve(skeleton.astype(int), np.ones((3, 3), int),\n mode='constant').astype(int)\n neighbors[~skeleton] = 0\n neighbors[skeleton] -= 1\n i, j = np.mgrid[0:skeleton.shape[0], 0:skeleton.shape[1]]\n skeleton_minus_bpts = skeleton & ~bpts\n si = i[skeleton_minus_bpts]\n sj = j[skeleton_minus_bpts]\n bi = i[bpts]\n bj = j[bpts]\n i = np.hstack((bi, si))\n j = np.hstack((bj, sj))\n b_vnum = np.arange(len(bi))\n s_vnum = np.arange(len(si)) + len(bi)\n all_vnum = np.hstack((b_vnum, s_vnum))\n vertex_numbers = np.zeros(skeleton.shape, int)\n vertex_numbers[i, j] = all_vnum\n src = all_vnum\n dest = all_vnum\n for ioff, joff in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1),\n (1, 0), (1, 1)):\n consider = np.ones(len(si), bool)\n if ioff == -1:\n consider = si > 0\n elif ioff == 1:\n consider = si < skeleton.shape[0] - 1\n if joff == -1:\n consider = consider & (sj > 0)\n elif joff == 1:\n consider = consider & (sj < skeleton.shape[1] - 1)\n ci = si[consider]\n cj = sj[consider]\n link = skeleton_minus_bpts[ci + ioff, cj + joff] & ((neighbors[ci,\n cj] < 3) | (neighbors[ci + ioff, cj + joff] < 3))\n ci = ci[link]\n cj = cj[link]\n src = np.hstack((src, vertex_numbers[ci, cj]))\n dest = np.hstack((dest, vertex_numbers[ci + ioff, cj + joff]))\n labeling = all_connected_components(src, dest)\n vertex_numbers[i, j] = labeling + 1\n return vertex_numbers, 0 if len(labeling) == 0 else int(np.max(labeling)\n ) + 1\n", "role": "user" }, { "content": "label_skeleton", "role": "assistant" } ]
def x(labels, indices=None): global __skel_length_table if __skel_length_table is None: tbl = np.zeros(512, np.float32) for ii in range(-1, 2): for jj in range(-1, 2): if ii == 0 and jj == 0: continue idx = 2 ** (ii + 1 + (jj + 1) * 3) | 16 mask = np.arange(512) & idx == idx if ii != 0 and jj != 0: for adjacent_i, adjacent_j in ((ii - 1, jj), (ii, jj - 1), (ii + 1, jj), (ii, jj + 1)): if any([(_ < -1 or _ > 1) for _ in (adjacent_i, adjacent_j)]): continue aidx = 2 ** (adjacent_i + 1 + (adjacent_j + 1) * 3) mask = mask & (np.arange(512) & aidx != aidx) tbl[mask] += np.sqrt(ii * ii + jj * jj) / 2 __skel_length_table = tbl if indices is None: indices = np.arange(1, np.max(labels) + 1) else: indices = np.asanyarray(indices) if len(indices) == 0: return np.zeros(0) score = __skel_length_table[table_idx_from_labels(labels)] result = np.bincount(labels.ravel(), weights=score.ravel(), minlength= np.max(indices) + 1) return result[indices]
skeleton_length
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, indices=None):\n global __skel_length_table\n if __skel_length_table is None:\n tbl = np.zeros(512, np.float32)\n for ii in range(-1, 2):\n for jj in range(-1, 2):\n if ii == 0 and jj == 0:\n continue\n idx = 2 ** (ii + 1 + (jj + 1) * 3) | 16\n mask = np.arange(512) & idx == idx\n if ii != 0 and jj != 0:\n for adjacent_i, adjacent_j in ((ii - 1, jj), (ii, jj - \n 1), (ii + 1, jj), (ii, jj + 1)):\n if any([(_ < -1 or _ > 1) for _ in (adjacent_i,\n adjacent_j)]):\n continue\n aidx = 2 ** (adjacent_i + 1 + (adjacent_j + 1) * 3)\n mask = mask & (np.arange(512) & aidx != aidx)\n tbl[mask] += np.sqrt(ii * ii + jj * jj) / 2\n __skel_length_table = tbl\n if indices is None:\n indices = np.arange(1, np.max(labels) + 1)\n else:\n indices = np.asanyarray(indices)\n if len(indices) == 0:\n return np.zeros(0)\n score = __skel_length_table[table_idx_from_labels(labels)]\n result = np.bincount(labels.ravel(), weights=score.ravel(), minlength=\n np.max(indices) + 1)\n return result[indices]\n", "role": "user" }, { "content": "skeleton_length", "role": "assistant" } ]
def x(labels): colors = color_labels(labels) max_color = np.max(colors) result = np.zeros(labels.shape) if max_color == 0: return result for i in range(1, max_color + 1): mask = colors == i result[mask] = scind.distance_transform_edt(mask)[mask] return result
distance_to_edge
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n colors = color_labels(labels)\n max_color = np.max(colors)\n result = np.zeros(labels.shape)\n if max_color == 0:\n return result\n for i in range(1, max_color + 1):\n mask = colors == i\n result[mask] = scind.distance_transform_edt(mask)[mask]\n return result\n", "role": "user" }, { "content": "distance_to_edge", "role": "assistant" } ]
def x(image, mask=None, structure=None, ties_are_ok=False): global eight_connect if not ties_are_ok: result = regional_maximum(image, mask, structure, True) if not np.any(result): return result distance = scind.distance_transform_edt(result) labels, label_count = scind.label(result, eight_connect) np.random.seed(0) ro_distance = rank_order(distance)[0].astype(float) count = np.product(ro_distance.shape) ro_distance.flat += np.random.permutation(count).astype(float) / float( count) positions = scind.maximum_position(ro_distance, labels, np.arange( label_count) + 1) positions = np.array(positions, np.uint32) result = np.zeros(image.shape, bool) if positions.ndim == 1: result[positions[0], positions[1]] = True else: result[positions[:, 0], positions[:, 1]] = True return result result = np.ones(image.shape, bool) if structure is None: structure = scind.generate_binary_structure(image.ndim, image.ndim) big_mask = np.zeros(np.array(image.shape) + np.array(structure.shape), bool ) structure_half_shape = np.array(structure.shape) // 2 big_mask[structure_half_shape[0]:structure_half_shape[0] + image.shape[ 0], structure_half_shape[1]:structure_half_shape[1] + image.shape[1] ] = mask if mask is not None else True for i in range(structure.shape[0]): off_i = i - structure_half_shape[0] for j in range(structure.shape[1]): if i == structure_half_shape[0] and j == structure_half_shape[1]: continue off_j = j - structure_half_shape[1] if structure[i, j]: result = np.logical_and(result, big_mask[i:i + image.shape[ 0], j:j + image.shape[1]]) src_i_min = max(0, -off_i) src_i_max = min(image.shape[0], image.shape[0] - off_i) off_i_min = max(0, off_i) off_i_max = min(image.shape[0], image.shape[0] + off_i) src_j_min = max(0, -off_j) src_j_max = min(image.shape[1], image.shape[1] - off_j) off_j_min = max(0, off_j) off_j_max = min(image.shape[1], image.shape[1] + off_j) min_mask = image[src_i_min:src_i_max, src_j_min:src_j_max ] < image[off_i_min:off_i_max, off_j_min:off_j_max] result[src_i_min:src_i_max, src_j_min:src_j_max][min_mask ] = False return result
regional_maximum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None, structure=None, ties_are_ok=False):\n global eight_connect\n if not ties_are_ok:\n result = regional_maximum(image, mask, structure, True)\n if not np.any(result):\n return result\n distance = scind.distance_transform_edt(result)\n labels, label_count = scind.label(result, eight_connect)\n np.random.seed(0)\n ro_distance = rank_order(distance)[0].astype(float)\n count = np.product(ro_distance.shape)\n ro_distance.flat += np.random.permutation(count).astype(float) / float(\n count)\n positions = scind.maximum_position(ro_distance, labels, np.arange(\n label_count) + 1)\n positions = np.array(positions, np.uint32)\n result = np.zeros(image.shape, bool)\n if positions.ndim == 1:\n result[positions[0], positions[1]] = True\n else:\n result[positions[:, 0], positions[:, 1]] = True\n return result\n result = np.ones(image.shape, bool)\n if structure is None:\n structure = scind.generate_binary_structure(image.ndim, image.ndim)\n big_mask = np.zeros(np.array(image.shape) + np.array(structure.shape), bool\n )\n structure_half_shape = np.array(structure.shape) // 2\n big_mask[structure_half_shape[0]:structure_half_shape[0] + image.shape[\n 0], structure_half_shape[1]:structure_half_shape[1] + image.shape[1]\n ] = mask if mask is not None else True\n for i in range(structure.shape[0]):\n off_i = i - structure_half_shape[0]\n for j in range(structure.shape[1]):\n if i == structure_half_shape[0] and j == structure_half_shape[1]:\n continue\n off_j = j - structure_half_shape[1]\n if structure[i, j]:\n result = np.logical_and(result, big_mask[i:i + image.shape[\n 0], j:j + image.shape[1]])\n src_i_min = max(0, -off_i)\n src_i_max = min(image.shape[0], image.shape[0] - off_i)\n off_i_min = max(0, off_i)\n off_i_max = min(image.shape[0], image.shape[0] + off_i)\n src_j_min = max(0, -off_j)\n src_j_max = min(image.shape[1], image.shape[1] - off_j)\n off_j_min = max(0, off_j)\n off_j_max = min(image.shape[1], image.shape[1] + off_j)\n min_mask = image[src_i_min:src_i_max, src_j_min:src_j_max\n ] < image[off_i_min:off_i_max, off_j_min:off_j_max]\n result[src_i_min:src_i_max, src_j_min:src_j_max][min_mask\n ] = False\n return result\n", "role": "user" }, { "content": "regional_maximum", "role": "assistant" } ]
def x(i, j): if len(i) == 0: return i i1 = np.hstack((i, j)) j1 = np.hstack((j, i)) order = np.lexsort((j1, i1)) i = np.ascontiguousarray(i1[order], np.uint32) j = np.ascontiguousarray(j1[order], np.uint32) counts = np.ascontiguousarray(np.bincount(i.astype(int)), np.uint32) indexes = np.ascontiguousarray(np.cumsum(counts) - counts, np.uint32) labels = np.zeros(len(counts), np.uint32) _all_connected_components(i, j, indexes, counts, labels) return labels
all_connected_components
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i, j):\n if len(i) == 0:\n return i\n i1 = np.hstack((i, j))\n j1 = np.hstack((j, i))\n order = np.lexsort((j1, i1))\n i = np.ascontiguousarray(i1[order], np.uint32)\n j = np.ascontiguousarray(j1[order], np.uint32)\n counts = np.ascontiguousarray(np.bincount(i.astype(int)), np.uint32)\n indexes = np.ascontiguousarray(np.cumsum(counts) - counts, np.uint32)\n labels = np.zeros(len(counts), np.uint32)\n _all_connected_components(i, j, indexes, counts, labels)\n return labels\n", "role": "user" }, { "content": "all_connected_components", "role": "assistant" } ]
def x(i, j): if len(i) == 0: return np.array([], int), np.array([], j.dtype), np.array([], j.dtype) index = np.lexsort((j, i)) i = i[index] j = j[index] r_to_i = np.sort(np.unique(i)) i_to_r_off = np.min(i) i_to_r = np.zeros(np.max(i) + 1 - i_to_r_off, int) i_to_r[r_to_i - i_to_r_off] = np.arange(len(r_to_i)) r = np.cumsum(np.hstack(([False], i[:-1] != i[1:]))) src_count = np.bincount(r) src_idx = np.hstack(([0], np.cumsum(src_count[:-1]))) dest_count = src_count * (src_count - 1) // 2 dest_idx = np.hstack(([0], np.cumsum(dest_count))) dest_size = dest_idx[-1] d_r = np.zeros(dest_size, i.dtype) d_j1, d_j2 = np.zeros((2, dest_size), j.dtype) not_empty_indices = np.arange(0, len(dest_idx) - 1) not_empty_indices = not_empty_indices[dest_idx[:-1] != dest_idx[1:]] increments = not_empty_indices - np.hstack([[0], not_empty_indices[:-1]]) d_r[dest_idx[not_empty_indices]] = increments d_r = np.cumsum(d_r) d_i = r_to_i[d_r] d_r_idx = np.arange(len(d_r)) - dest_idx[d_r] unique_src_count = np.unique(src_count) unique_dest_len = (unique_src_count * (unique_src_count - 1) // 2).astype( int) i_sparse = np.hstack([(np.ones(dlen, int) * c) for c, dlen in zip( unique_src_count, unique_dest_len)]) j_sparse = np.hstack([np.arange(dlen) for dlen in unique_dest_len]) v_j1_sparse = np.hstack([np.hstack([(np.ones(n - x - 1, int) * x) for x in range(n)]) for n in unique_src_count]) v_j2_sparse = np.hstack([np.hstack([np.arange(x + 1, n) for x in range( n)]) for n in unique_src_count]) if len(i_sparse) > 0: j1_sparse = scipy.sparse.coo_matrix((v_j1_sparse, (i_sparse, j_sparse)) ).tocsc() j2_sparse = scipy.sparse.coo_matrix((v_j2_sparse, (i_sparse, j_sparse)) ).tocsc() else: j1_sparse = j2_sparse = np.array([[]], j.dtype) d_j1_idx = np.array(j1_sparse[src_count[d_r], d_r_idx]).flatten() d_j1 = j[src_idx[d_r] + d_j1_idx] d_j2_idx = np.array(j2_sparse[src_count[d_r], d_r_idx]).flatten() d_j2 = j[src_idx[d_r] + d_j2_idx] return d_i, d_j1, d_j2
pairwise_permutations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(i, j):\n if len(i) == 0:\n return np.array([], int), np.array([], j.dtype), np.array([], j.dtype)\n index = np.lexsort((j, i))\n i = i[index]\n j = j[index]\n r_to_i = np.sort(np.unique(i))\n i_to_r_off = np.min(i)\n i_to_r = np.zeros(np.max(i) + 1 - i_to_r_off, int)\n i_to_r[r_to_i - i_to_r_off] = np.arange(len(r_to_i))\n r = np.cumsum(np.hstack(([False], i[:-1] != i[1:])))\n src_count = np.bincount(r)\n src_idx = np.hstack(([0], np.cumsum(src_count[:-1])))\n dest_count = src_count * (src_count - 1) // 2\n dest_idx = np.hstack(([0], np.cumsum(dest_count)))\n dest_size = dest_idx[-1]\n d_r = np.zeros(dest_size, i.dtype)\n d_j1, d_j2 = np.zeros((2, dest_size), j.dtype)\n not_empty_indices = np.arange(0, len(dest_idx) - 1)\n not_empty_indices = not_empty_indices[dest_idx[:-1] != dest_idx[1:]]\n increments = not_empty_indices - np.hstack([[0], not_empty_indices[:-1]])\n d_r[dest_idx[not_empty_indices]] = increments\n d_r = np.cumsum(d_r)\n d_i = r_to_i[d_r]\n d_r_idx = np.arange(len(d_r)) - dest_idx[d_r]\n unique_src_count = np.unique(src_count)\n unique_dest_len = (unique_src_count * (unique_src_count - 1) // 2).astype(\n int)\n i_sparse = np.hstack([(np.ones(dlen, int) * c) for c, dlen in zip(\n unique_src_count, unique_dest_len)])\n j_sparse = np.hstack([np.arange(dlen) for dlen in unique_dest_len])\n v_j1_sparse = np.hstack([np.hstack([(np.ones(n - x - 1, int) * x) for x in\n range(n)]) for n in unique_src_count])\n v_j2_sparse = np.hstack([np.hstack([np.arange(x + 1, n) for x in range(\n n)]) for n in unique_src_count])\n if len(i_sparse) > 0:\n j1_sparse = scipy.sparse.coo_matrix((v_j1_sparse, (i_sparse, j_sparse))\n ).tocsc()\n j2_sparse = scipy.sparse.coo_matrix((v_j2_sparse, (i_sparse, j_sparse))\n ).tocsc()\n else:\n j1_sparse = j2_sparse = np.array([[]], j.dtype)\n d_j1_idx = np.array(j1_sparse[src_count[d_r], d_r_idx]).flatten()\n d_j1 = j[src_idx[d_r] + d_j1_idx]\n d_j2_idx = np.array(j2_sparse[src_count[d_r], d_r_idx]).flatten()\n d_j2 = j[src_idx[d_r] + d_j2_idx]\n return d_i, d_j1, d_j2\n", "role": "user" }, { "content": "pairwise_permutations", "role": "assistant" } ]
def x(image, labels, footprint): assert np.all(footprint.shape) & 1 == 1 footprint = footprint != 0 footprint_extent = (np.array(footprint.shape) - 1) // 2 if np.all(footprint_extent == 0): return labels > 0 result = (labels > 0).copy() big_labels = np.zeros(np.array(labels.shape) + footprint_extent * 2, labels.dtype) big_labels[[slice(fe, -fe) for fe in footprint_extent]] = labels image_strides = np.array(image.strides) // image.dtype.itemsize big_strides = np.array(big_labels.strides) // big_labels.dtype.itemsize result_strides = np.array(result.strides) // result.dtype.itemsize footprint_offsets = np.mgrid[[slice(-fe, fe + 1) for fe in footprint_extent]] footprint_offsets = footprint_offsets[:, footprint] d = np.sum(footprint_offsets ** 2, 0) footprint_offsets, d = footprint_offsets[:, d > 0], d[d > 0] footprint_offsets = footprint_offsets[:, np.lexsort([d])] fp_image_offsets = np.sum(image_strides[:, np.newaxis] * footprint_offsets, 0) fp_big_offsets = np.sum(big_strides[:, np.newaxis] * footprint_offsets, 0) indexes = np.mgrid[[slice(0, x) for x in labels.shape]][:, labels > 0] image_indexes = np.sum(image_strides[:, np.newaxis] * indexes, 0) big_indexes = np.sum(big_strides[:, np.newaxis] * (indexes + footprint_extent[:, np.newaxis]), 0) result_indexes = np.sum(result_strides[:, np.newaxis] * indexes, 0) big_labels_raveled = big_labels.ravel() image_raveled = image.ravel() result_raveled = result.ravel() for fp_image_offset, fp_big_offset in zip(fp_image_offsets, fp_big_offsets ): same_label = big_labels_raveled[big_indexes + fp_big_offset ] == big_labels_raveled[big_indexes] less_than = image_raveled[image_indexes[same_label]] < image_raveled[ image_indexes[same_label] + fp_image_offset] mask = ~same_label mask[same_label] = ~less_than result_raveled[result_indexes[~mask]] = False result_indexes = result_indexes[mask] big_indexes = big_indexes[mask] image_indexes = image_indexes[mask] return result
is_local_maximum
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, labels, footprint):\n assert np.all(footprint.shape) & 1 == 1\n footprint = footprint != 0\n footprint_extent = (np.array(footprint.shape) - 1) // 2\n if np.all(footprint_extent == 0):\n return labels > 0\n result = (labels > 0).copy()\n big_labels = np.zeros(np.array(labels.shape) + footprint_extent * 2,\n labels.dtype)\n big_labels[[slice(fe, -fe) for fe in footprint_extent]] = labels\n image_strides = np.array(image.strides) // image.dtype.itemsize\n big_strides = np.array(big_labels.strides) // big_labels.dtype.itemsize\n result_strides = np.array(result.strides) // result.dtype.itemsize\n footprint_offsets = np.mgrid[[slice(-fe, fe + 1) for fe in\n footprint_extent]]\n footprint_offsets = footprint_offsets[:, footprint]\n d = np.sum(footprint_offsets ** 2, 0)\n footprint_offsets, d = footprint_offsets[:, d > 0], d[d > 0]\n footprint_offsets = footprint_offsets[:, np.lexsort([d])]\n fp_image_offsets = np.sum(image_strides[:, np.newaxis] *\n footprint_offsets, 0)\n fp_big_offsets = np.sum(big_strides[:, np.newaxis] * footprint_offsets, 0)\n indexes = np.mgrid[[slice(0, x) for x in labels.shape]][:, labels > 0]\n image_indexes = np.sum(image_strides[:, np.newaxis] * indexes, 0)\n big_indexes = np.sum(big_strides[:, np.newaxis] * (indexes +\n footprint_extent[:, np.newaxis]), 0)\n result_indexes = np.sum(result_strides[:, np.newaxis] * indexes, 0)\n big_labels_raveled = big_labels.ravel()\n image_raveled = image.ravel()\n result_raveled = result.ravel()\n for fp_image_offset, fp_big_offset in zip(fp_image_offsets, fp_big_offsets\n ):\n same_label = big_labels_raveled[big_indexes + fp_big_offset\n ] == big_labels_raveled[big_indexes]\n less_than = image_raveled[image_indexes[same_label]] < image_raveled[\n image_indexes[same_label] + fp_image_offset]\n mask = ~same_label\n mask[same_label] = ~less_than\n result_raveled[result_indexes[~mask]] = False\n result_indexes = result_indexes[mask]\n big_indexes = big_indexes[mask]\n image_indexes = image_indexes[mask]\n return result\n", "role": "user" }, { "content": "is_local_maximum", "role": "assistant" } ]
def x(labels, resolution=100, weights=None): if weights is None: weights = np.ones(labels.shape) maxlabel = labels.max() ci, cj = centers_of_labels(labels) j, i = np.meshgrid(np.arange(labels.shape[0]), np.arange(labels.shape[1])) di = i[labels > 0] - ci[labels[labels > 0] - 1] dj = j[labels > 0] - cj[labels[labels > 0] - 1] weights = weights[labels > 0] labels = labels[labels > 0] angle = np.arctan2(di, dj) width = np.arctan(1.0 / np.sqrt(di ** 2 + dj ** 2 + np.finfo(float).eps)) lo = np.clip((angle - width) * resolution / (2 * np.pi), -resolution, 2 * resolution).astype(int) + resolution hi = np.clip((angle + width) * resolution / (2 * np.pi), -resolution, 2 * resolution).astype(int) + resolution hi[lo == hi] += 1 weights /= hi - lo onset = scipy.sparse.coo_matrix((weights, (labels - 1, lo)), (maxlabel, 3 * resolution)).toarray() offset = scipy.sparse.coo_matrix((weights, (labels - 1, hi)), (maxlabel, 3 * resolution)).toarray() onoff = onset - offset dist = np.cumsum(onoff, axis=1) dist = dist[:, :resolution] + dist[:, resolution:2 * resolution] + dist[ :, 2 * resolution:] return dist
angular_distribution
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, resolution=100, weights=None):\n if weights is None:\n weights = np.ones(labels.shape)\n maxlabel = labels.max()\n ci, cj = centers_of_labels(labels)\n j, i = np.meshgrid(np.arange(labels.shape[0]), np.arange(labels.shape[1]))\n di = i[labels > 0] - ci[labels[labels > 0] - 1]\n dj = j[labels > 0] - cj[labels[labels > 0] - 1]\n weights = weights[labels > 0]\n labels = labels[labels > 0]\n angle = np.arctan2(di, dj)\n width = np.arctan(1.0 / np.sqrt(di ** 2 + dj ** 2 + np.finfo(float).eps))\n lo = np.clip((angle - width) * resolution / (2 * np.pi), -resolution, 2 *\n resolution).astype(int) + resolution\n hi = np.clip((angle + width) * resolution / (2 * np.pi), -resolution, 2 *\n resolution).astype(int) + resolution\n hi[lo == hi] += 1\n weights /= hi - lo\n onset = scipy.sparse.coo_matrix((weights, (labels - 1, lo)), (maxlabel,\n 3 * resolution)).toarray()\n offset = scipy.sparse.coo_matrix((weights, (labels - 1, hi)), (maxlabel,\n 3 * resolution)).toarray()\n onoff = onset - offset\n dist = np.cumsum(onoff, axis=1)\n dist = dist[:, :resolution] + dist[:, resolution:2 * resolution] + dist[\n :, 2 * resolution:]\n return dist\n", "role": "user" }, { "content": "angular_distribution", "role": "assistant" } ]
def x(chulls, counts, indexes): if len(counts) == 0: return np.zeros(0) save_counts = counts counts = np.atleast_1d(counts) indexes = np.atleast_1d(indexes) chull_idx = np.hstack(([0], np.cumsum(counts[:-1]))) save_chull_idx = chull_idx chull_pts = chulls[:, 1:].astype(float) antipodes = [] antipodes.append(np.column_stack([chull_idx[counts == 1]] * 2)) antipodes.append(np.column_stack([chull_idx[counts == 2], chull_idx[ counts == 2] + 1])) chull_idx = chull_idx[counts > 2] counts = counts[counts > 2] if len(counts) > 0: pm_idx = chull_idx + counts - 1 pm = chull_pts[pm_idx, :] p1 = chull_pts[chull_idx, :] vvv = Indexes([counts - 2]) v_idx = chull_idx[vvv.rev_idx] + vvv.idx[0] + 1 distances = distance2_to_line(chull_pts[v_idx], pm[vvv.rev_idx], p1 [vvv.rev_idx]) order = np.lexsort((vvv.idx[0], -distances, vvv.rev_idx)) antipode_idx = order[vvv.fwd_idx] + 1 - vvv.fwd_idx vertex_idx = np.zeros(len(antipode_idx), int) while len(chull_idx) > 0: antipodes.append(np.column_stack((chull_idx + vertex_idx, chull_idx + antipode_idx))) if len(chull_idx) == 0: break dc = distance2_to_line(chull_pts[chull_idx + antipode_idx, :], chull_pts[chull_idx + vertex_idx, :], chull_pts[chull_idx + vertex_idx + 1, :]) next_antipode_idx = antipode_idx + 1 next_antipode_idx[next_antipode_idx == counts] = 0 dn = distance2_to_line(chull_pts[chull_idx + next_antipode_idx, :], chull_pts[chull_idx + vertex_idx, :], chull_pts[ chull_idx + vertex_idx + 1, :]) advance_antipode = dc <= dn antipode_idx[advance_antipode] += 1 vertex_idx[~advance_antipode] += 1 to_keep = (antipode_idx < counts) & (vertex_idx != antipode_idx) antipode_idx = antipode_idx[to_keep] vertex_idx = vertex_idx[to_keep] chull_idx = chull_idx[to_keep] counts = counts[to_keep] antipodes = np.vstack(antipodes) l = chulls[antipodes[:, 0], 0] pt1 = chulls[antipodes[:, 0], 1:] pt2 = chulls[antipodes[:, 1], 1:] distances = np.sum((pt1 - pt2) ** 2, 1) max_distance = np.sqrt(fixup_scipy_ndimage_result(scind.maximum( distances, l, indexes))) counts = save_counts chull_idx = save_chull_idx indexer = Indexes(counts) degenerates = antipodes[:, 0] == antipodes[:, 1] if np.all(degenerates): return np.zeros(len(indexes)), max_distance l = l[~degenerates] antipodes = antipodes[~degenerates] l = np.hstack((l, l)) antipodes = np.vstack((antipodes, antipodes[:, ::-1])) v2_idx = indexer.idx[0][antipodes[:, 1]] extras = antipodes[v2_idx == 0, :] antipodes = np.vstack([antipodes, extras]) l = np.hstack((l, indexes[indexer.rev_idx[extras[:, 0]]])) v2_idx = np.hstack((v2_idx, indexer.counts[0][indexer.rev_idx[extras[:, 1]]])) order = np.lexsort((v2_idx, antipodes[:, 0], l)) antipodes = antipodes[order, :] l = l[order] v2_idx = v2_idx[order] v1_idx = indexer.idx[0][antipodes[:, 0]] good = np.hstack(((l[1:] == l[:-1]) & (v1_idx[1:] == v1_idx[:-1]) & ( v2_idx[1:] == v2_idx[:-1] + 1), [False])) if not np.any(good): return np.zeros(len(indexes)), max_distance antipodes = antipodes[good, :] l = l[good] v2_idx = v2_idx[good] v = chull_pts[antipodes[:, 0], :] l0 = chull_pts[antipodes[:, 1], :] l1_idx = antipodes[:, 1] + 1 needs_modulo = v2_idx == indexer.counts[0][indexer.rev_idx[antipodes[:, 1]] ] - 1 l1_idx[needs_modulo] -= indexer.counts[0][indexer.rev_idx[antipodes[ needs_modulo, 1]]] l1 = chull_pts[l1_idx, :] distances = distance2_to_line(v, l0, l1) min_distance = np.sqrt(fixup_scipy_ndimage_result(scind.minimum( distances, l, indexes))) min_distance[np.isnan(min_distance)] = 0 return min_distance, max_distance
feret_diameter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(chulls, counts, indexes):\n if len(counts) == 0:\n return np.zeros(0)\n save_counts = counts\n counts = np.atleast_1d(counts)\n indexes = np.atleast_1d(indexes)\n chull_idx = np.hstack(([0], np.cumsum(counts[:-1])))\n save_chull_idx = chull_idx\n chull_pts = chulls[:, 1:].astype(float)\n antipodes = []\n antipodes.append(np.column_stack([chull_idx[counts == 1]] * 2))\n antipodes.append(np.column_stack([chull_idx[counts == 2], chull_idx[\n counts == 2] + 1]))\n chull_idx = chull_idx[counts > 2]\n counts = counts[counts > 2]\n if len(counts) > 0:\n pm_idx = chull_idx + counts - 1\n pm = chull_pts[pm_idx, :]\n p1 = chull_pts[chull_idx, :]\n vvv = Indexes([counts - 2])\n v_idx = chull_idx[vvv.rev_idx] + vvv.idx[0] + 1\n distances = distance2_to_line(chull_pts[v_idx], pm[vvv.rev_idx], p1\n [vvv.rev_idx])\n order = np.lexsort((vvv.idx[0], -distances, vvv.rev_idx))\n antipode_idx = order[vvv.fwd_idx] + 1 - vvv.fwd_idx\n vertex_idx = np.zeros(len(antipode_idx), int)\n while len(chull_idx) > 0:\n antipodes.append(np.column_stack((chull_idx + vertex_idx, \n chull_idx + antipode_idx)))\n if len(chull_idx) == 0:\n break\n dc = distance2_to_line(chull_pts[chull_idx + antipode_idx, :],\n chull_pts[chull_idx + vertex_idx, :], chull_pts[chull_idx +\n vertex_idx + 1, :])\n next_antipode_idx = antipode_idx + 1\n next_antipode_idx[next_antipode_idx == counts] = 0\n dn = distance2_to_line(chull_pts[chull_idx + next_antipode_idx,\n :], chull_pts[chull_idx + vertex_idx, :], chull_pts[\n chull_idx + vertex_idx + 1, :])\n advance_antipode = dc <= dn\n antipode_idx[advance_antipode] += 1\n vertex_idx[~advance_antipode] += 1\n to_keep = (antipode_idx < counts) & (vertex_idx != antipode_idx)\n antipode_idx = antipode_idx[to_keep]\n vertex_idx = vertex_idx[to_keep]\n chull_idx = chull_idx[to_keep]\n counts = counts[to_keep]\n antipodes = np.vstack(antipodes)\n l = chulls[antipodes[:, 0], 0]\n pt1 = chulls[antipodes[:, 0], 1:]\n pt2 = chulls[antipodes[:, 1], 1:]\n distances = np.sum((pt1 - pt2) ** 2, 1)\n max_distance = np.sqrt(fixup_scipy_ndimage_result(scind.maximum(\n distances, l, indexes)))\n counts = save_counts\n chull_idx = save_chull_idx\n indexer = Indexes(counts)\n degenerates = antipodes[:, 0] == antipodes[:, 1]\n if np.all(degenerates):\n return np.zeros(len(indexes)), max_distance\n l = l[~degenerates]\n antipodes = antipodes[~degenerates]\n l = np.hstack((l, l))\n antipodes = np.vstack((antipodes, antipodes[:, ::-1]))\n v2_idx = indexer.idx[0][antipodes[:, 1]]\n extras = antipodes[v2_idx == 0, :]\n antipodes = np.vstack([antipodes, extras])\n l = np.hstack((l, indexes[indexer.rev_idx[extras[:, 0]]]))\n v2_idx = np.hstack((v2_idx, indexer.counts[0][indexer.rev_idx[extras[:,\n 1]]]))\n order = np.lexsort((v2_idx, antipodes[:, 0], l))\n antipodes = antipodes[order, :]\n l = l[order]\n v2_idx = v2_idx[order]\n v1_idx = indexer.idx[0][antipodes[:, 0]]\n good = np.hstack(((l[1:] == l[:-1]) & (v1_idx[1:] == v1_idx[:-1]) & (\n v2_idx[1:] == v2_idx[:-1] + 1), [False]))\n if not np.any(good):\n return np.zeros(len(indexes)), max_distance\n antipodes = antipodes[good, :]\n l = l[good]\n v2_idx = v2_idx[good]\n v = chull_pts[antipodes[:, 0], :]\n l0 = chull_pts[antipodes[:, 1], :]\n l1_idx = antipodes[:, 1] + 1\n needs_modulo = v2_idx == indexer.counts[0][indexer.rev_idx[antipodes[:, 1]]\n ] - 1\n l1_idx[needs_modulo] -= indexer.counts[0][indexer.rev_idx[antipodes[\n needs_modulo, 1]]]\n l1 = chull_pts[l1_idx, :]\n distances = distance2_to_line(v, l0, l1)\n min_distance = np.sqrt(fixup_scipy_ndimage_result(scind.minimum(\n distances, l, indexes)))\n min_distance[np.isnan(min_distance)] = 0\n return min_distance, max_distance\n", "role": "user" }, { "content": "feret_diameter", "role": "assistant" } ]
def x(p1, v, p2): p1x = p1[:, 1] p1y = p1[:, 0] p2x = p2[:, 1] p2y = p2[:, 0] vx = v[:, 1] vy = v[:, 0] Dx = vx - p2x Dy = vy - p2y Dvp1x = p1x - vx Dvp1y = p1y - vy return Dvp1x * Dx + Dvp1y * Dy > 0
is_obtuse
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(p1, v, p2):\n p1x = p1[:, 1]\n p1y = p1[:, 0]\n p2x = p2[:, 1]\n p2y = p2[:, 0]\n vx = v[:, 1]\n vy = v[:, 0]\n Dx = vx - p2x\n Dy = vy - p2y\n Dvp1x = p1x - vx\n Dvp1y = p1y - vy\n return Dvp1x * Dx + Dvp1y * Dy > 0\n", "role": "user" }, { "content": "is_obtuse", "role": "assistant" } ]
def x(labels, idxs): idxs = np.atleast_1d(idxs) if len(idxs) == 0: return np.zeros((0, 2), int), np.zeros(0, int), np.zeros(0, int) end_label = max(np.max(labels), np.max(idxs)) + 1 chosen_labels = np.zeros(int(end_label), bool) chosen_labels[idxs] = True traversal_order = np.array(((1, 0, 5), (1, -1, 6), (0, -1, 7), (-1, -1, 0), (-1, 0, 1), (-1, 1, 2), (0, 1, 3), (1, 1, 4))) border = np.hstack((labels[0, :], labels[:, 0], labels[-1, :], labels[:, -1])) border = np.unique(border) if any([(idx in border) for idx in idxs]): big_labels = np.zeros((labels.shape[0] + 2, labels.shape[1] + 2), np.uint32) big_labels[1:-1, 1:-1] = labels offset = np.ones(2, int) labels = big_labels del big_labels else: labels = np.ascontiguousarray(labels, np.uint32) offset = np.zeros(2, int) assert isinstance(labels, np.ndarray) strides = np.array(labels.strides) // labels.dtype.itemsize assert strides[1] == 1, 'Last stride must be 1 for modulo unravel to work' stride_table = np.ascontiguousarray(np.sum(traversal_order[:, :2] * strides, 1), np.int32) new_direction_table = np.ascontiguousarray(traversal_order[:, 2], np.int32) consider_only_these = (scind.grey_erosion(labels, footprint=np.ones((3, 3), bool)) != scind.grey_dilation(labels, footprint=np.ones((3, 3), bool))) & chosen_labels[labels] max_output = np.sum(consider_only_these) * 2 output = np.zeros(max_output, np.uint32) i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]] rlabels = labels[consider_only_these] if len(rlabels) == 0: return np.zeros((0, 2), int), np.zeros(len(idxs), int), np.zeros(len (idxs), int) i = i[consider_only_these] j = j[consider_only_these] d = i * i + j * j order = np.lexsort((d, rlabels)) stride_pts = i[order] * strides[0] + j[order] * strides[1] rlabels = rlabels[order] first = np.hstack(([True], rlabels[:-1] != rlabels[1:])) first_strides = np.ascontiguousarray(stride_pts[first], np.uint32) idx_of_first = rlabels[first] output_count = np.zeros(len(idx_of_first), np.uint32) trace_outlines(labels.ravel(), first_strides, stride_table, new_direction_table, output, output_count) output = output[:np.sum(output_count)] mapper = np.zeros(np.max(idxs) + 1, int) mapper[idxs] = np.arange(len(idxs)) coord_offsets = np.zeros(len(idxs), output_count.dtype) coord_counts = np.zeros(len(idxs), output_count.dtype) coord_counts[mapper[idx_of_first]] = output_count if len(idx_of_first) > 1: coord_offsets[mapper[idx_of_first[1:]]] = np.cumsum(output_count[:- 1], dtype=output_count.dtype) coords = np.column_stack((output // strides[0] - offset[0], output % strides[0] - offset[1])) return coords, coord_offsets, coord_counts
get_outline_pts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels, idxs):\n idxs = np.atleast_1d(idxs)\n if len(idxs) == 0:\n return np.zeros((0, 2), int), np.zeros(0, int), np.zeros(0, int)\n end_label = max(np.max(labels), np.max(idxs)) + 1\n chosen_labels = np.zeros(int(end_label), bool)\n chosen_labels[idxs] = True\n traversal_order = np.array(((1, 0, 5), (1, -1, 6), (0, -1, 7), (-1, -1,\n 0), (-1, 0, 1), (-1, 1, 2), (0, 1, 3), (1, 1, 4)))\n border = np.hstack((labels[0, :], labels[:, 0], labels[-1, :], labels[:,\n -1]))\n border = np.unique(border)\n if any([(idx in border) for idx in idxs]):\n big_labels = np.zeros((labels.shape[0] + 2, labels.shape[1] + 2),\n np.uint32)\n big_labels[1:-1, 1:-1] = labels\n offset = np.ones(2, int)\n labels = big_labels\n del big_labels\n else:\n labels = np.ascontiguousarray(labels, np.uint32)\n offset = np.zeros(2, int)\n assert isinstance(labels, np.ndarray)\n strides = np.array(labels.strides) // labels.dtype.itemsize\n assert strides[1] == 1, 'Last stride must be 1 for modulo unravel to work'\n stride_table = np.ascontiguousarray(np.sum(traversal_order[:, :2] *\n strides, 1), np.int32)\n new_direction_table = np.ascontiguousarray(traversal_order[:, 2], np.int32)\n consider_only_these = (scind.grey_erosion(labels, footprint=np.ones((3,\n 3), bool)) != scind.grey_dilation(labels, footprint=np.ones((3, 3),\n bool))) & chosen_labels[labels]\n max_output = np.sum(consider_only_these) * 2\n output = np.zeros(max_output, np.uint32)\n i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]\n rlabels = labels[consider_only_these]\n if len(rlabels) == 0:\n return np.zeros((0, 2), int), np.zeros(len(idxs), int), np.zeros(len\n (idxs), int)\n i = i[consider_only_these]\n j = j[consider_only_these]\n d = i * i + j * j\n order = np.lexsort((d, rlabels))\n stride_pts = i[order] * strides[0] + j[order] * strides[1]\n rlabels = rlabels[order]\n first = np.hstack(([True], rlabels[:-1] != rlabels[1:]))\n first_strides = np.ascontiguousarray(stride_pts[first], np.uint32)\n idx_of_first = rlabels[first]\n output_count = np.zeros(len(idx_of_first), np.uint32)\n trace_outlines(labels.ravel(), first_strides, stride_table,\n new_direction_table, output, output_count)\n output = output[:np.sum(output_count)]\n mapper = np.zeros(np.max(idxs) + 1, int)\n mapper[idxs] = np.arange(len(idxs))\n coord_offsets = np.zeros(len(idxs), output_count.dtype)\n coord_counts = np.zeros(len(idxs), output_count.dtype)\n coord_counts[mapper[idx_of_first]] = output_count\n if len(idx_of_first) > 1:\n coord_offsets[mapper[idx_of_first[1:]]] = np.cumsum(output_count[:-\n 1], dtype=output_count.dtype)\n coords = np.column_stack((output // strides[0] - offset[0], output %\n strides[0] - offset[1]))\n return coords, coord_offsets, coord_counts\n", "role": "user" }, { "content": "get_outline_pts", "role": "assistant" } ]
def x(x): M, N = x.shape Mean = x.mean(0) y = x - Mean cov = numpy.dot(y.transpose(), y) / (M - 1) V, PC = numpy.linalg.eig(cov) order = (-V).argsort() coeff = PC[:, order] return coeff
princomp
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n M, N = x.shape\n Mean = x.mean(0)\n y = x - Mean\n cov = numpy.dot(y.transpose(), y) / (M - 1)\n V, PC = numpy.linalg.eig(cov)\n order = (-V).argsort()\n coeff = PC[:, order]\n return coeff\n", "role": "user" }, { "content": "princomp", "role": "assistant" } ]
def x(n): i, j = [x.flatten() for x in np.mgrid[0:n, 0:n]] i, j = [x[i != j] for x in (i, j)] order = np.lexsort((j, i, np.maximum(i, j))) return np.column_stack((i[order], j[order]))
all_pairs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(n):\n i, j = [x.flatten() for x in np.mgrid[0:n, 0:n]]\n i, j = [x[i != j] for x in (i, j)]\n order = np.lexsort((j, i, np.maximum(i, j)))\n return np.column_stack((i[order], j[order]))\n", "role": "user" }, { "content": "all_pairs", "role": "assistant" } ]
def x(image, mask=None): image = np.array(image, float) if np.product(image.shape) == 0: return image if mask is None: minval = np.min(image) maxval = np.max(image) if minval == maxval: if minval < 0: return np.zeros_like(image) elif minval > 1: return np.ones_like(image) return image else: return (image - minval) / (maxval - minval) else: significant_pixels = image[mask] if significant_pixels.size == 0: return image minval = np.min(significant_pixels) maxval = np.max(significant_pixels) if minval == maxval: transformed_image = minval else: transformed_image = (significant_pixels - minval) / (maxval - minval) result = image.copy() image[mask] = transformed_image return image
stretch
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n image = np.array(image, float)\n if np.product(image.shape) == 0:\n return image\n if mask is None:\n minval = np.min(image)\n maxval = np.max(image)\n if minval == maxval:\n if minval < 0:\n return np.zeros_like(image)\n elif minval > 1:\n return np.ones_like(image)\n return image\n else:\n return (image - minval) / (maxval - minval)\n else:\n significant_pixels = image[mask]\n if significant_pixels.size == 0:\n return image\n minval = np.min(significant_pixels)\n maxval = np.max(significant_pixels)\n if minval == maxval:\n transformed_image = minval\n else:\n transformed_image = (significant_pixels - minval) / (maxval -\n minval)\n result = image.copy()\n image[mask] = transformed_image\n return image\n", "role": "user" }, { "content": "stretch", "role": "assistant" } ]
def x(data, mask, radius, percent=50): if mask is None: mask = np.ones(data.shape, dtype=bool) if np.all(~mask): return data.copy() if not np.issubdtype(data.dtype, np.int) or np.min(data) < 0 or np.max(data ) > 255: ranked_data, translation = rank_order(data[mask], nbins=255) was_ranked = True else: ranked_data = data[mask] was_ranked = False input = np.zeros(data.shape, np.uint8) input[mask] = ranked_data mmask = np.ascontiguousarray(mask, np.uint8) output = np.zeros(data.shape, np.uint8) _filter.median_filter(input, mmask, output, radius, percent) if was_ranked: result = translation[output] else: result = output return result
median_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, mask, radius, percent=50):\n if mask is None:\n mask = np.ones(data.shape, dtype=bool)\n if np.all(~mask):\n return data.copy()\n if not np.issubdtype(data.dtype, np.int) or np.min(data) < 0 or np.max(data\n ) > 255:\n ranked_data, translation = rank_order(data[mask], nbins=255)\n was_ranked = True\n else:\n ranked_data = data[mask]\n was_ranked = False\n input = np.zeros(data.shape, np.uint8)\n input[mask] = ranked_data\n mmask = np.ascontiguousarray(mask, np.uint8)\n output = np.zeros(data.shape, np.uint8)\n _filter.median_filter(input, mmask, output, radius, percent)\n if was_ranked:\n result = translation[output]\n else:\n result = output\n return result\n", "role": "user" }, { "content": "median_filter", "role": "assistant" } ]
def x(image, mask, sigma_spatial, sigma_range, sampling_spatial=None, sampling_range=None): if sampling_spatial is None: sampling_spatial = sigma_spatial / 2.0 if sampling_range is None: sampling_range = sigma_range / 2.0 if np.all(np.logical_not(mask)): return image masked_image = image[mask] image_min = np.min(masked_image) image_max = np.max(masked_image) image_delta = image_max - image_min if image_delta == 0: return image ds_sigma_spatial = sigma_spatial / sampling_spatial ds_sigma_range = sigma_range / sampling_range ds_i_limit = int(image.shape[0] / sampling_spatial) + 2 ds_j_limit = int(image.shape[1] / sampling_spatial) + 2 ds_z_limit = int(image_delta / sampling_range) + 2 grid_data = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit)) grid_weights = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit)) di, dj = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float ) / sampling_spatial dz = (masked_image - image_min) / sampling_range di = di[mask] dj = dj[mask] grid_data[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5). astype(int)] += masked_image grid_weights[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5) .astype(int)] += 1 kernel_spatial_limit = int(2 * ds_sigma_spatial) + 1 kernel_range_limit = int(2 * ds_sigma_range) + 1 ki, kj, kz = np.mgrid[-kernel_spatial_limit:kernel_spatial_limit + 1, - kernel_spatial_limit:kernel_spatial_limit + 1, -kernel_range_limit: kernel_range_limit + 1] kernel = np.exp(-0.5 * ((ki ** 2 + kj ** 2) / ds_sigma_spatial ** 2 + kz ** 2 / ds_sigma_range ** 2)) blurred_grid_data = convolve(grid_data, kernel, mode='constant') blurred_weights = convolve(grid_weights, kernel, mode='constant') weight_mask = blurred_weights > 0 normalized_blurred_grid = np.zeros(grid_data.shape) normalized_blurred_grid[weight_mask] = blurred_grid_data[weight_mask ] / blurred_weights[weight_mask] dijz = np.vstack((di, dj, dz)) image_copy = image.copy() image_copy[mask] = map_coordinates(normalized_blurred_grid, dijz, order=1) return image_copy
bilateral_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask, sigma_spatial, sigma_range, sampling_spatial=None,\n sampling_range=None):\n if sampling_spatial is None:\n sampling_spatial = sigma_spatial / 2.0\n if sampling_range is None:\n sampling_range = sigma_range / 2.0\n if np.all(np.logical_not(mask)):\n return image\n masked_image = image[mask]\n image_min = np.min(masked_image)\n image_max = np.max(masked_image)\n image_delta = image_max - image_min\n if image_delta == 0:\n return image\n ds_sigma_spatial = sigma_spatial / sampling_spatial\n ds_sigma_range = sigma_range / sampling_range\n ds_i_limit = int(image.shape[0] / sampling_spatial) + 2\n ds_j_limit = int(image.shape[1] / sampling_spatial) + 2\n ds_z_limit = int(image_delta / sampling_range) + 2\n grid_data = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))\n grid_weights = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))\n di, dj = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float\n ) / sampling_spatial\n dz = (masked_image - image_min) / sampling_range\n di = di[mask]\n dj = dj[mask]\n grid_data[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5).\n astype(int)] += masked_image\n grid_weights[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5)\n .astype(int)] += 1\n kernel_spatial_limit = int(2 * ds_sigma_spatial) + 1\n kernel_range_limit = int(2 * ds_sigma_range) + 1\n ki, kj, kz = np.mgrid[-kernel_spatial_limit:kernel_spatial_limit + 1, -\n kernel_spatial_limit:kernel_spatial_limit + 1, -kernel_range_limit:\n kernel_range_limit + 1]\n kernel = np.exp(-0.5 * ((ki ** 2 + kj ** 2) / ds_sigma_spatial ** 2 + \n kz ** 2 / ds_sigma_range ** 2))\n blurred_grid_data = convolve(grid_data, kernel, mode='constant')\n blurred_weights = convolve(grid_weights, kernel, mode='constant')\n weight_mask = blurred_weights > 0\n normalized_blurred_grid = np.zeros(grid_data.shape)\n normalized_blurred_grid[weight_mask] = blurred_grid_data[weight_mask\n ] / blurred_weights[weight_mask]\n dijz = np.vstack((di, dj, dz))\n image_copy = image.copy()\n image_copy[mask] = map_coordinates(normalized_blurred_grid, dijz, order=1)\n return image_copy\n", "role": "user" }, { "content": "bilateral_filter", "role": "assistant" } ]
def x(image, mask, size, sigma): half_size = size // 2 i, j = np.mgrid[-half_size:half_size + 1, -half_size:half_size + 1].astype( float) / float(sigma) distance = (i ** 2 + j ** 2) / 2 gaussian = np.exp(-distance) gaussian = gaussian / np.sum(gaussian) log = (distance - 1) * gaussian log = log - np.mean(log) if mask is None: mask = np.ones(image.shape[:2], bool) masked_image = image.copy() masked_image[~mask] = 0 output = convolve(masked_image, log, mode='constant', cval=0) correction = convolve((~mask).astype(float), log, mode='constant', cval=1) output += correction * image output[~mask] = image[~mask] return output
laplacian_of_gaussian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask, size, sigma):\n half_size = size // 2\n i, j = np.mgrid[-half_size:half_size + 1, -half_size:half_size + 1].astype(\n float) / float(sigma)\n distance = (i ** 2 + j ** 2) / 2\n gaussian = np.exp(-distance)\n gaussian = gaussian / np.sum(gaussian)\n log = (distance - 1) * gaussian\n log = log - np.mean(log)\n if mask is None:\n mask = np.ones(image.shape[:2], bool)\n masked_image = image.copy()\n masked_image[~mask] = 0\n output = convolve(masked_image, log, mode='constant', cval=0)\n correction = convolve((~mask).astype(float), log, mode='constant', cval=1)\n output += correction * image\n output[~mask] = image[~mask]\n return output\n", "role": "user" }, { "content": "laplacian_of_gaussian", "role": "assistant" } ]
def x(image, mask, sigma, low_threshold, high_threshold): fsmooth = lambda x: gaussian_filter(x, sigma, mode='constant') smoothed = smooth_with_function_and_mask(image, fsmooth, mask) jsobel = convolve(smoothed, [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) isobel = convolve(smoothed, [[-1, -2, -1], [0, 0, 0], [1, 2, 1]]) abs_isobel = np.abs(isobel) abs_jsobel = np.abs(jsobel) magnitude = np.sqrt(isobel * isobel + jsobel * jsobel) s = generate_binary_structure(2, 2) emask = binary_erosion(mask, s, border_value=0) emask = np.logical_and(emask, magnitude > 0) local_maxima = np.zeros(image.shape, bool) pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, abs_isobel >= abs_jsobel)) pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, abs_isobel >= abs_jsobel)) pts = np.logical_or(pts_plus, pts_minus) pts = np.logical_and(emask, pts) c1 = magnitude[1:, :][pts[:-1, :]] c2 = magnitude[1:, 1:][pts[:-1, :-1]] m = magnitude[pts] w = abs_jsobel[pts] / abs_isobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[:-1, :][pts[1:, :]] c2 = magnitude[:-1, :-1][pts[1:, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = np.logical_and(c_plus, c_minus) pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, abs_isobel <= abs_jsobel)) pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, abs_isobel <= abs_jsobel)) pts = np.logical_or(pts_plus, pts_minus) pts = np.logical_and(emask, pts) c1 = magnitude[:, 1:][pts[:, :-1]] c2 = magnitude[1:, 1:][pts[:-1, :-1]] m = magnitude[pts] w = abs_isobel[pts] / abs_jsobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[:, :-1][pts[:, 1:]] c2 = magnitude[:-1, :-1][pts[1:, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = np.logical_and(c_plus, c_minus) pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, abs_isobel <= abs_jsobel)) pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, abs_isobel <= abs_jsobel)) pts = np.logical_or(pts_plus, pts_minus) pts = np.logical_and(emask, pts) c1a = magnitude[:, 1:][pts[:, :-1]] c2a = magnitude[:-1, 1:][pts[1:, :-1]] m = magnitude[pts] w = abs_isobel[pts] / abs_jsobel[pts] c_plus = c2a * w + c1a * (1.0 - w) <= m c1 = magnitude[:, :-1][pts[:, 1:]] c2 = magnitude[1:, :-1][pts[:-1, 1:]] c_minus = c2 * w + c1 * (1.0 - w) <= m cc = np.logical_and(c_plus, c_minus) local_maxima[pts] = np.logical_and(c_plus, c_minus) pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, abs_isobel >= abs_jsobel)) pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, abs_isobel >= abs_jsobel)) pts = np.logical_or(pts_plus, pts_minus) pts = np.logical_and(emask, pts) c1 = magnitude[:-1, :][pts[1:, :]] c2 = magnitude[:-1, 1:][pts[1:, :-1]] m = magnitude[pts] w = abs_jsobel[pts] / abs_isobel[pts] c_plus = c2 * w + c1 * (1 - w) <= m c1 = magnitude[1:, :][pts[:-1, :]] c2 = magnitude[1:, :-1][pts[:-1, 1:]] c_minus = c2 * w + c1 * (1 - w) <= m local_maxima[pts] = np.logical_and(c_plus, c_minus) high_mask = np.logical_and(local_maxima, magnitude >= high_threshold) low_mask = np.logical_and(local_maxima, magnitude >= low_threshold) labels, count = label(low_mask, np.ones((3, 3), bool)) if count == 0: return low_mask sums = fix(scind.sum(high_mask, labels, np.arange(count, dtype=np.int32 ) + 1)) good_label = np.zeros((count + 1,), bool) good_label[1:] = sums > 0 output_mask = good_label[labels] return output_mask
canny
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask, sigma, low_threshold, high_threshold):\n fsmooth = lambda x: gaussian_filter(x, sigma, mode='constant')\n smoothed = smooth_with_function_and_mask(image, fsmooth, mask)\n jsobel = convolve(smoothed, [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])\n isobel = convolve(smoothed, [[-1, -2, -1], [0, 0, 0], [1, 2, 1]])\n abs_isobel = np.abs(isobel)\n abs_jsobel = np.abs(jsobel)\n magnitude = np.sqrt(isobel * isobel + jsobel * jsobel)\n s = generate_binary_structure(2, 2)\n emask = binary_erosion(mask, s, border_value=0)\n emask = np.logical_and(emask, magnitude > 0)\n local_maxima = np.zeros(image.shape, bool)\n pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, \n abs_isobel >= abs_jsobel))\n pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, \n abs_isobel >= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[1:, :][pts[:-1, :]]\n c2 = magnitude[1:, 1:][pts[:-1, :-1]]\n m = magnitude[pts]\n w = abs_jsobel[pts] / abs_isobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[:-1, :][pts[1:, :]]\n c2 = magnitude[:-1, :-1][pts[1:, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, \n abs_isobel <= abs_jsobel))\n pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, \n abs_isobel <= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[:, 1:][pts[:, :-1]]\n c2 = magnitude[1:, 1:][pts[:-1, :-1]]\n m = magnitude[pts]\n w = abs_isobel[pts] / abs_jsobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[:, :-1][pts[:, 1:]]\n c2 = magnitude[:-1, :-1][pts[1:, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, \n abs_isobel <= abs_jsobel))\n pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, \n abs_isobel <= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1a = magnitude[:, 1:][pts[:, :-1]]\n c2a = magnitude[:-1, 1:][pts[1:, :-1]]\n m = magnitude[pts]\n w = abs_isobel[pts] / abs_jsobel[pts]\n c_plus = c2a * w + c1a * (1.0 - w) <= m\n c1 = magnitude[:, :-1][pts[:, 1:]]\n c2 = magnitude[1:, :-1][pts[:-1, 1:]]\n c_minus = c2 * w + c1 * (1.0 - w) <= m\n cc = np.logical_and(c_plus, c_minus)\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, \n abs_isobel >= abs_jsobel))\n pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, \n abs_isobel >= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[:-1, :][pts[1:, :]]\n c2 = magnitude[:-1, 1:][pts[1:, :-1]]\n m = magnitude[pts]\n w = abs_jsobel[pts] / abs_isobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[1:, :][pts[:-1, :]]\n c2 = magnitude[1:, :-1][pts[:-1, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n high_mask = np.logical_and(local_maxima, magnitude >= high_threshold)\n low_mask = np.logical_and(local_maxima, magnitude >= low_threshold)\n labels, count = label(low_mask, np.ones((3, 3), bool))\n if count == 0:\n return low_mask\n sums = fix(scind.sum(high_mask, labels, np.arange(count, dtype=np.int32\n ) + 1))\n good_label = np.zeros((count + 1,), bool)\n good_label[1:] = sums > 0\n output_mask = good_label[labels]\n return output_mask\n", "role": "user" }, { "content": "canny", "role": "assistant" } ]
def x(image, mask=None): result = np.zeros(image.shape) if mask is None: mask = np.ones(image.shape, bool) big_mask = binary_erosion(mask, generate_binary_structure(2, 2), border_value=0) result[big_mask == False] = 0 q00 = image[:, :][big_mask] q11 = image[1:, 1:][big_mask[:-1, :-1]] qm11 = image[:-1, 1:][big_mask[1:, :-1]] diagonal = q00 - qm11 anti_diagonal = q00 - q11 result[big_mask] = np.sqrt(diagonal * diagonal + anti_diagonal * anti_diagonal) return result
roberts
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n result = np.zeros(image.shape)\n if mask is None:\n mask = np.ones(image.shape, bool)\n big_mask = binary_erosion(mask, generate_binary_structure(2, 2),\n border_value=0)\n result[big_mask == False] = 0\n q00 = image[:, :][big_mask]\n q11 = image[1:, 1:][big_mask[:-1, :-1]]\n qm11 = image[:-1, 1:][big_mask[1:, :-1]]\n diagonal = q00 - qm11\n anti_diagonal = q00 - q11\n result[big_mask] = np.sqrt(diagonal * diagonal + anti_diagonal *\n anti_diagonal)\n return result\n", "role": "user" }, { "content": "roberts", "role": "assistant" } ]
def x(image, mask=None): return np.sqrt(hsobel(image, mask) ** 2 + vsobel(image, mask) ** 2)
sobel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n return np.sqrt(hsobel(image, mask) ** 2 + vsobel(image, mask) ** 2)\n", "role": "user" }, { "content": "sobel", "role": "assistant" } ]
def x(image, mask=None): return np.sqrt(hprewitt(image, mask) ** 2 + vprewitt(image, mask) ** 2)
prewitt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n return np.sqrt(hprewitt(image, mask) ** 2 + vprewitt(image, mask) ** 2)\n", "role": "user" }, { "content": "prewitt", "role": "assistant" } ]
def x(image, mask=None): if mask is None: mask = np.ones(image.shape, bool) big_mask = binary_erosion(mask, generate_binary_structure(2, 2), border_value=0) result = np.abs(convolve(image, np.array([[1, 1, 1], [0, 0, 0], [-1, -1, -1]]).astype(float) / 3.0)) result[big_mask == False] = 0 return result
hprewitt
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, mask=None):\n if mask is None:\n mask = np.ones(image.shape, bool)\n big_mask = binary_erosion(mask, generate_binary_structure(2, 2),\n border_value=0)\n result = np.abs(convolve(image, np.array([[1, 1, 1], [0, 0, 0], [-1, -1,\n -1]]).astype(float) / 3.0))\n result[big_mask == False] = 0\n return result\n", "role": "user" }, { "content": "hprewitt", "role": "assistant" } ]
def x(image, labels, frequency, theta): nobjects = np.max(labels) if nobjects == 0: return image centers = centers_of_labels(labels) areas = fix(scind.sum(np.ones(image.shape), labels, np.arange(nobjects, dtype=np.int32) + 1)) mask = labels > 0 i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float) i = i[mask] j = j[mask] image = image[mask] lm = labels[mask] - 1 i -= centers[0, lm] j -= centers[1, lm] sigma = np.sqrt(areas / np.pi) / 3.0 sigma = sigma[lm] g_exp = 1000.0 / (2.0 * np.pi * sigma ** 2) * np.exp(-(i ** 2 + j ** 2) / (2 * sigma ** 2)) g_angle = 2 * np.pi / frequency * (i * np.cos(theta) + j * np.sin(theta)) g_cos = g_exp * np.cos(g_angle) g_sin = g_exp * np.sin(g_angle) g_cos_mean = fix(scind.mean(g_cos, lm, np.arange(nobjects))) i_mean = fix(scind.mean(image, lm, np.arange(nobjects))) i_norm = image - i_mean[lm] g_sin_mean = fix(scind.mean(g_sin, lm, np.arange(nobjects))) g_cos -= g_cos_mean[lm] g_sin -= g_sin_mean[lm] g = np.zeros(mask.shape, dtype=np.complex) g[mask] = i_norm * g_cos + i_norm * g_sin * 1.0j return g
gabor
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, labels, frequency, theta):\n nobjects = np.max(labels)\n if nobjects == 0:\n return image\n centers = centers_of_labels(labels)\n areas = fix(scind.sum(np.ones(image.shape), labels, np.arange(nobjects,\n dtype=np.int32) + 1))\n mask = labels > 0\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float)\n i = i[mask]\n j = j[mask]\n image = image[mask]\n lm = labels[mask] - 1\n i -= centers[0, lm]\n j -= centers[1, lm]\n sigma = np.sqrt(areas / np.pi) / 3.0\n sigma = sigma[lm]\n g_exp = 1000.0 / (2.0 * np.pi * sigma ** 2) * np.exp(-(i ** 2 + j ** 2) /\n (2 * sigma ** 2))\n g_angle = 2 * np.pi / frequency * (i * np.cos(theta) + j * np.sin(theta))\n g_cos = g_exp * np.cos(g_angle)\n g_sin = g_exp * np.sin(g_angle)\n g_cos_mean = fix(scind.mean(g_cos, lm, np.arange(nobjects)))\n i_mean = fix(scind.mean(image, lm, np.arange(nobjects)))\n i_norm = image - i_mean[lm]\n g_sin_mean = fix(scind.mean(g_sin, lm, np.arange(nobjects)))\n g_cos -= g_cos_mean[lm]\n g_sin -= g_sin_mean[lm]\n g = np.zeros(mask.shape, dtype=np.complex)\n g[mask] = i_norm * g_cos + i_norm * g_sin * 1.0j\n return g\n", "role": "user" }, { "content": "gabor", "role": "assistant" } ]
def x(image, min_radius, max_radius, mask=None): se = np.array([[False, True, False], [True, True, True], [False, True, False]]) inverted_image = image.max() - image previous_reconstructed_image = inverted_image eroded_image = inverted_image smoothed_image = np.zeros(image.shape) for i in range(max_radius + 1): eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se) reconstructed_image = grey_reconstruction(eroded_image, inverted_image, footprint=se) output_image = previous_reconstructed_image - reconstructed_image if i >= min_radius: smoothed_image = np.maximum(smoothed_image, output_image) previous_reconstructed_image = reconstructed_image return smoothed_image
enhance_dark_holes
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, min_radius, max_radius, mask=None):\n se = np.array([[False, True, False], [True, True, True], [False, True, \n False]])\n inverted_image = image.max() - image\n previous_reconstructed_image = inverted_image\n eroded_image = inverted_image\n smoothed_image = np.zeros(image.shape)\n for i in range(max_radius + 1):\n eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)\n reconstructed_image = grey_reconstruction(eroded_image,\n inverted_image, footprint=se)\n output_image = previous_reconstructed_image - reconstructed_image\n if i >= min_radius:\n smoothed_image = np.maximum(smoothed_image, output_image)\n previous_reconstructed_image = reconstructed_image\n return smoothed_image\n", "role": "user" }, { "content": "enhance_dark_holes", "role": "assistant" } ]
def x(image, min_radius, max_radius, mask=None): se = np.array([[False, True, False], [True, True, True], [False, True, False]]) inverted_image = image.max() - image previous_opened_image = image eroded_image = image selected_granules_image = np.zeros(image.shape) for i in range(max_radius + 1): eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se) opened_image = grey_dilation(eroded_image, inverted_image, footprint=se ) output_image = previous_opened_image - opened_image if i >= min_radius: selected_granules_image = np.maximum(selected_granules_image, output_image) previous_opened_image = opened_image return selected_granules_image
granulometry_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, min_radius, max_radius, mask=None):\n se = np.array([[False, True, False], [True, True, True], [False, True, \n False]])\n inverted_image = image.max() - image\n previous_opened_image = image\n eroded_image = image\n selected_granules_image = np.zeros(image.shape)\n for i in range(max_radius + 1):\n eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)\n opened_image = grey_dilation(eroded_image, inverted_image, footprint=se\n )\n output_image = previous_opened_image - opened_image\n if i >= min_radius:\n selected_granules_image = np.maximum(selected_granules_image,\n output_image)\n previous_opened_image = opened_image\n return selected_granules_image\n", "role": "user" }, { "content": "granulometry_filter", "role": "assistant" } ]
def x(image, radius, mask=None): crad = int(np.ceil(radius - 0.5)) x, y = np.mgrid[-crad:crad + 1, -crad:crad + 1].astype(float) maxxy = np.maximum(abs(x), abs(y)) minxy = np.minimum(abs(x), abs(y)) m1 = (radius ** 2 < (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * (minxy - 0.5 ) + (radius ** 2 >= (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * np.real( np.sqrt(np.asarray(radius ** 2 - (maxxy + 0.5) ** 2, dtype=complex))) m2 = (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * (minxy + 0.5 ) + (radius ** 2 <= (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * np.real( np.sqrt(np.asarray(radius ** 2 - (maxxy - 0.5) ** 2, dtype=complex))) sgrid = (radius ** 2 * (0.5 * (np.arcsin(m2 / radius) - np.arcsin(m1 / radius)) + 0.25 * (np.sin(2 * np.arcsin(m2 / radius)) - np.sin(2 * np.arcsin(m1 / radius)))) - (maxxy - 0.5) * (m2 - m1) + (m1 - minxy + 0.5)) * ((radius ** 2 < (maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2) & (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy - 0.5) ** 2) | (minxy == 0) & (maxxy - 0.5 < radius) & (maxxy + 0.5 >= radius)) sgrid = sgrid + ((maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2 < radius ** 2) sgrid[crad, crad] = np.minimum(np.pi * radius ** 2, np.pi / 2) if crad > 0 and radius > crad - 0.5 and radius ** 2 < (crad - 0.5 ) ** 2 + 0.25: m1 = np.sqrt(radius ** 2 - (crad - 0.5) ** 2) m1n = m1 / radius sg0 = 2 * (radius ** 2 * (0.5 * np.arcsin(m1n) + 0.25 * np.sin(2 * np.arcsin(m1n))) - m1 * (crad - 0.5)) sgrid[2 * crad, crad] = sg0 sgrid[crad, 2 * crad] = sg0 sgrid[crad, 0] = sg0 sgrid[0, crad] = sg0 sgrid[2 * crad - 1, crad] = sgrid[2 * crad - 1, crad] - sg0 sgrid[crad, 2 * crad - 1] = sgrid[crad, 2 * crad - 1] - sg0 sgrid[crad, 1] = sgrid[crad, 1] - sg0 sgrid[1, crad] = sgrid[1, crad] - sg0 sgrid[crad, crad] = np.minimum(sgrid[crad, crad], 1) kernel = sgrid / sgrid.sum() output = convolve(image, kernel, mode='constant') if mask is None: mask = np.ones(image.shape, np.uint8) else: mask = np.array(mask, np.uint8) output = masked_convolution(image, mask, kernel) output[mask == 0] = image[mask == 0] return output
circular_average_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, radius, mask=None):\n crad = int(np.ceil(radius - 0.5))\n x, y = np.mgrid[-crad:crad + 1, -crad:crad + 1].astype(float)\n maxxy = np.maximum(abs(x), abs(y))\n minxy = np.minimum(abs(x), abs(y))\n m1 = (radius ** 2 < (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * (minxy - 0.5\n ) + (radius ** 2 >= (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * np.real(\n np.sqrt(np.asarray(radius ** 2 - (maxxy + 0.5) ** 2, dtype=complex)))\n m2 = (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * (minxy + 0.5\n ) + (radius ** 2 <= (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * np.real(\n np.sqrt(np.asarray(radius ** 2 - (maxxy - 0.5) ** 2, dtype=complex)))\n sgrid = (radius ** 2 * (0.5 * (np.arcsin(m2 / radius) - np.arcsin(m1 /\n radius)) + 0.25 * (np.sin(2 * np.arcsin(m2 / radius)) - np.sin(2 *\n np.arcsin(m1 / radius)))) - (maxxy - 0.5) * (m2 - m1) + (m1 - minxy +\n 0.5)) * ((radius ** 2 < (maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2) &\n (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy - 0.5) ** 2) | (minxy ==\n 0) & (maxxy - 0.5 < radius) & (maxxy + 0.5 >= radius))\n sgrid = sgrid + ((maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2 < radius ** 2)\n sgrid[crad, crad] = np.minimum(np.pi * radius ** 2, np.pi / 2)\n if crad > 0 and radius > crad - 0.5 and radius ** 2 < (crad - 0.5\n ) ** 2 + 0.25:\n m1 = np.sqrt(radius ** 2 - (crad - 0.5) ** 2)\n m1n = m1 / radius\n sg0 = 2 * (radius ** 2 * (0.5 * np.arcsin(m1n) + 0.25 * np.sin(2 *\n np.arcsin(m1n))) - m1 * (crad - 0.5))\n sgrid[2 * crad, crad] = sg0\n sgrid[crad, 2 * crad] = sg0\n sgrid[crad, 0] = sg0\n sgrid[0, crad] = sg0\n sgrid[2 * crad - 1, crad] = sgrid[2 * crad - 1, crad] - sg0\n sgrid[crad, 2 * crad - 1] = sgrid[crad, 2 * crad - 1] - sg0\n sgrid[crad, 1] = sgrid[crad, 1] - sg0\n sgrid[1, crad] = sgrid[1, crad] - sg0\n sgrid[crad, crad] = np.minimum(sgrid[crad, crad], 1)\n kernel = sgrid / sgrid.sum()\n output = convolve(image, kernel, mode='constant')\n if mask is None:\n mask = np.ones(image.shape, np.uint8)\n else:\n mask = np.array(mask, np.uint8)\n output = masked_convolution(image, mask, kernel)\n output[mask == 0] = image[mask == 0]\n return output\n", "role": "user" }, { "content": "circular_average_filter", "role": "assistant" } ]
def x(): om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) tm = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]]) return KalmanState(om, tm)
velocity_kalman_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])\n tm = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]])\n return KalmanState(om, tm)\n", "role": "user" }, { "content": "velocity_kalman_model", "role": "assistant" } ]
def x(): om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) tm = np.array([[1, 0, -1, 0], [0, 1, 0, -1], [0, 0, 1, 0], [0, 0, 0, 1]]) return KalmanState(om, tm)
reverse_velocity_kalman_model
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x():\n om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])\n tm = np.array([[1, 0, -1, 0], [0, 1, 0, -1], [0, 0, 1, 0], [0, 0, 0, 1]])\n return KalmanState(om, tm)\n", "role": "user" }, { "content": "reverse_velocity_kalman_model", "role": "assistant" } ]
def x(kalman_state, old_indices, coordinates, q, r): assert isinstance(kalman_state, KalmanState) old_indices = np.array(old_indices) if len(old_indices) == 0: return KalmanState(kalman_state.observation_matrix, kalman_state. translation_matrix) matching = old_indices != -1 new_indices = np.arange(len(old_indices))[~matching] retained_indices = np.arange(len(old_indices))[matching] new_coords = coordinates[new_indices] observation_matrix_t = kalman_state.observation_matrix.transpose() if len(retained_indices) > 0: kalman_state = kalman_state.deep_copy() coordinates = coordinates[retained_indices] kalman_state.map_frames(old_indices[retained_indices]) state_vec = kalman_state.predicted_state_vec state_cov = dot_n(dot_n(kalman_state.translation_matrix, kalman_state.state_cov), kalman_state.translation_matrix. transpose()) + q[matching] kalman_gain_numerator = dot_n(state_cov, observation_matrix_t) kalman_gain_denominator = dot_n(dot_n(kalman_state. observation_matrix, state_cov), observation_matrix_t) + r[matching] kalman_gain_denominator = inv_n(kalman_gain_denominator) kalman_gain = dot_n(kalman_gain_numerator, kalman_gain_denominator) difference = coordinates - dot_n(kalman_state.observation_matrix, state_vec[:, :, np.newaxis])[:, :, 0] state_noise = dot_n(kalman_gain, difference[:, :, np.newaxis])[:, :, 0] state_vec = state_vec + state_noise state_cov = state_cov - dot_n(dot_n(kalman_gain, kalman_state. observation_matrix), state_cov) idx = np.arange(len(state_noise)) all_state_noise = np.vstack((kalman_state.state_noise, state_noise)) all_state_noise_idx = np.hstack((kalman_state.state_noise_idx, idx)) noise_var = np.zeros((len(idx), all_state_noise.shape[1])) for i in range(all_state_noise.shape[1]): noise_var[:, i] = fix(scind.variance(all_state_noise[:, i], all_state_noise_idx, idx)) obs_vec = dot_n(kalman_state.observation_matrix, state_vec[:, :, np .newaxis])[:, :, 0] kalman_state = KalmanState(kalman_state.observation_matrix, kalman_state.translation_matrix, state_vec, state_cov, noise_var, all_state_noise, all_state_noise_idx) else: kalman_state = KalmanState(kalman_state.observation_matrix, kalman_state.translation_matrix) if len(new_coords) > 0: state_vec = dot_n(observation_matrix_t, new_coords[:, :, np.newaxis])[ :, :, 0] nstates = kalman_state.state_len nnew_features = len(new_indices) cov_vec = SMALL_KALMAN_COV / np.dot(observation_matrix_t, np.ones( kalman_state.obs_len)) cov_vec[~np.isfinite(cov_vec)] = LARGE_KALMAN_COV cov_matrix = np.diag(cov_vec) state_cov = cov_matrix[np.newaxis, :, :][np.zeros(nnew_features, int)] noise_var = np.ones((len(new_indices), kalman_state.state_len)) kalman_state.add_features(retained_indices, new_indices, state_vec, state_cov, noise_var) return kalman_state
kalman_filter
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(kalman_state, old_indices, coordinates, q, r):\n assert isinstance(kalman_state, KalmanState)\n old_indices = np.array(old_indices)\n if len(old_indices) == 0:\n return KalmanState(kalman_state.observation_matrix, kalman_state.\n translation_matrix)\n matching = old_indices != -1\n new_indices = np.arange(len(old_indices))[~matching]\n retained_indices = np.arange(len(old_indices))[matching]\n new_coords = coordinates[new_indices]\n observation_matrix_t = kalman_state.observation_matrix.transpose()\n if len(retained_indices) > 0:\n kalman_state = kalman_state.deep_copy()\n coordinates = coordinates[retained_indices]\n kalman_state.map_frames(old_indices[retained_indices])\n state_vec = kalman_state.predicted_state_vec\n state_cov = dot_n(dot_n(kalman_state.translation_matrix,\n kalman_state.state_cov), kalman_state.translation_matrix.\n transpose()) + q[matching]\n kalman_gain_numerator = dot_n(state_cov, observation_matrix_t)\n kalman_gain_denominator = dot_n(dot_n(kalman_state.\n observation_matrix, state_cov), observation_matrix_t) + r[matching]\n kalman_gain_denominator = inv_n(kalman_gain_denominator)\n kalman_gain = dot_n(kalman_gain_numerator, kalman_gain_denominator)\n difference = coordinates - dot_n(kalman_state.observation_matrix,\n state_vec[:, :, np.newaxis])[:, :, 0]\n state_noise = dot_n(kalman_gain, difference[:, :, np.newaxis])[:, :, 0]\n state_vec = state_vec + state_noise\n state_cov = state_cov - dot_n(dot_n(kalman_gain, kalman_state.\n observation_matrix), state_cov)\n idx = np.arange(len(state_noise))\n all_state_noise = np.vstack((kalman_state.state_noise, state_noise))\n all_state_noise_idx = np.hstack((kalman_state.state_noise_idx, idx))\n noise_var = np.zeros((len(idx), all_state_noise.shape[1]))\n for i in range(all_state_noise.shape[1]):\n noise_var[:, i] = fix(scind.variance(all_state_noise[:, i],\n all_state_noise_idx, idx))\n obs_vec = dot_n(kalman_state.observation_matrix, state_vec[:, :, np\n .newaxis])[:, :, 0]\n kalman_state = KalmanState(kalman_state.observation_matrix,\n kalman_state.translation_matrix, state_vec, state_cov,\n noise_var, all_state_noise, all_state_noise_idx)\n else:\n kalman_state = KalmanState(kalman_state.observation_matrix,\n kalman_state.translation_matrix)\n if len(new_coords) > 0:\n state_vec = dot_n(observation_matrix_t, new_coords[:, :, np.newaxis])[\n :, :, 0]\n nstates = kalman_state.state_len\n nnew_features = len(new_indices)\n cov_vec = SMALL_KALMAN_COV / np.dot(observation_matrix_t, np.ones(\n kalman_state.obs_len))\n cov_vec[~np.isfinite(cov_vec)] = LARGE_KALMAN_COV\n cov_matrix = np.diag(cov_vec)\n state_cov = cov_matrix[np.newaxis, :, :][np.zeros(nnew_features, int)]\n noise_var = np.ones((len(new_indices), kalman_state.state_len))\n kalman_state.add_features(retained_indices, new_indices, state_vec,\n state_cov, noise_var)\n return kalman_state\n", "role": "user" }, { "content": "kalman_filter", "role": "assistant" } ]
def x(image, angle, decay, sigma): normalized = image - np.mean(image) rotated = scind.rotate(normalized, -angle) smoothed = scind.gaussian_filter1d(rotated, sigma ) if sigma > 0 else rotated result_fwd = smoothed.copy() for i in range(1, result_fwd.shape[0]): result_fwd[i] += result_fwd[i - 1] * decay result_rev = smoothed.copy() for i in reversed(range(result_rev.shape[0] - 1)): result_rev[i] += result_rev[i + 1] * decay result = (result_fwd - result_rev) / 2 result = scind.rotate(result, angle) ipad = int((result.shape[0] - image.shape[0]) / 2) jpad = int((result.shape[1] - image.shape[1]) / 2) result = result[ipad:ipad + image.shape[0], jpad:jpad + image.shape[1]] img_min, img_max = np.min(image), np.max(image) result_min, result_max = np.min(result), np.max(result) if img_min == img_max or result_min == result_max: return np.zeros(result.shape) result = (result - result_min) / (result_max - result_min) result = img_min + result * (img_max - img_min) return result
line_integration
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, angle, decay, sigma):\n normalized = image - np.mean(image)\n rotated = scind.rotate(normalized, -angle)\n smoothed = scind.gaussian_filter1d(rotated, sigma\n ) if sigma > 0 else rotated\n result_fwd = smoothed.copy()\n for i in range(1, result_fwd.shape[0]):\n result_fwd[i] += result_fwd[i - 1] * decay\n result_rev = smoothed.copy()\n for i in reversed(range(result_rev.shape[0] - 1)):\n result_rev[i] += result_rev[i + 1] * decay\n result = (result_fwd - result_rev) / 2\n result = scind.rotate(result, angle)\n ipad = int((result.shape[0] - image.shape[0]) / 2)\n jpad = int((result.shape[1] - image.shape[1]) / 2)\n result = result[ipad:ipad + image.shape[0], jpad:jpad + image.shape[1]]\n img_min, img_max = np.min(image), np.max(image)\n result_min, result_max = np.min(result), np.max(result)\n if img_min == img_max or result_min == result_max:\n return np.zeros(result.shape)\n result = (result - result_min) / (result_max - result_min)\n result = img_min + result * (img_max - img_min)\n return result\n", "role": "user" }, { "content": "line_integration", "role": "assistant" } ]
def x(img, sigma, mask=None): if mask is None: mask = np.ones(img.shape, bool) else: img = img.copy() img[~mask] = 0 gmask = scind.gaussian_filter(mask.astype(float), sigma, mode='constant') img_mean = scind.gaussian_filter(img, sigma, mode='constant') / gmask img_squared = scind.gaussian_filter(img ** 2, sigma, mode='constant' ) / gmask var = img_squared - img_mean ** 2 return var
variance_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, sigma, mask=None):\n if mask is None:\n mask = np.ones(img.shape, bool)\n else:\n img = img.copy()\n img[~mask] = 0\n gmask = scind.gaussian_filter(mask.astype(float), sigma, mode='constant')\n img_mean = scind.gaussian_filter(img, sigma, mode='constant') / gmask\n img_squared = scind.gaussian_filter(img ** 2, sigma, mode='constant'\n ) / gmask\n var = img_squared - img_mean ** 2\n return var\n", "role": "user" }, { "content": "variance_transform", "role": "assistant" } ]
def x(x): assert x.ndim == 3 assert x.shape[1] == x.shape[2] c = np.array([[(cofactor_n(x, j, i) * (1 - (i + j) % 2 * 2)) for j in range(x.shape[1])] for i in range(x.shape[1])]).transpose(2, 0, 1) return c / det_n(x)[:, np.newaxis, np.newaxis]
inv_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n assert x.ndim == 3\n assert x.shape[1] == x.shape[2]\n c = np.array([[(cofactor_n(x, j, i) * (1 - (i + j) % 2 * 2)) for j in\n range(x.shape[1])] for i in range(x.shape[1])]).transpose(2, 0, 1)\n return c / det_n(x)[:, np.newaxis, np.newaxis]\n", "role": "user" }, { "content": "inv_n", "role": "assistant" } ]
def x(x): assert x.ndim == 3 assert x.shape[1] == x.shape[2] if x.shape[1] == 1: return x[:, 0, 0] result = np.zeros(x.shape[0]) for permutation in permutations(np.arange(x.shape[1])): sign = parity(permutation) result += np.prod([x[:, i, permutation[i]] for i in range(x.shape[1 ])], 0) * sign sign = -sign return result
det_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n assert x.ndim == 3\n assert x.shape[1] == x.shape[2]\n if x.shape[1] == 1:\n return x[:, 0, 0]\n result = np.zeros(x.shape[0])\n for permutation in permutations(np.arange(x.shape[1])):\n sign = parity(permutation)\n result += np.prod([x[:, i, permutation[i]] for i in range(x.shape[1\n ])], 0) * sign\n sign = -sign\n return result\n", "role": "user" }, { "content": "det_n", "role": "assistant" } ]
def x(x): order = np.lexsort((x,)) hit = np.zeros(len(x), bool) p = 0 for j in range(len(x)): if not hit[j]: cycle = 1 i = order[j] while i != j: hit[i] = True i = order[i] cycle += 1 p += cycle - 1 return 1 if p % 2 == 0 else -1
parity
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n order = np.lexsort((x,))\n hit = np.zeros(len(x), bool)\n p = 0\n for j in range(len(x)):\n if not hit[j]:\n cycle = 1\n i = order[j]\n while i != j:\n hit[i] = True\n i = order[i]\n cycle += 1\n p += cycle - 1\n return 1 if p % 2 == 0 else -1\n", "role": "user" }, { "content": "parity", "role": "assistant" } ]
def x(x, i, j): m = x.shape[1] mr = np.arange(m) i_idx = mr[mr != i] j_idx = mr[mr != j] return det_n(x[:, i_idx[:, np.newaxis], j_idx[np.newaxis, :]])
cofactor_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, i, j):\n m = x.shape[1]\n mr = np.arange(m)\n i_idx = mr[mr != i]\n j_idx = mr[mr != j]\n return det_n(x[:, i_idx[:, np.newaxis], j_idx[np.newaxis, :]])\n", "role": "user" }, { "content": "cofactor_n", "role": "assistant" } ]
def x(x, y): if x.ndim == 2: if y.ndim == 2: return np.dot(x, y) x3 = False y3 = True nlen = y.shape[0] elif y.ndim == 2: nlen = x.shape[0] x3 = True y3 = False else: assert x.shape[0] == y.shape[0] nlen = x.shape[0] x3 = True y3 = True assert x.shape[1 + x3] == y.shape[0 + y3] n, i, j, k = np.mgrid[0:nlen, 0:x.shape[0 + x3], 0:y.shape[1 + y3], 0:y .shape[0 + y3]] return np.sum((x[n, i, k] if x3 else x[i, k]) * (y[n, k, j] if y3 else y[k, j]), 3)
dot_n
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y):\n if x.ndim == 2:\n if y.ndim == 2:\n return np.dot(x, y)\n x3 = False\n y3 = True\n nlen = y.shape[0]\n elif y.ndim == 2:\n nlen = x.shape[0]\n x3 = True\n y3 = False\n else:\n assert x.shape[0] == y.shape[0]\n nlen = x.shape[0]\n x3 = True\n y3 = True\n assert x.shape[1 + x3] == y.shape[0 + y3]\n n, i, j, k = np.mgrid[0:nlen, 0:x.shape[0 + x3], 0:y.shape[1 + y3], 0:y\n .shape[0 + y3]]\n return np.sum((x[n, i, k] if x3 else x[i, k]) * (y[n, k, j] if y3 else\n y[k, j]), 3)\n", "role": "user" }, { "content": "dot_n", "role": "assistant" } ]
def x(x): yield list(x) x = np.array(x) a = np.arange(len(x)) while True: ak_lt_ak_next = np.argwhere(a[:-1] < a[1:]) if len(ak_lt_ak_next) == 0: raise StopIteration() k = ak_lt_ak_next[-1, 0] ak_lt_al = np.argwhere(a[k] < a) l = ak_lt_al[-1, 0] a[k], a[l] = a[l], a[k] if k < len(x) - 1: a[k + 1:] = a[:k:-1].copy() yield x[a].tolist()
permutations
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n yield list(x)\n x = np.array(x)\n a = np.arange(len(x))\n while True:\n ak_lt_ak_next = np.argwhere(a[:-1] < a[1:])\n if len(ak_lt_ak_next) == 0:\n raise StopIteration()\n k = ak_lt_ak_next[-1, 0]\n ak_lt_al = np.argwhere(a[k] < a)\n l = ak_lt_al[-1, 0]\n a[k], a[l] = a[l], a[k]\n if k < len(x) - 1:\n a[k + 1:] = a[:k:-1].copy()\n yield x[a].tolist()\n", "role": "user" }, { "content": "permutations", "role": "assistant" } ]
def x(image, levels=256, mask=None, chunksize=CONVEX_HULL_CHUNKSIZE, pass_cutoff=16): if mask is None: img_min = np.min(image) img_max = np.max(image) else: unmasked_pixels = image[mask] if len(unmasked_pixels) == 0: return np.zeros(image.shape, image.dtype) img_min = np.min(unmasked_pixels) img_max = np.max(unmasked_pixels) img_shape = tuple(image.shape) if img_min == img_max: return image scale = img_min + np.arange(levels).astype(image.dtype) * (img_max - img_min) / float(levels - 1) image = (image - img_min) * (levels - 1) / (img_max - img_min) if mask is not None: image[~mask] = 0 if levels > pass_cutoff: sub_levels = int(np.sqrt(levels)) rough_image = convex_hull_transform(np.floor(image), sub_levels) image = np.maximum(image, rough_image) del rough_image image = image.astype(int) unique = np.unique(image) new_values = np.zeros(levels, int) new_values[unique] = np.arange(len(unique)) scale = scale[unique] image = new_values[image] min_image = grey_erosion(image, footprint=np.ones((3, 3), bool)).astype(int ) min_image[0, :] = 0 min_image[-1, :] = 0 min_image[:, 0] = 0 min_image[:, -1] = 0 i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]] mask = image > min_image i = i[mask] j = j[mask] min_image = min_image[mask] image = image[mask] count = image - min_image npoints = np.sum(count) first_index_in_big = np.cumsum(count) - count first_i = np.zeros(0, int) first_j = np.zeros(0, int) first_levels = np.zeros(0, int) chunkstart = 0 while chunkstart < len(count): idx = first_index_in_big[chunkstart] iend = idx + chunksize if iend >= npoints: chunkend = len(count) iend = npoints else: chunkend = np.searchsorted(first_index_in_big, iend) if chunkend < len(count): iend = first_index_in_big[chunkend] else: iend = npoints chunk_first_index_in_big = first_index_in_big[chunkstart:chunkend ] - idx chunkpoints = iend - idx index_in_small = np.zeros(chunkpoints, int) index_in_small[0] = chunkstart index_in_small[chunk_first_index_in_big[1:]] = 1 index_in_small = np.cumsum(index_in_small) levels = np.ones(chunkpoints, int) levels[0] = min_image[chunkstart] + 1 levels[chunk_first_index_in_big[1:]] = min_image[chunkstart + 1: chunkend] - image[chunkstart:chunkend - 1] + 1 levels = np.cumsum(levels) ijv = np.column_stack((i[index_in_small], j[index_in_small], levels)) pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique))) first_i = np.hstack((first_i, pts[:, 1])) first_j = np.hstack((first_j, pts[:, 2])) first_levels = np.hstack((first_levels, pts[:, 0])) chunkstart = chunkend ijv = np.column_stack((first_i, first_j, first_levels)) pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique))) labels = pts[:, 0] i = pts[:, 1] j = pts[:, 2] first_index = np.cumsum(counts) - counts last_index = first_index + counts - 1 next = np.arange(len(labels)) + 1 next[last_index] = first_index index, count, i, j = get_line_pts(i, j, i[next], j[next]) big_index = np.zeros(len(i), int) big_index[index[1:]] = 1 big_index = np.cumsum(big_index) labels = labels[big_index] order = np.lexsort((labels, i, j)) i = i[order] j = j[order] labels = labels[order] mask = np.hstack(((i[1:] != i[:-1]) | (j[1:] != j[:-1]), [True])) i = i[mask] j = j[mask] labels = labels[mask] first = np.hstack(([True], j[1:] != j[:-1])) top = np.zeros(img_shape, labels.dtype) top[i[first], j[first]] = labels[first] top[i[~first], j[~first]] = (labels[1:] - labels[:-1])[~first[1:]] top = np.cumsum(top, 0) bottom = np.zeros(img_shape, labels.dtype) bottom[0, j[first]] = labels[first] last = np.hstack((first[1:], [True])) bottom[i[:-1][~first[1:]] + 1, j[~first]] = (labels[1:] - labels[:-1])[ ~first[1:]] llast = last & (i < img_shape[0] - 1) bottom[i[llast] + 1, j[llast]] = -labels[llast] bottom = np.cumsum(bottom, 0) image = np.minimum(top, bottom) return scale[image]
convex_hull_transform
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, levels=256, mask=None, chunksize=CONVEX_HULL_CHUNKSIZE,\n pass_cutoff=16):\n if mask is None:\n img_min = np.min(image)\n img_max = np.max(image)\n else:\n unmasked_pixels = image[mask]\n if len(unmasked_pixels) == 0:\n return np.zeros(image.shape, image.dtype)\n img_min = np.min(unmasked_pixels)\n img_max = np.max(unmasked_pixels)\n img_shape = tuple(image.shape)\n if img_min == img_max:\n return image\n scale = img_min + np.arange(levels).astype(image.dtype) * (img_max -\n img_min) / float(levels - 1)\n image = (image - img_min) * (levels - 1) / (img_max - img_min)\n if mask is not None:\n image[~mask] = 0\n if levels > pass_cutoff:\n sub_levels = int(np.sqrt(levels))\n rough_image = convex_hull_transform(np.floor(image), sub_levels)\n image = np.maximum(image, rough_image)\n del rough_image\n image = image.astype(int)\n unique = np.unique(image)\n new_values = np.zeros(levels, int)\n new_values[unique] = np.arange(len(unique))\n scale = scale[unique]\n image = new_values[image]\n min_image = grey_erosion(image, footprint=np.ones((3, 3), bool)).astype(int\n )\n min_image[0, :] = 0\n min_image[-1, :] = 0\n min_image[:, 0] = 0\n min_image[:, -1] = 0\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]\n mask = image > min_image\n i = i[mask]\n j = j[mask]\n min_image = min_image[mask]\n image = image[mask]\n count = image - min_image\n npoints = np.sum(count)\n first_index_in_big = np.cumsum(count) - count\n first_i = np.zeros(0, int)\n first_j = np.zeros(0, int)\n first_levels = np.zeros(0, int)\n chunkstart = 0\n while chunkstart < len(count):\n idx = first_index_in_big[chunkstart]\n iend = idx + chunksize\n if iend >= npoints:\n chunkend = len(count)\n iend = npoints\n else:\n chunkend = np.searchsorted(first_index_in_big, iend)\n if chunkend < len(count):\n iend = first_index_in_big[chunkend]\n else:\n iend = npoints\n chunk_first_index_in_big = first_index_in_big[chunkstart:chunkend\n ] - idx\n chunkpoints = iend - idx\n index_in_small = np.zeros(chunkpoints, int)\n index_in_small[0] = chunkstart\n index_in_small[chunk_first_index_in_big[1:]] = 1\n index_in_small = np.cumsum(index_in_small)\n levels = np.ones(chunkpoints, int)\n levels[0] = min_image[chunkstart] + 1\n levels[chunk_first_index_in_big[1:]] = min_image[chunkstart + 1:\n chunkend] - image[chunkstart:chunkend - 1] + 1\n levels = np.cumsum(levels)\n ijv = np.column_stack((i[index_in_small], j[index_in_small], levels))\n pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))\n first_i = np.hstack((first_i, pts[:, 1]))\n first_j = np.hstack((first_j, pts[:, 2]))\n first_levels = np.hstack((first_levels, pts[:, 0]))\n chunkstart = chunkend\n ijv = np.column_stack((first_i, first_j, first_levels))\n pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))\n labels = pts[:, 0]\n i = pts[:, 1]\n j = pts[:, 2]\n first_index = np.cumsum(counts) - counts\n last_index = first_index + counts - 1\n next = np.arange(len(labels)) + 1\n next[last_index] = first_index\n index, count, i, j = get_line_pts(i, j, i[next], j[next])\n big_index = np.zeros(len(i), int)\n big_index[index[1:]] = 1\n big_index = np.cumsum(big_index)\n labels = labels[big_index]\n order = np.lexsort((labels, i, j))\n i = i[order]\n j = j[order]\n labels = labels[order]\n mask = np.hstack(((i[1:] != i[:-1]) | (j[1:] != j[:-1]), [True]))\n i = i[mask]\n j = j[mask]\n labels = labels[mask]\n first = np.hstack(([True], j[1:] != j[:-1]))\n top = np.zeros(img_shape, labels.dtype)\n top[i[first], j[first]] = labels[first]\n top[i[~first], j[~first]] = (labels[1:] - labels[:-1])[~first[1:]]\n top = np.cumsum(top, 0)\n bottom = np.zeros(img_shape, labels.dtype)\n bottom[0, j[first]] = labels[first]\n last = np.hstack((first[1:], [True]))\n bottom[i[:-1][~first[1:]] + 1, j[~first]] = (labels[1:] - labels[:-1])[\n ~first[1:]]\n llast = last & (i < img_shape[0] - 1)\n bottom[i[llast] + 1, j[llast]] = -labels[llast]\n bottom = np.cumsum(bottom, 0)\n image = np.minimum(top, bottom)\n return scale[image]\n", "role": "user" }, { "content": "convex_hull_transform", "role": "assistant" } ]
def x(img, radius, nangles=None, mask=None): a = np.zeros(img.shape) m = np.zeros(img.shape) if nangles is None: nangles = int(np.pi * radius + 3.5) & ~3 for i in range(nangles): theta = 2 * np.pi * float(i) / float(nangles) x = int(np.round(radius * np.cos(theta))) y = int(np.round(radius * np.sin(theta))) xmin = max(0, -x) xmax = min(img.shape[1] - x, img.shape[1]) ymin = max(0, -y) ymax = min(img.shape[0] - y, img.shape[0]) dest = slice(ymin, ymax), slice(xmin, xmax) src = slice(ymin + y, ymax + y), slice(xmin + x, xmax + x) if mask is not None: a[dest][mask[src]] += img[src][mask[src]] m[dest][mask[src]] += 1 else: a[dest] += img[src] m[dest] += 1 a[m > 0] /= m[m > 0] return a
circular_hough
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, radius, nangles=None, mask=None):\n a = np.zeros(img.shape)\n m = np.zeros(img.shape)\n if nangles is None:\n nangles = int(np.pi * radius + 3.5) & ~3\n for i in range(nangles):\n theta = 2 * np.pi * float(i) / float(nangles)\n x = int(np.round(radius * np.cos(theta)))\n y = int(np.round(radius * np.sin(theta)))\n xmin = max(0, -x)\n xmax = min(img.shape[1] - x, img.shape[1])\n ymin = max(0, -y)\n ymax = min(img.shape[0] - y, img.shape[0])\n dest = slice(ymin, ymax), slice(xmin, xmax)\n src = slice(ymin + y, ymax + y), slice(xmin + x, xmax + x)\n if mask is not None:\n a[dest][mask[src]] += img[src][mask[src]]\n m[dest][mask[src]] += 1\n else:\n a[dest] += img[src]\n m[dest] += 1\n a[m > 0] /= m[m > 0]\n return a\n", "role": "user" }, { "content": "circular_hough", "role": "assistant" } ]
def x(image, return_hessian=True, return_eigenvalues=True, return_eigenvectors=True): hessian = np.zeros((image.shape[0], image.shape[1], 2, 2)) hessian[1:-1, :, 0, 0] = image[:-2, :] - 2 * image[1:-1, :] + image[2:, :] hessian[1:-1, 1:-1, 0, 1] = hessian[1:-1, 1:-1, 0, 1] = (image[2:, 2:] + image[:-2, :-2] - image[2:, :-2] - image[:-2, 2:]) / 4 hessian[:, 1:-1, 1, 1] = image[:, :-2] - 2 * image[:, 1:-1] + image[:, 2:] A = hessian[:, :, 0, 0] B = hessian[:, :, 0, 1] C = hessian[:, :, 1, 1] b = -(A + C) c = A * C - B * B discriminant = b * b - 4 * c pn = np.array([1, -1])[np.newaxis, np.newaxis, :] L = (-b[:, :, np.newaxis] + np.sqrt(discriminant)[:, :, np.newaxis] * pn ) / 2 L[np.abs(L[:, :, 1]) > np.abs(L[:, :, 0]), :] = L[np.abs(L[:, :, 1]) > np.abs(L[:, :, 0]), ::-1] if return_eigenvectors: v = np.ones((image.shape[0], image.shape[1], 2, 2)) * np.nan v[:, :, :, 0] = L - hessian[:, :, 1, 1, np.newaxis] v[:, :, :, 1] = hessian[:, :, 0, 1, np.newaxis] default = np.array([[1, 0], [0, 1]])[np.newaxis, :, :] v[hessian[:, :, 0, 1] == 0] = default d = np.sqrt(np.sum(v * v, 3)) v /= d[:, :, :, np.newaxis] result = [] if return_hessian: result.append(hessian) if return_eigenvalues: result.append(L) if return_eigenvectors: result.append(v) if len(result) == 0: return elif len(result) == 1: return result[0] return tuple(result)
hessian
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, return_hessian=True, return_eigenvalues=True,\n return_eigenvectors=True):\n hessian = np.zeros((image.shape[0], image.shape[1], 2, 2))\n hessian[1:-1, :, 0, 0] = image[:-2, :] - 2 * image[1:-1, :] + image[2:, :]\n hessian[1:-1, 1:-1, 0, 1] = hessian[1:-1, 1:-1, 0, 1] = (image[2:, 2:] +\n image[:-2, :-2] - image[2:, :-2] - image[:-2, 2:]) / 4\n hessian[:, 1:-1, 1, 1] = image[:, :-2] - 2 * image[:, 1:-1] + image[:, 2:]\n A = hessian[:, :, 0, 0]\n B = hessian[:, :, 0, 1]\n C = hessian[:, :, 1, 1]\n b = -(A + C)\n c = A * C - B * B\n discriminant = b * b - 4 * c\n pn = np.array([1, -1])[np.newaxis, np.newaxis, :]\n L = (-b[:, :, np.newaxis] + np.sqrt(discriminant)[:, :, np.newaxis] * pn\n ) / 2\n L[np.abs(L[:, :, 1]) > np.abs(L[:, :, 0]), :] = L[np.abs(L[:, :, 1]) >\n np.abs(L[:, :, 0]), ::-1]\n if return_eigenvectors:\n v = np.ones((image.shape[0], image.shape[1], 2, 2)) * np.nan\n v[:, :, :, 0] = L - hessian[:, :, 1, 1, np.newaxis]\n v[:, :, :, 1] = hessian[:, :, 0, 1, np.newaxis]\n default = np.array([[1, 0], [0, 1]])[np.newaxis, :, :]\n v[hessian[:, :, 0, 1] == 0] = default\n d = np.sqrt(np.sum(v * v, 3))\n v /= d[:, :, :, np.newaxis]\n result = []\n if return_hessian:\n result.append(hessian)\n if return_eigenvalues:\n result.append(L)\n if return_eigenvectors:\n result.append(v)\n if len(result) == 0:\n return\n elif len(result) == 1:\n return result[0]\n return tuple(result)\n", "role": "user" }, { "content": "hessian", "role": "assistant" } ]
def x(image, gradient=1, max_iter=100, convergence=0.01, percentile=90.0): pe = np.zeros((image.shape[0] + 2, image.shape[1] + 2)) if image.shape[0] > 64 and image.shape[1] > 64: sub_image = image[::2, ::2] sub_pe = poisson_equation(sub_image, gradient=gradient * 2, max_iter=max_iter, convergence=convergence) coordinates = np.mgrid[0:sub_pe.shape[0] * 2, 0:sub_pe.shape[1] * 2 ].astype(float) / 2 pe[1:sub_image.shape[0] * 2 + 1, 1:sub_image.shape[1] * 2 + 1 ] = scind.map_coordinates(sub_pe, coordinates, order=1) pe[:image.shape[0], :image.shape[1]][~image] = 0 else: pe[1:-1, 1:-1] = image i, j = np.mgrid[0:pe.shape[0], 0:pe.shape[1]] mask = (i > 0) & (i < pe.shape[0] - 1) & (j > 0) & (j < pe.shape[1] - 1) mask[mask] = image[i[mask] - 1, j[mask] - 1] i = i[mask] j = j[mask] if len(i) == 0: return pe[1:-1, 1:-1] if len(i) == 1: pe[mask] = 1 return pe[1:-1, 1:-1] for itr in range(max_iter): next_pe = (pe[i + 1, j] + pe[i - 1, j] + pe[i, j + 1] + pe[i, j - 1] ) / 4 + 1 difference = np.abs((pe[mask] - next_pe) / next_pe) pe[mask] = next_pe if np.percentile(difference, percentile) <= convergence: break return pe[1:-1, 1:-1]
poisson_equation
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, gradient=1, max_iter=100, convergence=0.01, percentile=90.0):\n pe = np.zeros((image.shape[0] + 2, image.shape[1] + 2))\n if image.shape[0] > 64 and image.shape[1] > 64:\n sub_image = image[::2, ::2]\n sub_pe = poisson_equation(sub_image, gradient=gradient * 2,\n max_iter=max_iter, convergence=convergence)\n coordinates = np.mgrid[0:sub_pe.shape[0] * 2, 0:sub_pe.shape[1] * 2\n ].astype(float) / 2\n pe[1:sub_image.shape[0] * 2 + 1, 1:sub_image.shape[1] * 2 + 1\n ] = scind.map_coordinates(sub_pe, coordinates, order=1)\n pe[:image.shape[0], :image.shape[1]][~image] = 0\n else:\n pe[1:-1, 1:-1] = image\n i, j = np.mgrid[0:pe.shape[0], 0:pe.shape[1]]\n mask = (i > 0) & (i < pe.shape[0] - 1) & (j > 0) & (j < pe.shape[1] - 1)\n mask[mask] = image[i[mask] - 1, j[mask] - 1]\n i = i[mask]\n j = j[mask]\n if len(i) == 0:\n return pe[1:-1, 1:-1]\n if len(i) == 1:\n pe[mask] = 1\n return pe[1:-1, 1:-1]\n for itr in range(max_iter):\n next_pe = (pe[i + 1, j] + pe[i - 1, j] + pe[i, j + 1] + pe[i, j - 1]\n ) / 4 + 1\n difference = np.abs((pe[mask] - next_pe) / next_pe)\n pe[mask] = next_pe\n if np.percentile(difference, percentile) <= convergence:\n break\n return pe[1:-1, 1:-1]\n", "role": "user" }, { "content": "poisson_equation", "role": "assistant" } ]
def x(self): if not self.has_cached_predicted_state_vec: self.p_state_vec = dot_n(self.translation_matrix, self.state_vec[:, :, np.newaxis])[:, :, 0] return self.p_state_vec
predicted_state_vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.has_cached_predicted_state_vec:\n self.p_state_vec = dot_n(self.translation_matrix, self.state_vec[:,\n :, np.newaxis])[:, :, 0]\n return self.p_state_vec\n", "role": "user" }, { "content": "predicted_state_vec", "role": "assistant" } ]
def x(self): if not self.has_cached_obs_vec: self.obs_vec = dot_n(self.observation_matrix, self. predicted_state_vec[:, :, np.newaxis])[:, :, 0] return self.obs_vec
predicted_obs_vec
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n if not self.has_cached_obs_vec:\n self.obs_vec = dot_n(self.observation_matrix, self.\n predicted_state_vec[:, :, np.newaxis])[:, :, 0]\n return self.obs_vec\n", "role": "user" }, { "content": "predicted_obs_vec", "role": "assistant" } ]
def x(self, old_indices): nfeatures = len(old_indices) noldfeatures = len(self.state_vec) if nfeatures > 0: self.state_vec = self.state_vec[old_indices] self.state_cov = self.state_cov[old_indices] self.noise_var = self.noise_var[old_indices] if self.has_cached_obs_vec: self.obs_vec = self.obs_vec[old_indices] if self.has_cached_predicted_state_vec: self.p_state_vec = self.p_state_vec[old_indices] if len(self.state_noise_idx) > 0: reverse_indices = -np.ones(noldfeatures, int) reverse_indices[old_indices] = np.arange(nfeatures) self.state_noise_idx = reverse_indices[self.state_noise_idx] self.state_noise = self.state_noise[self.state_noise_idx != -1, :] self.state_noise_idx = self.state_noise_idx[self. state_noise_idx != -1]
map_frames
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, old_indices):\n nfeatures = len(old_indices)\n noldfeatures = len(self.state_vec)\n if nfeatures > 0:\n self.state_vec = self.state_vec[old_indices]\n self.state_cov = self.state_cov[old_indices]\n self.noise_var = self.noise_var[old_indices]\n if self.has_cached_obs_vec:\n self.obs_vec = self.obs_vec[old_indices]\n if self.has_cached_predicted_state_vec:\n self.p_state_vec = self.p_state_vec[old_indices]\n if len(self.state_noise_idx) > 0:\n reverse_indices = -np.ones(noldfeatures, int)\n reverse_indices[old_indices] = np.arange(nfeatures)\n self.state_noise_idx = reverse_indices[self.state_noise_idx]\n self.state_noise = self.state_noise[self.state_noise_idx != -1, :]\n self.state_noise_idx = self.state_noise_idx[self.\n state_noise_idx != -1]\n", "role": "user" }, { "content": "map_frames", "role": "assistant" } ]
def x(self, kept_indices, new_indices, new_state_vec, new_state_cov, new_noise_var): assert len(kept_indices) == len(self.state_vec) assert len(new_indices) == len(new_state_vec) assert len(new_indices) == len(new_state_cov) assert len(new_indices) == len(new_noise_var) if self.has_cached_obs_vec: del self.obs_vec if self.has_cached_predicted_state_vec: del self.predicted_obs_vec nfeatures = len(kept_indices) + len(new_indices) next_state_vec = np.zeros((nfeatures, self.state_len)) next_state_cov = np.zeros((nfeatures, self.state_len, self.state_len)) next_noise_var = np.zeros((nfeatures, self.state_len)) if len(kept_indices) > 0: next_state_vec[kept_indices] = self.state_vec next_state_cov[kept_indices] = self.state_cov next_noise_var[kept_indices] = self.noise_var if len(self.state_noise_idx) > 0: self.state_noise_idx = kept_indices[self.state_noise_idx] if len(new_indices) > 0: next_state_vec[new_indices] = new_state_vec next_state_cov[new_indices] = new_state_cov next_noise_var[new_indices] = new_noise_var self.state_vec = next_state_vec self.state_cov = next_state_cov self.noise_var = next_noise_var
add_features
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, kept_indices, new_indices, new_state_vec, new_state_cov,\n new_noise_var):\n assert len(kept_indices) == len(self.state_vec)\n assert len(new_indices) == len(new_state_vec)\n assert len(new_indices) == len(new_state_cov)\n assert len(new_indices) == len(new_noise_var)\n if self.has_cached_obs_vec:\n del self.obs_vec\n if self.has_cached_predicted_state_vec:\n del self.predicted_obs_vec\n nfeatures = len(kept_indices) + len(new_indices)\n next_state_vec = np.zeros((nfeatures, self.state_len))\n next_state_cov = np.zeros((nfeatures, self.state_len, self.state_len))\n next_noise_var = np.zeros((nfeatures, self.state_len))\n if len(kept_indices) > 0:\n next_state_vec[kept_indices] = self.state_vec\n next_state_cov[kept_indices] = self.state_cov\n next_noise_var[kept_indices] = self.noise_var\n if len(self.state_noise_idx) > 0:\n self.state_noise_idx = kept_indices[self.state_noise_idx]\n if len(new_indices) > 0:\n next_state_vec[new_indices] = new_state_vec\n next_state_cov[new_indices] = new_state_cov\n next_noise_var[new_indices] = new_noise_var\n self.state_vec = next_state_vec\n self.state_cov = next_state_cov\n self.noise_var = next_noise_var\n", "role": "user" }, { "content": "add_features", "role": "assistant" } ]
def x(self): c = KalmanState(self.observation_matrix, self.translation_matrix) c.state_vec = self.state_vec.copy() c.state_cov = self.state_cov.copy() c.noise_var = self.noise_var.copy() c.state_noise = self.state_noise.copy() c.state_noise_idx = self.state_noise_idx.copy() return c
deep_copy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self):\n c = KalmanState(self.observation_matrix, self.translation_matrix)\n c.state_vec = self.state_vec.copy()\n c.state_cov = self.state_cov.copy()\n c.noise_var = self.noise_var.copy()\n c.state_noise = self.state_noise.copy()\n c.state_noise_idx = self.state_noise_idx.copy()\n return c\n", "role": "user" }, { "content": "deep_copy", "role": "assistant" } ]
def x(x, percents): x = np.array(x).flatten() listx = np.sort(x) xpcts = [] lenlistx = len(listx) refs = [] for i in range(0, lenlistx): r = 100 * ((0.5 + i) / lenlistx) refs.append(r) rpcts = [] for p in percents: if p < refs[0]: rpcts.append(listx[0]) elif p > refs[-1]: rpcts.append(listx[-1]) else: for j in range(0, lenlistx): if refs[j] <= p and refs[j + 1] >= p: my = listx[j + 1] - listx[j] mx = refs[j + 1] - refs[j] m = my / mx rpcts.append(m * (p - refs[j]) + listx[j]) break xpcts.append(rpcts) return np.array(xpcts).transpose()
prcntiles
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, percents):\n x = np.array(x).flatten()\n listx = np.sort(x)\n xpcts = []\n lenlistx = len(listx)\n refs = []\n for i in range(0, lenlistx):\n r = 100 * ((0.5 + i) / lenlistx)\n refs.append(r)\n rpcts = []\n for p in percents:\n if p < refs[0]:\n rpcts.append(listx[0])\n elif p > refs[-1]:\n rpcts.append(listx[-1])\n else:\n for j in range(0, lenlistx):\n if refs[j] <= p and refs[j + 1] >= p:\n my = listx[j + 1] - listx[j]\n mx = refs[j + 1] - refs[j]\n m = my / mx\n rpcts.append(m * (p - refs[j]) + listx[j])\n break\n xpcts.append(rpcts)\n return np.array(xpcts).transpose()\n", "role": "user" }, { "content": "prcntiles", "role": "assistant" } ]
def x(data): pct = prcntiles(np.array(data), [1, 20, 80, 99]) upper = pct[3] - pct[2] mid = pct[2] - pct[1] lower = pct[1] - pct[0] if upper > mid: uo = 1 else: uo = 0 if lower > mid: lo = 1 else: lo = 0 if uo == 1: if lo == 1: mode = 0 else: mode = -1 elif lo == 1: mode = 1 else: mode = 0 return mode
automode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data):\n pct = prcntiles(np.array(data), [1, 20, 80, 99])\n upper = pct[3] - pct[2]\n mid = pct[2] - pct[1]\n lower = pct[1] - pct[0]\n if upper > mid:\n uo = 1\n else:\n uo = 0\n if lower > mid:\n lo = 1\n else:\n lo = 0\n if uo == 1:\n if lo == 1:\n mode = 0\n else:\n mode = -1\n elif lo == 1:\n mode = 1\n else:\n mode = 0\n return mode\n", "role": "user" }, { "content": "automode", "role": "assistant" } ]
def x(u): X = np.array([(1.0 - u) ** 3, 4 - 6.0 * u ** 2 + 3.0 * u ** 3, 1.0 + 3.0 * u + 3.0 * u ** 2 - 3.0 * u ** 3, u ** 3]) * (1.0 / 6) return X
spline_factors
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(u):\n X = np.array([(1.0 - u) ** 3, 4 - 6.0 * u ** 2 + 3.0 * u ** 3, 1.0 + \n 3.0 * u + 3.0 * u ** 2 - 3.0 * u ** 3, u ** 3]) * (1.0 / 6)\n return X\n", "role": "user" }, { "content": "spline_factors", "role": "assistant" } ]
def x(picklist, val): assert np.all(np.sort(picklist) == picklist ), 'pick list is not ordered correctly' val = np.array(val) i_pick, i_val = np.mgrid[0:len(picklist), 0:len(val)] is_not_larger = picklist[i_pick] <= val[i_val] p = np.sum(is_not_larger, 0) return p
pick
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(picklist, val):\n assert np.all(np.sort(picklist) == picklist\n ), 'pick list is not ordered correctly'\n val = np.array(val)\n i_pick, i_val = np.mgrid[0:len(picklist), 0:len(val)]\n is_not_larger = picklist[i_pick] <= val[i_val]\n p = np.sum(is_not_larger, 0)\n return p\n", "role": "user" }, { "content": "pick", "role": "assistant" } ]
def x(x, low, high): y = x.copy() y[y < low] = low y[y > high] = high return y
confine
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, low, high):\n y = x.copy()\n y[y < low] = low\n y[y > high] = high\n return y\n", "role": "user" }, { "content": "confine", "role": "assistant" } ]
def x(x, m_y, sigma): e_y = [np.exp(1.0 / (2 * float(sigma) ** 2) * -(n - m_y) ** 2) for n in np.array(x)] y = [(1.0 / (float(sigma) * np.sqrt(2 * np.pi)) * e) for e in e_y] return np.array(y)
gauss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, m_y, sigma):\n e_y = [np.exp(1.0 / (2 * float(sigma) ** 2) * -(n - m_y) ** 2) for n in\n np.array(x)]\n y = [(1.0 / (float(sigma) * np.sqrt(2 * np.pi)) * e) for e in e_y]\n return np.array(y)\n", "role": "user" }, { "content": "gauss", "role": "assistant" } ]
def x(x, m_y, sigma): return gauss(x, m_y, sigma) * [(-1 / sigma ** 2 + (n - m_y) ** 2 / sigma ** 4) for n in x]
d2gauss
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, m_y, sigma):\n return gauss(x, m_y, sigma) * [(-1 / sigma ** 2 + (n - m_y) ** 2 / \n sigma ** 4) for n in x]\n", "role": "user" }, { "content": "d2gauss", "role": "assistant" } ]
def x(x, y, px, py, mask=None): V = np.kron(spline_matrix(x, px), spline_matrix(y, py)) lenV = len(V) if mask is not None: indices = np.nonzero(mask.T.flatten()) if len(indices) > 1: indices = np.nonzero(mask.T.flatten())[1][0] newV = V.T[indices] V = newV.T V = V.reshape((V.shape[0], V.shape[1])) return V
spline_matrix2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, px, py, mask=None):\n V = np.kron(spline_matrix(x, px), spline_matrix(y, py))\n lenV = len(V)\n if mask is not None:\n indices = np.nonzero(mask.T.flatten())\n if len(indices) > 1:\n indices = np.nonzero(mask.T.flatten())[1][0]\n newV = V.T[indices]\n V = newV.T\n V = V.reshape((V.shape[0], V.shape[1]))\n return V\n", "role": "user" }, { "content": "spline_matrix2d", "role": "assistant" } ]
def x(x, y, z, px, py, mask=None): if mask is None: V = np.array(spline_matrix2d(x, y, px, py)) a = np.array(z.T.flatten()) pz = np.linalg.lstsq(V.T, a.T)[0].T else: V = np.array(spline_matrix2d(x, y, px, py, mask)) indices = np.nonzero(np.array(mask).T.flatten()) if len(indices[0]) == 0: pz = np.zeros((len(py), len(px))) else: a = np.array(z.T.flatten()[indices[0]]) pz = np.linalg.lstsq(V.T, a.T)[0].T pz = pz.reshape((len(py), len(px))) return pz.transpose()
splinefit2d
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x, y, z, px, py, mask=None):\n if mask is None:\n V = np.array(spline_matrix2d(x, y, px, py))\n a = np.array(z.T.flatten())\n pz = np.linalg.lstsq(V.T, a.T)[0].T\n else:\n V = np.array(spline_matrix2d(x, y, px, py, mask))\n indices = np.nonzero(np.array(mask).T.flatten())\n if len(indices[0]) == 0:\n pz = np.zeros((len(py), len(px)))\n else:\n a = np.array(z.T.flatten()[indices[0]])\n pz = np.linalg.lstsq(V.T, a.T)[0].T\n pz = pz.reshape((len(py), len(px)))\n return pz.transpose()\n", "role": "user" }, { "content": "splinefit2d", "role": "assistant" } ]
def x(img, mask=None, mode=MODE_AUTO, thresh=2, splinepoints=5, scale=1, maxiter=40, convergence=0.001): assert img.ndim == 2, 'Image must be 2-d' assert splinepoints >= 3, 'The minimum grid size is 3x3' assert maxiter >= 1 assert mode in [MODE_AUTO, MODE_BRIGHT, MODE_DARK, MODE_GRAY ], mode + ' is not a valid background mode' orig_shape = np.array(img.shape).copy() input_mask = mask if mask is None: mask = np.ones(orig_shape, dtype=bool) clip_imin = clip_jmin = 0 clip_imax = img.shape[0] clip_jmax = img.shape[1] clip_shape = orig_shape else: isum = np.sum(mask, 1) jsum = np.sum(mask, 0) clip_imin = np.min(np.argwhere(isum != 0)) clip_imax = np.max(np.argwhere(isum != 0)) + 1 clip_jmin = np.min(np.argwhere(jsum != 0)) clip_jmax = np.max(np.argwhere(jsum != 0)) + 1 clip_shape = np.array([clip_imax - clip_imin, clip_jmax - clip_jmin]) subsample_shape = (clip_shape / scale).astype(int) ratio = (clip_shape.astype(float) - 1) / (subsample_shape.astype(float) - 1 ) transform = np.array([[ratio[0], 0], [0, ratio[1]]]) inverse_transform = np.array([[1.0 / ratio[0], 0], [0, 1.0 / ratio[1]]]) img = affine_transform(img[clip_imin:clip_imax, clip_jmin:clip_jmax], transform, output_shape=tuple(subsample_shape), order=2) mask = affine_transform(mask[clip_imin:clip_imax, clip_jmin:clip_jmax]. astype(float), transform, output_shape=tuple(subsample_shape), order=2 ) > 0.5 orig_mask = mask if mode == 'auto': mode = automode(img[orig_mask]) elif mode == 'dark' or mode == 'low': mode = -1 elif mode == 'bright' or mode == 'high': mode = 1 elif mode == 'gray' or mode == 'grey' or mode == 'mid': mode = 0 stop_criterion = max((np.max(img) - np.min(img)) * convergence, np. finfo(img.dtype).eps) [r, c] = img.shape oldres = np.zeros((r, c)) for i in range(maxiter): px, py, pz = splineimage(img, splinepoints, np.array(mask)) res = evalspline2d(np.arange(c), np.arange(r), px, py, pz) comp = img - res diff = res[orig_mask] - oldres[orig_mask] stddiff = unbiased_std(diff) if stddiff < stop_criterion: break elif i == maxiter: warnings.warn( """Background did not converge after %d iterations. Make sure that the foreground/background mode is correct.""" % i) oldres = res backgr = comp[mask] sigma = unbiased_std(backgr) cut = sigma * thresh if mode < 0: mask = comp < cut elif mode > 0: mask = comp > -cut else: mask = abs(comp) < cut mask &= orig_mask nnz = np.sum(mask) if nnz < 0.01 * np.sum(orig_mask): warnings.warn( """Less than 1%% of the pixels used for fitting, try starting again with a larger threshold value""" ) break output = np.zeros(orig_shape, img.dtype) output[clip_imin:clip_imax, clip_jmin:clip_jmax] = affine_transform(res, inverse_transform, output_shape=tuple(clip_shape), order=3) if input_mask is not None: output[~input_mask] = 0 return output
backgr
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, mask=None, mode=MODE_AUTO, thresh=2, splinepoints=5, scale=1,\n maxiter=40, convergence=0.001):\n assert img.ndim == 2, 'Image must be 2-d'\n assert splinepoints >= 3, 'The minimum grid size is 3x3'\n assert maxiter >= 1\n assert mode in [MODE_AUTO, MODE_BRIGHT, MODE_DARK, MODE_GRAY\n ], mode + ' is not a valid background mode'\n orig_shape = np.array(img.shape).copy()\n input_mask = mask\n if mask is None:\n mask = np.ones(orig_shape, dtype=bool)\n clip_imin = clip_jmin = 0\n clip_imax = img.shape[0]\n clip_jmax = img.shape[1]\n clip_shape = orig_shape\n else:\n isum = np.sum(mask, 1)\n jsum = np.sum(mask, 0)\n clip_imin = np.min(np.argwhere(isum != 0))\n clip_imax = np.max(np.argwhere(isum != 0)) + 1\n clip_jmin = np.min(np.argwhere(jsum != 0))\n clip_jmax = np.max(np.argwhere(jsum != 0)) + 1\n clip_shape = np.array([clip_imax - clip_imin, clip_jmax - clip_jmin])\n subsample_shape = (clip_shape / scale).astype(int)\n ratio = (clip_shape.astype(float) - 1) / (subsample_shape.astype(float) - 1\n )\n transform = np.array([[ratio[0], 0], [0, ratio[1]]])\n inverse_transform = np.array([[1.0 / ratio[0], 0], [0, 1.0 / ratio[1]]])\n img = affine_transform(img[clip_imin:clip_imax, clip_jmin:clip_jmax],\n transform, output_shape=tuple(subsample_shape), order=2)\n mask = affine_transform(mask[clip_imin:clip_imax, clip_jmin:clip_jmax].\n astype(float), transform, output_shape=tuple(subsample_shape), order=2\n ) > 0.5\n orig_mask = mask\n if mode == 'auto':\n mode = automode(img[orig_mask])\n elif mode == 'dark' or mode == 'low':\n mode = -1\n elif mode == 'bright' or mode == 'high':\n mode = 1\n elif mode == 'gray' or mode == 'grey' or mode == 'mid':\n mode = 0\n stop_criterion = max((np.max(img) - np.min(img)) * convergence, np.\n finfo(img.dtype).eps)\n [r, c] = img.shape\n oldres = np.zeros((r, c))\n for i in range(maxiter):\n px, py, pz = splineimage(img, splinepoints, np.array(mask))\n res = evalspline2d(np.arange(c), np.arange(r), px, py, pz)\n comp = img - res\n diff = res[orig_mask] - oldres[orig_mask]\n stddiff = unbiased_std(diff)\n if stddiff < stop_criterion:\n break\n elif i == maxiter:\n warnings.warn(\n \"\"\"Background did not converge after %d iterations.\nMake sure that the foreground/background mode is correct.\"\"\"\n % i)\n oldres = res\n backgr = comp[mask]\n sigma = unbiased_std(backgr)\n cut = sigma * thresh\n if mode < 0:\n mask = comp < cut\n elif mode > 0:\n mask = comp > -cut\n else:\n mask = abs(comp) < cut\n mask &= orig_mask\n nnz = np.sum(mask)\n if nnz < 0.01 * np.sum(orig_mask):\n warnings.warn(\n \"\"\"Less than 1%% of the pixels used for fitting,\ntry starting again with a larger threshold value\"\"\"\n )\n break\n output = np.zeros(orig_shape, img.dtype)\n output[clip_imin:clip_imax, clip_jmin:clip_jmax] = affine_transform(res,\n inverse_transform, output_shape=tuple(clip_shape), order=3)\n if input_mask is not None:\n output[~input_mask] = 0\n return output\n", "role": "user" }, { "content": "backgr", "role": "assistant" } ]
def x(img, sigma, splinepoints, scale): from PIL import Image import pylab from matplotlib.image import pil_to_array from centrosome.filter import canny import matplotlib img = Image.open(img) if img.mode == 'I;16': imgdata = np.fromstring(img.tostring(), np.uint8) imgdata.shape = int(imgdata.shape[0] / 2), 2 imgdata = imgdata.astype(np.uint16) hi, lo = (0, 1) if img.tag.prefix == 'MM' else (1, 0) imgdata = imgdata[:, hi] * 256 + imgdata[:, lo] img_size = list(img.size) img_size.reverse() new_img = imgdata.reshape(img_size) if 281 in img.tag: img = new_img.astype(np.float32) / img.tag[281][0] elif np.max(new_img) < 4096: img = new_img.astype(np.float32) / 4095.0 else: img = new_img.astype(np.float32) / 65535.0 else: img = pil_to_array(img) pylab.subplot(1, 3, 1).imshow(img, cmap=matplotlib.cm.Greys_r) pylab.show() if len(img.shape) > 2: raise ValueError('Image must be grayscale') edges = canny(img, np.ones(img.shape, bool), 2, 0.1, 0.3) ci = np.cumsum(edges, 0) cj = np.cumsum(edges, 1) i, j = np.mgrid[0:img.shape[0], 0:img.shape[1]] mask = ci > 0 mask = mask & (cj > 0) mask[1:, :] &= ci[0:-1, :] < ci[-1, j[0:-1, :]] mask[:, 1:] &= cj[:, 0:-1] < cj[i[:, 0:-1], -1] import time t0 = time.clock() bg = backgr(img, mask, MODE_AUTO, sigma, splinepoints=splinepoints, scale=scale) print('Executed in %f sec' % (time.clock() - t0)) bg[~mask] = img[~mask] pylab.subplot(1, 3, 2).imshow(img - bg, cmap=matplotlib.cm.Greys_r) pylab.subplot(1, 3, 3).imshow(bg, cmap=matplotlib.cm.Greys_r) pylab.show()
bg_compensate
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(img, sigma, splinepoints, scale):\n from PIL import Image\n import pylab\n from matplotlib.image import pil_to_array\n from centrosome.filter import canny\n import matplotlib\n img = Image.open(img)\n if img.mode == 'I;16':\n imgdata = np.fromstring(img.tostring(), np.uint8)\n imgdata.shape = int(imgdata.shape[0] / 2), 2\n imgdata = imgdata.astype(np.uint16)\n hi, lo = (0, 1) if img.tag.prefix == 'MM' else (1, 0)\n imgdata = imgdata[:, hi] * 256 + imgdata[:, lo]\n img_size = list(img.size)\n img_size.reverse()\n new_img = imgdata.reshape(img_size)\n if 281 in img.tag:\n img = new_img.astype(np.float32) / img.tag[281][0]\n elif np.max(new_img) < 4096:\n img = new_img.astype(np.float32) / 4095.0\n else:\n img = new_img.astype(np.float32) / 65535.0\n else:\n img = pil_to_array(img)\n pylab.subplot(1, 3, 1).imshow(img, cmap=matplotlib.cm.Greys_r)\n pylab.show()\n if len(img.shape) > 2:\n raise ValueError('Image must be grayscale')\n edges = canny(img, np.ones(img.shape, bool), 2, 0.1, 0.3)\n ci = np.cumsum(edges, 0)\n cj = np.cumsum(edges, 1)\n i, j = np.mgrid[0:img.shape[0], 0:img.shape[1]]\n mask = ci > 0\n mask = mask & (cj > 0)\n mask[1:, :] &= ci[0:-1, :] < ci[-1, j[0:-1, :]]\n mask[:, 1:] &= cj[:, 0:-1] < cj[i[:, 0:-1], -1]\n import time\n t0 = time.clock()\n bg = backgr(img, mask, MODE_AUTO, sigma, splinepoints=splinepoints,\n scale=scale)\n print('Executed in %f sec' % (time.clock() - t0))\n bg[~mask] = img[~mask]\n pylab.subplot(1, 3, 2).imshow(img - bg, cmap=matplotlib.cm.Greys_r)\n pylab.subplot(1, 3, 3).imshow(bg, cmap=matplotlib.cm.Greys_r)\n pylab.show()\n", "role": "user" }, { "content": "bg_compensate", "role": "assistant" } ]
def x(a): a = np.asanyarray(a) if a.size == 0: return np.zeros(0, a.dtype) aa = a.flatten() aa.sort() indices = np.hstack([[0], np.where(aa[:-1] != aa[1:])[0] + 1, [aa.size]]) counts = indices[1:] - indices[:-1] best_indices = indices[:-1][counts == np.max(counts)] return aa[best_indices]
mode
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(a):\n a = np.asanyarray(a)\n if a.size == 0:\n return np.zeros(0, a.dtype)\n aa = a.flatten()\n aa.sort()\n indices = np.hstack([[0], np.where(aa[:-1] != aa[1:])[0] + 1, [aa.size]])\n counts = indices[1:] - indices[:-1]\n best_indices = indices[:-1][counts == np.max(counts)]\n return aa[best_indices]\n", "role": "user" }, { "content": "mode", "role": "assistant" } ]
def x(data, min_threshold=None, max_threshold=None, bins=256): assert min_threshold is None or max_threshold is None or min_threshold < max_threshold def x(threshold): if not min_threshold is None and threshold < min_threshold: threshold = min_threshold if not max_threshold is None and threshold > max_threshold: threshold = max_threshold return threshold data = np.atleast_1d(data) data = data[~np.isnan(data)] if len(data) == 0: return (min_threshold if not min_threshold is None else max_threshold if not max_threshold is None else 0) elif len(data) == 1: return constrain(data[0]) if bins > len(data): bins = len(data) data.sort() var = running_variance(data) rvar = np.flipud(running_variance(np.flipud(data))) thresholds = data[1:len(data):len(data) // bins] score_low = var[0:len(data) - 1:len(data) // bins] * np.arange(0, len( data) - 1, len(data) // bins) score_high = rvar[1:len(data):len(data) // bins] * (len(data) - np. arange(1, len(data), len(data) // bins)) scores = score_low + score_high if len(scores) == 0: return constrain(thresholds[0]) index = np.argwhere(scores == scores.min()).flatten() if len(index) == 0: return constrain(thresholds[0]) index = index[0] if index == 0: index_low = 0 else: index_low = index - 1 if index == len(thresholds) - 1: index_high = len(thresholds) - 1 else: index_high = index + 1 return constrain((thresholds[index_low] + thresholds[index_high]) / 2)
otsu
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, min_threshold=None, max_threshold=None, bins=256):\n assert min_threshold is None or max_threshold is None or min_threshold < max_threshold\n\n def x(threshold):\n if not min_threshold is None and threshold < min_threshold:\n threshold = min_threshold\n if not max_threshold is None and threshold > max_threshold:\n threshold = max_threshold\n return threshold\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n if len(data) == 0:\n return (min_threshold if not min_threshold is None else \n max_threshold if not max_threshold is None else 0)\n elif len(data) == 1:\n return constrain(data[0])\n if bins > len(data):\n bins = len(data)\n data.sort()\n var = running_variance(data)\n rvar = np.flipud(running_variance(np.flipud(data)))\n thresholds = data[1:len(data):len(data) // bins]\n score_low = var[0:len(data) - 1:len(data) // bins] * np.arange(0, len(\n data) - 1, len(data) // bins)\n score_high = rvar[1:len(data):len(data) // bins] * (len(data) - np.\n arange(1, len(data), len(data) // bins))\n scores = score_low + score_high\n if len(scores) == 0:\n return constrain(thresholds[0])\n index = np.argwhere(scores == scores.min()).flatten()\n if len(index) == 0:\n return constrain(thresholds[0])\n index = index[0]\n if index == 0:\n index_low = 0\n else:\n index_low = index - 1\n if index == len(thresholds) - 1:\n index_high = len(thresholds) - 1\n else:\n index_high = index + 1\n return constrain((thresholds[index_low] + thresholds[index_high]) / 2)\n", "role": "user" }, { "content": "otsu", "role": "assistant" } ]
def x(data, bins=256): data = np.atleast_1d(data) data = data[~np.isnan(data)] if len(data) == 0: return 0 elif len(data) == 1: return data[0] if bins > len(data): bins = len(data) data.sort() var = running_variance(data) + 1.0 / 512.0 rvar = np.flipud(running_variance(np.flipud(data))) + 1.0 / 512.0 thresholds = data[1:len(data):len(data) // bins] w = np.arange(0, len(data) - 1, len(data) // bins) score_low = w * np.log(var[0:len(data) - 1:len(data) // bins] * w * np. sqrt(2 * np.pi * np.exp(1))) score_low[np.isnan(score_low)] = 0 w = len(data) - np.arange(1, len(data), len(data) // bins) score_high = w * np.log(rvar[1:len(data):len(data) // bins] * w * np. sqrt(2 * np.pi * np.exp(1))) score_high[np.isnan(score_high)] = 0 scores = score_low + score_high index = np.argwhere(scores == scores.min()).flatten() if len(index) == 0: return thresholds[0] index = index[0] if index == 0: index_low = 0 else: index_low = index - 1 if index == len(thresholds) - 1: index_high = len(thresholds) - 1 else: index_high = index + 1 return (thresholds[index_low] + thresholds[index_high]) / 2
entropy
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, bins=256):\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n if len(data) == 0:\n return 0\n elif len(data) == 1:\n return data[0]\n if bins > len(data):\n bins = len(data)\n data.sort()\n var = running_variance(data) + 1.0 / 512.0\n rvar = np.flipud(running_variance(np.flipud(data))) + 1.0 / 512.0\n thresholds = data[1:len(data):len(data) // bins]\n w = np.arange(0, len(data) - 1, len(data) // bins)\n score_low = w * np.log(var[0:len(data) - 1:len(data) // bins] * w * np.\n sqrt(2 * np.pi * np.exp(1)))\n score_low[np.isnan(score_low)] = 0\n w = len(data) - np.arange(1, len(data), len(data) // bins)\n score_high = w * np.log(rvar[1:len(data):len(data) // bins] * w * np.\n sqrt(2 * np.pi * np.exp(1)))\n score_high[np.isnan(score_high)] = 0\n scores = score_low + score_high\n index = np.argwhere(scores == scores.min()).flatten()\n if len(index) == 0:\n return thresholds[0]\n index = index[0]\n if index == 0:\n index_low = 0\n else:\n index_low = index - 1\n if index == len(thresholds) - 1:\n index_high = len(thresholds) - 1\n else:\n index_high = index + 1\n return (thresholds[index_low] + thresholds[index_high]) / 2\n", "role": "user" }, { "content": "entropy", "role": "assistant" } ]
def x(data, min_threshold=None, max_threshold=None, bins=128): assert min_threshold is None or max_threshold is None or min_threshold < max_threshold data = np.atleast_1d(data) data = data[~np.isnan(data)] data.sort() if len(data) == 0: return 0 var = running_variance(data) rvar = np.flipud(running_variance(np.flipud(data))) if bins > len(data): bins = len(data) bin_len = int(len(data) // bins) thresholds = data[0:len(data):bin_len] score_low = var[0:len(data):bin_len] * np.arange(0, len(data), bin_len) score_high = rvar[0:len(data):bin_len] * (len(data) - np.arange(0, len( data), bin_len)) cs = data.cumsum() cs2 = (data ** 2).cumsum() i, j = np.mgrid[0:score_low.shape[0], 0:score_high.shape[0]] * bin_len diff = (j - i).astype(float) w = diff mean = (cs[j] - cs[i]) / diff mean2 = (cs2[j] - cs2[i]) / diff score_middle = w * (mean2 - mean ** 2) score_middle[i >= j] = np.Inf score = score_low[i * bins // len(data)] + score_middle + score_high[j * bins // len(data)] best_score = np.min(score) best_i_j = np.argwhere(score == best_score) return thresholds[best_i_j[0, 0]], thresholds[best_i_j[0, 1]]
otsu3
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(data, min_threshold=None, max_threshold=None, bins=128):\n assert min_threshold is None or max_threshold is None or min_threshold < max_threshold\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n data.sort()\n if len(data) == 0:\n return 0\n var = running_variance(data)\n rvar = np.flipud(running_variance(np.flipud(data)))\n if bins > len(data):\n bins = len(data)\n bin_len = int(len(data) // bins)\n thresholds = data[0:len(data):bin_len]\n score_low = var[0:len(data):bin_len] * np.arange(0, len(data), bin_len)\n score_high = rvar[0:len(data):bin_len] * (len(data) - np.arange(0, len(\n data), bin_len))\n cs = data.cumsum()\n cs2 = (data ** 2).cumsum()\n i, j = np.mgrid[0:score_low.shape[0], 0:score_high.shape[0]] * bin_len\n diff = (j - i).astype(float)\n w = diff\n mean = (cs[j] - cs[i]) / diff\n mean2 = (cs2[j] - cs2[i]) / diff\n score_middle = w * (mean2 - mean ** 2)\n score_middle[i >= j] = np.Inf\n score = score_low[i * bins // len(data)] + score_middle + score_high[j *\n bins // len(data)]\n best_score = np.min(score)\n best_i_j = np.argwhere(score == best_score)\n return thresholds[best_i_j[0, 0]], thresholds[best_i_j[0, 1]]\n", "role": "user" }, { "content": "otsu3", "role": "assistant" } ]
def x(var, bins, w=None, decimate=True): if w is None: n = len(var) w = np.arange(0, n, n // bins) / float(n) if decimate: n = len(var) var = var[0:n:n // bins] score = w * np.log(var * w * np.sqrt(2 * np.pi * np.exp(1))) score[np.isnan(score)] = np.Inf return score
entropy_score
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(var, bins, w=None, decimate=True):\n if w is None:\n n = len(var)\n w = np.arange(0, n, n // bins) / float(n)\n if decimate:\n n = len(var)\n var = var[0:n:n // bins]\n score = w * np.log(var * w * np.sqrt(2 * np.pi * np.exp(1)))\n score[np.isnan(score)] = np.Inf\n return score\n", "role": "user" }, { "content": "entropy_score", "role": "assistant" } ]
def x(x): n = len(x) m = x.cumsum() / np.arange(1, n + 1) x_minus_mprev = x[1:] - m[:-1] x_minus_m = x[1:] - m[1:] s = (x_minus_mprev * x_minus_m).cumsum() var = s / np.arange(1, n) return np.hstack(([0], var))
running_variance
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(x):\n n = len(x)\n m = x.cumsum() / np.arange(1, n + 1)\n x_minus_mprev = x[1:] - m[:-1]\n x_minus_m = x[1:] - m[1:]\n s = (x_minus_mprev * x_minus_m).cumsum()\n var = s / np.arange(1, n)\n return np.hstack(([0], var))\n", "role": "user" }, { "content": "running_variance", "role": "assistant" } ]
def x(labels): output = numpy.zeros(labels.shape, labels.dtype) lr_different = labels[1:, :] != labels[:-1, :] ud_different = labels[:, 1:] != labels[:, :-1] d1_different = labels[1:, 1:] != labels[:-1, :-1] d2_different = labels[1:, :-1] != labels[:-1, 1:] different = numpy.zeros(labels.shape, bool) different[1:, :][lr_different] = True different[:-1, :][lr_different] = True different[:, 1:][ud_different] = True different[:, :-1][ud_different] = True different[1:, 1:][d1_different] = True different[:-1, :-1][d1_different] = True different[1:, :-1][d2_different] = True different[:-1, 1:][d2_different] = True different[0, :] = True different[:, 0] = True different[-1, :] = True different[:, -1] = True output[different] = labels[different] return output
outline
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n output = numpy.zeros(labels.shape, labels.dtype)\n lr_different = labels[1:, :] != labels[:-1, :]\n ud_different = labels[:, 1:] != labels[:, :-1]\n d1_different = labels[1:, 1:] != labels[:-1, :-1]\n d2_different = labels[1:, :-1] != labels[:-1, 1:]\n different = numpy.zeros(labels.shape, bool)\n different[1:, :][lr_different] = True\n different[:-1, :][lr_different] = True\n different[:, 1:][ud_different] = True\n different[:, :-1][ud_different] = True\n different[1:, 1:][d1_different] = True\n different[:-1, :-1][d1_different] = True\n different[1:, :-1][d2_different] = True\n different[:-1, 1:][d2_different] = True\n different[0, :] = True\n different[:, 0] = True\n different[-1, :] = True\n different[:, -1] = True\n output[different] = labels[different]\n return output\n", "role": "user" }, { "content": "outline", "role": "assistant" } ]
def x(point1, point2): x1, y1 = point1 x2, y2 = point2 return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
euclidean_dist
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(point1, point2):\n x1, y1 = point1\n x2, y2 = point2\n return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)\n", "role": "user" }, { "content": "euclidean_dist", "role": "assistant" } ]
def x(labels): labels = labels.astype(int) areas = scipy.ndimage.measurements.sum(labels != 0, labels, list(range( 1, numpy.max(labels) + 1))) existing_labels = [i for i, a in enumerate(areas, 1) if a > 0] existing_areas = [a for a in areas if a > 0] existing_centers = scipy.ndimage.measurements.center_of_mass(labels != 0, labels, existing_labels) zipped = zip(existing_labels, existing_centers, existing_areas) features = [CellFeatures(c, a, i, labels.shape) for i, c, a in zipped if a != 0] return features
from_labels
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(labels):\n labels = labels.astype(int)\n areas = scipy.ndimage.measurements.sum(labels != 0, labels, list(range(\n 1, numpy.max(labels) + 1)))\n existing_labels = [i for i, a in enumerate(areas, 1) if a > 0]\n existing_areas = [a for a in areas if a > 0]\n existing_centers = scipy.ndimage.measurements.center_of_mass(labels != \n 0, labels, existing_labels)\n zipped = zip(existing_labels, existing_centers, existing_areas)\n features = [CellFeatures(c, a, i, labels.shape) for i, c, a in zipped if\n a != 0]\n return features\n", "role": "user" }, { "content": "from_labels", "role": "assistant" } ]
def x(detections_1, detections_2, assignments): traces = [] for d1n, d2n in six.iteritems(assignments): if d1n < len(detections_1) and d2n < len(detections_2): traces.append(Trace(detections_1[d1n], detections_2[d2n])) return traces
from_detections_assignment
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(detections_1, detections_2, assignments):\n traces = []\n for d1n, d2n in six.iteritems(assignments):\n if d1n < len(detections_1) and d2n < len(detections_2):\n traces.append(Trace(detections_1[d1n], detections_2[d2n]))\n return traces\n", "role": "user" }, { "content": "from_detections_assignment", "role": "assistant" } ]
def x(self, label_image_1, label_image_2): self.scale = self.parameters_tracking['avgCellDiameter'] / 35.0 detections_1 = self.derive_detections(label_image_1) detections_2 = self.derive_detections(label_image_2) traces = self.find_initials_traces(detections_1, detections_2) for _ in range(int(self.parameters_tracking['iterations'])): traces = self.improve_traces(detections_1, detections_2, traces) return [(trace.previous_cell.number, trace.current_cell.number) for trace in traces]
run_tracking
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, label_image_1, label_image_2):\n self.scale = self.parameters_tracking['avgCellDiameter'] / 35.0\n detections_1 = self.derive_detections(label_image_1)\n detections_2 = self.derive_detections(label_image_2)\n traces = self.find_initials_traces(detections_1, detections_2)\n for _ in range(int(self.parameters_tracking['iterations'])):\n traces = self.improve_traces(detections_1, detections_2, traces)\n return [(trace.previous_cell.number, trace.current_cell.number) for\n trace in traces]\n", "role": "user" }, { "content": "run_tracking", "role": "assistant" } ]
def x(self, cell_detection): return cell_detection.area > self.parameters_tracking['big_size' ] * self.scale * self.scale
is_cell_big
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, cell_detection):\n return cell_detection.area > self.parameters_tracking['big_size'\n ] * self.scale * self.scale\n", "role": "user" }, { "content": "is_cell_big", "role": "assistant" } ]
def x(cell, all_cells, k, max_dist): all_cells = [c for c in all_cells if c != cell] sorted_cells = sorted([(cell.distance(c), c) for c in all_cells]) return [sc[1] for sc in sorted_cells[:k] if sc[0] <= max_dist]
find_closest_neighbours
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(cell, all_cells, k, max_dist):\n all_cells = [c for c in all_cells if c != cell]\n sorted_cells = sorted([(cell.distance(c), c) for c in all_cells])\n return [sc[1] for sc in sorted_cells[:k] if sc[0] <= max_dist]\n", "role": "user" }, { "content": "find_closest_neighbours", "role": "assistant" } ]
def x(self, d1, d2): distance = euclidean_dist(d1.center, d2.center) / self.scale area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area) return distance + self.parameters_cost_initial['area_weight'] * area_change
calculate_basic_cost
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, d1, d2):\n distance = euclidean_dist(d1.center, d2.center) / self.scale\n area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)\n return distance + self.parameters_cost_initial['area_weight'] * area_change\n", "role": "user" }, { "content": "calculate_basic_cost", "role": "assistant" } ]
def x(self, d1, d2, neighbours, motions): my_nbrs_with_motion = [n for n in neighbours[d1] if n in motions] my_motion = d1.center[0] - d2.center[0], d1.center[1] - d2.center[1] if my_nbrs_with_motion == []: distance = euclidean_dist(d1.center, d2.center) / self.scale else: distance = min([euclidean_dist(my_motion, motions[n]) for n in my_nbrs_with_motion]) / self.scale area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area) return distance + self.parameters_cost_iteration['area_weight' ] * area_change
calculate_localised_cost
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, d1, d2, neighbours, motions):\n my_nbrs_with_motion = [n for n in neighbours[d1] if n in motions]\n my_motion = d1.center[0] - d2.center[0], d1.center[1] - d2.center[1]\n if my_nbrs_with_motion == []:\n distance = euclidean_dist(d1.center, d2.center) / self.scale\n else:\n distance = min([euclidean_dist(my_motion, motions[n]) for n in\n my_nbrs_with_motion]) / self.scale\n area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)\n return distance + self.parameters_cost_iteration['area_weight'\n ] * area_change\n", "role": "user" }, { "content": "calculate_localised_cost", "role": "assistant" } ]
def x(self, detections_1, detections_2, calculate_match_cost, params): global invalid_match size_sum = len(detections_1) + len(detections_2) cost_matrix = numpy.zeros((size_sum, size_sum)) cost_matrix[0:len(detections_1), len(detections_2):size_sum] = params[ 'default_empty_cost'] + (1 - numpy.eye(len(detections_1), len( detections_1))) * invalid_match cost_matrix[len(detections_1):size_sum, 0:len(detections_2)] = params[ 'default_empty_cost'] + (1 - numpy.eye(len(detections_2), len( detections_2))) * invalid_match for row in [i for i in range(0, len(detections_1)) if detections_1[i]. is_reliable() and (not params['check_if_big'] or self.is_cell_big( detections_1[i]))]: cost_matrix[row, len(detections_2):size_sum] *= params[ 'default_empty_reliable_cost_mult'] for col in [i for i in range(0, len(detections_2)) if detections_2[i]. is_reliable() and (not params['check_if_big'] or self.is_cell_big( detections_2[i]))]: cost_matrix[len(detections_1):size_sum, col] *= params[ 'default_empty_reliable_cost_mult'] def x(detection_1, detection_2): if detection_1.distance(detection_2) <= self.parameters_tracking[ 'max_distance']: return calculate_match_cost(detection_1, detection_2) else: return invalid_match cost_matrix[0:len(detections_1), 0:len(detections_2)] = [[ cost_if_not_too_far(d1, d2) for d2 in detections_2] for d1 in detections_1] return cost_matrix
calculate_costs
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, detections_1, detections_2, calculate_match_cost, params):\n global invalid_match\n size_sum = len(detections_1) + len(detections_2)\n cost_matrix = numpy.zeros((size_sum, size_sum))\n cost_matrix[0:len(detections_1), len(detections_2):size_sum] = params[\n 'default_empty_cost'] + (1 - numpy.eye(len(detections_1), len(\n detections_1))) * invalid_match\n cost_matrix[len(detections_1):size_sum, 0:len(detections_2)] = params[\n 'default_empty_cost'] + (1 - numpy.eye(len(detections_2), len(\n detections_2))) * invalid_match\n for row in [i for i in range(0, len(detections_1)) if detections_1[i].\n is_reliable() and (not params['check_if_big'] or self.is_cell_big(\n detections_1[i]))]:\n cost_matrix[row, len(detections_2):size_sum] *= params[\n 'default_empty_reliable_cost_mult']\n for col in [i for i in range(0, len(detections_2)) if detections_2[i].\n is_reliable() and (not params['check_if_big'] or self.is_cell_big(\n detections_2[i]))]:\n cost_matrix[len(detections_1):size_sum, col] *= params[\n 'default_empty_reliable_cost_mult']\n\n def x(detection_1, detection_2):\n if detection_1.distance(detection_2) <= self.parameters_tracking[\n 'max_distance']:\n return calculate_match_cost(detection_1, detection_2)\n else:\n return invalid_match\n cost_matrix[0:len(detections_1), 0:len(detections_2)] = [[\n cost_if_not_too_far(d1, d2) for d2 in detections_2] for d1 in\n detections_1]\n return cost_matrix\n", "role": "user" }, { "content": "calculate_costs", "role": "assistant" } ]
def x(self, costs): if costs is None or len(costs) == 0: return dict() n = costs.shape[0] pairs = [(i, j) for i in range(0, n) for j in range(0, n) if costs[i, j ] < invalid_match] costs_list = [costs[i, j] for i, j in pairs] assignment = lapjv.lapjv(list(zip(*pairs))[0], list(zip(*pairs))[1], costs_list) indexes = enumerate(list(assignment[0])) return dict([(row, col) for row, col in indexes])
solve_assignement
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(self, costs):\n if costs is None or len(costs) == 0:\n return dict()\n n = costs.shape[0]\n pairs = [(i, j) for i in range(0, n) for j in range(0, n) if costs[i, j\n ] < invalid_match]\n costs_list = [costs[i, j] for i, j in pairs]\n assignment = lapjv.lapjv(list(zip(*pairs))[0], list(zip(*pairs))[1],\n costs_list)\n indexes = enumerate(list(assignment[0]))\n return dict([(row, col) for row, col in indexes])\n", "role": "user" }, { "content": "solve_assignement", "role": "assistant" } ]
def x(image, bits): rr = np.random.RandomState() rr.seed(0) r = rr.normal(size=image.shape) delta = pow(2.0, -bits) image_copy = np.clip(image, delta, 1) result = np.exp2(np.log2(image_copy + delta) * r + (1 - r) * np.log2( image_copy)) result[result > 1] = 1 result[result < 0] = 0 return result
smooth_with_noise
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, bits):\n rr = np.random.RandomState()\n rr.seed(0)\n r = rr.normal(size=image.shape)\n delta = pow(2.0, -bits)\n image_copy = np.clip(image, delta, 1)\n result = np.exp2(np.log2(image_copy + delta) * r + (1 - r) * np.log2(\n image_copy))\n result[result > 1] = 1\n result[result < 0] = 0\n return result\n", "role": "user" }, { "content": "smooth_with_noise", "role": "assistant" } ]
def x(image, function, mask): not_mask = np.logical_not(mask) bleed_over = function(mask.astype(float)) masked_image = np.zeros(image.shape, image.dtype) masked_image[mask] = image[mask] smoothed_image = function(masked_image) output_image = smoothed_image / (bleed_over + np.finfo(float).eps) return output_image
smooth_with_function_and_mask
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(image, function, mask):\n not_mask = np.logical_not(mask)\n bleed_over = function(mask.astype(float))\n masked_image = np.zeros(image.shape, image.dtype)\n masked_image[mask] = image[mask]\n smoothed_image = function(masked_image)\n output_image = smoothed_image / (bleed_over + np.finfo(float).eps)\n return output_image\n", "role": "user" }, { "content": "smooth_with_function_and_mask", "role": "assistant" } ]
def x(sd, radius): i, j = np.mgrid[-radius:radius + 1, -radius:radius + 1].astype(float ) / radius mask = i ** 2 + j ** 2 <= 1 i = i * radius / sd j = j * radius / sd kernel = np.zeros((2 * radius + 1, 2 * radius + 1)) kernel[mask] = np.e ** (-(i[mask] ** 2 + j[mask] ** 2) / (2 * sd ** 2)) kernel = kernel / np.sum(kernel) return kernel
circular_gaussian_kernel
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(sd, radius):\n i, j = np.mgrid[-radius:radius + 1, -radius:radius + 1].astype(float\n ) / radius\n mask = i ** 2 + j ** 2 <= 1\n i = i * radius / sd\n j = j * radius / sd\n kernel = np.zeros((2 * radius + 1, 2 * radius + 1))\n kernel[mask] = np.e ** (-(i[mask] ** 2 + j[mask] ** 2) / (2 * sd ** 2))\n kernel = kernel / np.sum(kernel)\n return kernel\n", "role": "user" }, { "content": "circular_gaussian_kernel", "role": "assistant" } ]
def x(pixel_data, mask, clip=True): mask = np.logical_and(mask, pixel_data > 0) if not np.any(mask): return pixel_data x, y = np.mgrid[0:pixel_data.shape[0], 0:pixel_data.shape[1]] x2 = x * x y2 = y * y xy = x * y o = np.ones(pixel_data.shape) a = np.array([x[mask], y[mask], x2[mask], y2[mask], xy[mask], o[mask]]) coeffs = scipy.linalg.lstsq(a.transpose(), pixel_data[mask])[0] output_pixels = np.sum([(coeff * index) for coeff, index in zip(coeffs, [x, y, x2, y2, xy, o])], 0) if clip: output_pixels[output_pixels > 1] = 1 output_pixels[output_pixels < 0] = 0 return output_pixels
fit_polynomial
[ { "content": "Given the source code of a python function, suggest a fitting name for the function.", "role": "system" }, { "content": "def x(pixel_data, mask, clip=True):\n mask = np.logical_and(mask, pixel_data > 0)\n if not np.any(mask):\n return pixel_data\n x, y = np.mgrid[0:pixel_data.shape[0], 0:pixel_data.shape[1]]\n x2 = x * x\n y2 = y * y\n xy = x * y\n o = np.ones(pixel_data.shape)\n a = np.array([x[mask], y[mask], x2[mask], y2[mask], xy[mask], o[mask]])\n coeffs = scipy.linalg.lstsq(a.transpose(), pixel_data[mask])[0]\n output_pixels = np.sum([(coeff * index) for coeff, index in zip(coeffs,\n [x, y, x2, y2, xy, o])], 0)\n if clip:\n output_pixels[output_pixels > 1] = 1\n output_pixels[output_pixels < 0] = 0\n return output_pixels\n", "role": "user" }, { "content": "fit_polynomial", "role": "assistant" } ]