source_code
stringlengths 45
7.24k
| function_name
stringlengths 1
111
| messages
list |
---|---|---|
def x(pattern):
return pattern[0, 0] * 2 ** 0 + pattern[0, 1] * 2 ** 1 + pattern[0, 2
] * 2 ** 2 + pattern[1, 0] * 2 ** 3 + pattern[1, 1] * 2 ** 4 + pattern[
1, 2] * 2 ** 5 + pattern[2, 0] * 2 ** 6 + pattern[2, 1
] * 2 ** 7 + pattern[2, 2] * 2 ** 8
| index_of | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pattern):\n return pattern[0, 0] * 2 ** 0 + pattern[0, 1] * 2 ** 1 + pattern[0, 2\n ] * 2 ** 2 + pattern[1, 0] * 2 ** 3 + pattern[1, 1] * 2 ** 4 + pattern[\n 1, 2] * 2 ** 5 + pattern[2, 0] * 2 ** 6 + pattern[2, 1\n ] * 2 ** 7 + pattern[2, 2] * 2 ** 8\n",
"role": "user"
},
{
"content": "index_of",
"role": "assistant"
}
] |
def x(value, pattern, care=np.ones((3, 3), bool)):
def x(index, p, i, j):
return (index & 2 ** p > 0) == pattern[i, j] or not care[i, j]
return np.array([(value if fn(i, 0, 0, 0) and fn(i, 1, 0, 1) and fn(i,
2, 0, 2) and fn(i, 3, 1, 0) and fn(i, 4, 1, 1) and fn(i, 5, 1, 2) and
fn(i, 6, 2, 0) and fn(i, 7, 2, 1) and fn(i, 8, 2, 2) else not value
) for i in range(512)], bool)
| make_table | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(value, pattern, care=np.ones((3, 3), bool)):\n\n def x(index, p, i, j):\n return (index & 2 ** p > 0) == pattern[i, j] or not care[i, j]\n return np.array([(value if fn(i, 0, 0, 0) and fn(i, 1, 0, 1) and fn(i, \n 2, 0, 2) and fn(i, 3, 1, 0) and fn(i, 4, 1, 1) and fn(i, 5, 1, 2) and\n fn(i, 6, 2, 0) and fn(i, 7, 2, 1) and fn(i, 8, 2, 2) else not value\n ) for i in range(512)], bool)\n",
"role": "user"
},
{
"content": "make_table",
"role": "assistant"
}
] |
def x(image, mask=None):
global branchpoints_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, branchpoints_table, False, 1)
if not mask is None:
result[~mask] = image[~mask]
return result
| branchpoints | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n global branchpoints_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, branchpoints_table, False, 1)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "branchpoints",
"role": "assistant"
}
] |
def x(image, mask=None):
global branchings_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
kernel = np.array([[1, 2, 4], [8, 16, 32], [64, 128, 256]])
indexer = scind.convolve(masked_image.astype(int), kernel, mode='constant'
).astype(int)
result = branchings_table[indexer]
return result
| branchings | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n global branchings_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n kernel = np.array([[1, 2, 4], [8, 16, 32], [64, 128, 256]])\n indexer = scind.convolve(masked_image.astype(int), kernel, mode='constant'\n ).astype(int)\n result = branchings_table[indexer]\n return result\n",
"role": "user"
},
{
"content": "branchings",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global bridge_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, bridge_table, False, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| bridge | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global bridge_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, bridge_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "bridge",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global clean_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, clean_table, False, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| clean | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global clean_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, clean_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "clean",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global diag_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, diag_table, False, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| diag | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global diag_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, diag_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "diag",
"role": "assistant"
}
] |
def x(image, mask=None):
global endpoints_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, endpoints_table, False, 1)
if not mask is None:
result[~mask] = image[~mask]
return result
| endpoints | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n global endpoints_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, endpoints_table, False, 1)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "endpoints",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global fill_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = True
result = table_lookup(masked_image, fill_table, True, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| fill | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global fill_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = True\n result = table_lookup(masked_image, fill_table, True, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "fill",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global fill4_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = True
result = table_lookup(masked_image, fill4_table, True, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| fill4 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global fill4_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = True\n result = table_lookup(masked_image, fill4_table, True, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "fill4",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global hbreak_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, hbreak_table, False)
if not mask is None:
result[~mask] = image[~mask]
return result
| hbreak | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global hbreak_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, hbreak_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "hbreak",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global vbreak_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, vbreak_table, False)
if not mask is None:
result[~mask] = image[~mask]
return result
| vbreak | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global vbreak_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, vbreak_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "vbreak",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global majority_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, majority_table, False, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| majority | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global majority_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, majority_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "majority",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global remove_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, remove_table, False)
if not mask is None:
result[~mask] = image[~mask]
return result
| remove | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global remove_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, remove_table, False)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "remove",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global spur_table_1, spur_table_2
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,
False)
if iterations is None:
iterations = len(index_i)
for i in range(iterations):
for table in (spur_table_1, spur_table_2):
index_i, index_j = index_lookup(index_i, index_j, masked_image,
table, 1)
masked_image = extract_from_image_lookup(image, index_i, index_j)
if not mask is None:
masked_image[~mask] = image[~mask]
return masked_image
| spur | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global spur_table_1, spur_table_2\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,\n False)\n if iterations is None:\n iterations = len(index_i)\n for i in range(iterations):\n for table in (spur_table_1, spur_table_2):\n index_i, index_j = index_lookup(index_i, index_j, masked_image,\n table, 1)\n masked_image = extract_from_image_lookup(image, index_i, index_j)\n if not mask is None:\n masked_image[~mask] = image[~mask]\n return masked_image\n",
"role": "user"
},
{
"content": "spur",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global thicken_table
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
result = table_lookup(masked_image, thicken_table, False, iterations)
if not mask is None:
result[~mask] = image[~mask]
return result
| thicken | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global thicken_table\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n result = table_lookup(masked_image, thicken_table, False, iterations)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "thicken",
"role": "assistant"
}
] |
def x(image, mask=None, iterations=1):
global thin_table, eight_connect
if thin_table is None:
thin_table = np.zeros((2, 512), bool)
for i in range(512):
if i & 16 == 0:
continue
pat = pattern_of(i & ~16)
ipat = pat.astype(int)
if scind.label(pat, eight_connect)[1] != 1:
thin_table[:, i] = True
continue
n1 = (ipat[0, 0] or ipat[0, 1]) + (ipat[0, 2] or ipat[1, 2]) + (
ipat[2, 2] or ipat[2, 1]) + (ipat[2, 0] or ipat[1, 0])
n2 = (ipat[0, 1] or ipat[0, 2]) + (ipat[1, 2] or ipat[2, 2]) + (
ipat[2, 1] or ipat[2, 0]) + (ipat[1, 0] or ipat[0, 0])
if min(n1, n2) not in (2, 3):
thin_table[:, i] = True
continue
thin_table[0, i] = (pat[0, 1] or pat[0, 2] or not pat[2, 2]
) and pat[1, 2]
thin_table[1, i] = (pat[2, 1] or pat[2, 0] or not pat[0, 0]
) and pat[1, 0]
if mask is None:
masked_image = image.copy()
else:
masked_image = image.copy()
masked_image[~mask] = False
index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,
False)
if iterations is None:
iterations = len(index_i)
for i in range(iterations):
hit_count = len(index_i)
for j in range(2):
index_i, index_j = index_lookup(index_i, index_j, masked_image,
thin_table[j], 1)
if hit_count == len(index_i):
break
masked_image = extract_from_image_lookup(image, index_i, index_j)
if not mask is None:
masked_image[~mask] = masked_image[~mask]
return masked_image
| thin | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, iterations=1):\n global thin_table, eight_connect\n if thin_table is None:\n thin_table = np.zeros((2, 512), bool)\n for i in range(512):\n if i & 16 == 0:\n continue\n pat = pattern_of(i & ~16)\n ipat = pat.astype(int)\n if scind.label(pat, eight_connect)[1] != 1:\n thin_table[:, i] = True\n continue\n n1 = (ipat[0, 0] or ipat[0, 1]) + (ipat[0, 2] or ipat[1, 2]) + (\n ipat[2, 2] or ipat[2, 1]) + (ipat[2, 0] or ipat[1, 0])\n n2 = (ipat[0, 1] or ipat[0, 2]) + (ipat[1, 2] or ipat[2, 2]) + (\n ipat[2, 1] or ipat[2, 0]) + (ipat[1, 0] or ipat[0, 0])\n if min(n1, n2) not in (2, 3):\n thin_table[:, i] = True\n continue\n thin_table[0, i] = (pat[0, 1] or pat[0, 2] or not pat[2, 2]\n ) and pat[1, 2]\n thin_table[1, i] = (pat[2, 1] or pat[2, 0] or not pat[0, 0]\n ) and pat[1, 0]\n if mask is None:\n masked_image = image.copy()\n else:\n masked_image = image.copy()\n masked_image[~mask] = False\n index_i, index_j, masked_image = prepare_for_index_lookup(masked_image,\n False)\n if iterations is None:\n iterations = len(index_i)\n for i in range(iterations):\n hit_count = len(index_i)\n for j in range(2):\n index_i, index_j = index_lookup(index_i, index_j, masked_image,\n thin_table[j], 1)\n if hit_count == len(index_i):\n break\n masked_image = extract_from_image_lookup(image, index_i, index_j)\n if not mask is None:\n masked_image[~mask] = masked_image[~mask]\n return masked_image\n",
"role": "user"
},
{
"content": "thin",
"role": "assistant"
}
] |
def x(labels):
max_label = np.max(labels)
new_labels = np.zeros(np.array(labels.shape) + 2, labels.dtype)
new_labels[1:-1, 1:-1] = labels
labels = new_labels
adjacent_mask = adjacent(labels)
adjacent_i, adjacent_j = np.argwhere(adjacent_mask).transpose()
count = len(adjacent_i)
if count == 0:
return np.zeros(max_label, int), np.zeros(max_label, int), np.zeros(
0, int)
v_label = np.hstack([labels[adjacent_i, adjacent_j]] * 8)
v_neighbor = np.zeros(count * 8, int)
index = 0
for i, j in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1,
0), (1, 1)):
v_neighbor[index:index + count] = labels[adjacent_i + i, adjacent_j + j
]
index += count
sort_order = np.lexsort((v_neighbor, v_label))
v_label = v_label[sort_order]
v_neighbor = v_neighbor[sort_order]
first_occurrence = np.ones(len(v_label), bool)
first_occurrence[1:] = (v_label[1:] != v_label[:-1]) | (v_neighbor[1:] !=
v_neighbor[:-1])
v_label = v_label[first_occurrence]
v_neighbor = v_neighbor[first_occurrence]
to_remove = (v_label == v_neighbor) | (v_neighbor == 0)
v_label = v_label[~to_remove]
v_neighbor = v_neighbor[~to_remove]
v_count = fixup_scipy_ndimage_result(scind.sum(np.ones(v_label.shape),
v_label, np.arange(max_label, dtype=np.int32) + 1))
v_count = v_count.astype(int)
v_index = np.cumsum(v_count)
v_index[1:] = v_index[:-1]
v_index[0] = 0
return v_count, v_index, v_neighbor
| find_neighbors | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n max_label = np.max(labels)\n new_labels = np.zeros(np.array(labels.shape) + 2, labels.dtype)\n new_labels[1:-1, 1:-1] = labels\n labels = new_labels\n adjacent_mask = adjacent(labels)\n adjacent_i, adjacent_j = np.argwhere(adjacent_mask).transpose()\n count = len(adjacent_i)\n if count == 0:\n return np.zeros(max_label, int), np.zeros(max_label, int), np.zeros(\n 0, int)\n v_label = np.hstack([labels[adjacent_i, adjacent_j]] * 8)\n v_neighbor = np.zeros(count * 8, int)\n index = 0\n for i, j in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, \n 0), (1, 1)):\n v_neighbor[index:index + count] = labels[adjacent_i + i, adjacent_j + j\n ]\n index += count\n sort_order = np.lexsort((v_neighbor, v_label))\n v_label = v_label[sort_order]\n v_neighbor = v_neighbor[sort_order]\n first_occurrence = np.ones(len(v_label), bool)\n first_occurrence[1:] = (v_label[1:] != v_label[:-1]) | (v_neighbor[1:] !=\n v_neighbor[:-1])\n v_label = v_label[first_occurrence]\n v_neighbor = v_neighbor[first_occurrence]\n to_remove = (v_label == v_neighbor) | (v_neighbor == 0)\n v_label = v_label[~to_remove]\n v_neighbor = v_neighbor[~to_remove]\n v_count = fixup_scipy_ndimage_result(scind.sum(np.ones(v_label.shape),\n v_label, np.arange(max_label, dtype=np.int32) + 1))\n v_count = v_count.astype(int)\n v_index = np.cumsum(v_count)\n v_index[1:] = v_index[:-1]\n v_index[0] = 0\n return v_count, v_index, v_neighbor\n",
"role": "user"
},
{
"content": "find_neighbors",
"role": "assistant"
}
] |
def x(labels):
colors = color_labels(labels, True)
rlabels = labels.ravel()
order = np.lexsort((rlabels, colors.ravel()))
different = np.hstack([[rlabels[order[0]] > 0], rlabels[order[1:]] !=
rlabels[order[:-1]]])
rcolor = colors.ravel()
rcolor[order] = np.cumsum(different).astype(colors.dtype)
return rcolor.reshape(colors.shape).astype(labels.dtype)
| distance_color_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n colors = color_labels(labels, True)\n rlabels = labels.ravel()\n order = np.lexsort((rlabels, colors.ravel()))\n different = np.hstack([[rlabels[order[0]] > 0], rlabels[order[1:]] !=\n rlabels[order[:-1]]])\n rcolor = colors.ravel()\n rcolor[order] = np.cumsum(different).astype(colors.dtype)\n return rcolor.reshape(colors.shape).astype(labels.dtype)\n",
"role": "user"
},
{
"content": "distance_color_labels",
"role": "assistant"
}
] |
def x(labels, distance_transform=False):
if distance_transform:
i, j = scind.distance_transform_edt(labels == 0, return_distances=
False, return_indices=True)
dt_labels = labels[i, j]
else:
dt_labels = labels
v_count, v_index, v_neighbor = find_neighbors(dt_labels)
v_color = np.zeros(len(v_count) + 1, int)
zero_count = v_count == 0
if np.all(zero_count):
return (labels != 0).astype(int)
v_color[1:][zero_count] = 1
v_count = v_count[~zero_count]
v_index = v_index[~zero_count]
v_label = np.argwhere(~zero_count).transpose()[0] + 1
sort_order = np.lexsort([-v_count])
v_count = v_count[sort_order]
v_index = v_index[sort_order]
v_label = v_label[sort_order]
for i in range(len(v_count)):
neighbors = v_neighbor[v_index[i]:v_index[i] + v_count[i]]
colors = np.unique(v_color[neighbors])
if colors[0] == 0:
if len(colors) == 1:
v_color[v_label[i]] = 1
continue
else:
colors = colors[1:]
crange = np.arange(1, len(colors) + 1)
misses = crange[colors != crange]
if len(misses):
color = misses[0]
else:
color = len(colors) + 1
v_color[v_label[i]] = color
return v_color[labels]
| color_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, distance_transform=False):\n if distance_transform:\n i, j = scind.distance_transform_edt(labels == 0, return_distances=\n False, return_indices=True)\n dt_labels = labels[i, j]\n else:\n dt_labels = labels\n v_count, v_index, v_neighbor = find_neighbors(dt_labels)\n v_color = np.zeros(len(v_count) + 1, int)\n zero_count = v_count == 0\n if np.all(zero_count):\n return (labels != 0).astype(int)\n v_color[1:][zero_count] = 1\n v_count = v_count[~zero_count]\n v_index = v_index[~zero_count]\n v_label = np.argwhere(~zero_count).transpose()[0] + 1\n sort_order = np.lexsort([-v_count])\n v_count = v_count[sort_order]\n v_index = v_index[sort_order]\n v_label = v_label[sort_order]\n for i in range(len(v_count)):\n neighbors = v_neighbor[v_index[i]:v_index[i] + v_count[i]]\n colors = np.unique(v_color[neighbors])\n if colors[0] == 0:\n if len(colors) == 1:\n v_color[v_label[i]] = 1\n continue\n else:\n colors = colors[1:]\n crange = np.arange(1, len(colors) + 1)\n misses = crange[colors != crange]\n if len(misses):\n color = misses[0]\n else:\n color = len(colors) + 1\n v_color[v_label[i]] = color\n return v_color[labels]\n",
"role": "user"
},
{
"content": "color_labels",
"role": "assistant"
}
] |
def x(image, mask=None, ordering=None):
global eight_connect
if mask is None:
masked_image = image
else:
masked_image = image.astype(bool).copy()
masked_image[~mask] = False
table = make_table(True, np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]],
bool), np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], bool)) & (np.
array([(scind.label(pattern_of(index), eight_connect)[1] != scind.
label(pattern_of(index & ~2 ** 4), eight_connect)[1]) for index in
range(512)]) | np.array([(np.sum(pattern_of(index)) < 3) for index in
range(512)]))
if ordering is None:
distance = scind.distance_transform_edt(masked_image)
else:
distance = ordering
cornerness_table = np.array([(9 - np.sum(pattern_of(index))) for index in
range(512)])
corner_score = table_lookup(masked_image, cornerness_table, False, 1)
i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]
result = masked_image.copy()
distance = distance[result]
i = np.ascontiguousarray(i[result], np.int32)
j = np.ascontiguousarray(j[result], np.int32)
result = np.ascontiguousarray(result, np.uint8)
np.random.seed(0)
tiebreaker = np.random.permutation(np.arange(np.product(masked_image.
shape)))
tiebreaker.shape = masked_image.shape
order = np.lexsort((tiebreaker[masked_image], corner_score[masked_image
], distance))
order = np.ascontiguousarray(order, np.int32)
table = np.ascontiguousarray(table, np.uint8)
skeletonize_loop(result, i, j, order, table)
result = result.astype(bool)
if not mask is None:
result[~mask] = image[~mask]
return result
| skeletonize | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, ordering=None):\n global eight_connect\n if mask is None:\n masked_image = image\n else:\n masked_image = image.astype(bool).copy()\n masked_image[~mask] = False\n table = make_table(True, np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]],\n bool), np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], bool)) & (np.\n array([(scind.label(pattern_of(index), eight_connect)[1] != scind.\n label(pattern_of(index & ~2 ** 4), eight_connect)[1]) for index in\n range(512)]) | np.array([(np.sum(pattern_of(index)) < 3) for index in\n range(512)]))\n if ordering is None:\n distance = scind.distance_transform_edt(masked_image)\n else:\n distance = ordering\n cornerness_table = np.array([(9 - np.sum(pattern_of(index))) for index in\n range(512)])\n corner_score = table_lookup(masked_image, cornerness_table, False, 1)\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]\n result = masked_image.copy()\n distance = distance[result]\n i = np.ascontiguousarray(i[result], np.int32)\n j = np.ascontiguousarray(j[result], np.int32)\n result = np.ascontiguousarray(result, np.uint8)\n np.random.seed(0)\n tiebreaker = np.random.permutation(np.arange(np.product(masked_image.\n shape)))\n tiebreaker.shape = masked_image.shape\n order = np.lexsort((tiebreaker[masked_image], corner_score[masked_image\n ], distance))\n order = np.ascontiguousarray(order, np.int32)\n table = np.ascontiguousarray(table, np.uint8)\n skeletonize_loop(result, i, j, order, table)\n result = result.astype(bool)\n if not mask is None:\n result[~mask] = image[~mask]\n return result\n",
"role": "user"
},
{
"content": "skeletonize",
"role": "assistant"
}
] |
def x(labels):
colors = color_labels(labels)
max_color = np.max(colors)
if max_color == 0:
return labels
result = np.zeros(labels.shape, labels.dtype)
for i in range(1, max_color + 1):
mask = skeletonize(colors == i)
result[mask] = labels[mask]
return result
| skeletonize_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n colors = color_labels(labels)\n max_color = np.max(colors)\n if max_color == 0:\n return labels\n result = np.zeros(labels.shape, labels.dtype)\n for i in range(1, max_color + 1):\n mask = skeletonize(colors == i)\n result[mask] = labels[mask]\n return result\n",
"role": "user"
},
{
"content": "skeletonize_labels",
"role": "assistant"
}
] |
def x(skeleton):
bpts = branchpoints(skeleton)
neighbors = scind.convolve(skeleton.astype(int), np.ones((3, 3), int),
mode='constant').astype(int)
neighbors[~skeleton] = 0
neighbors[skeleton] -= 1
i, j = np.mgrid[0:skeleton.shape[0], 0:skeleton.shape[1]]
skeleton_minus_bpts = skeleton & ~bpts
si = i[skeleton_minus_bpts]
sj = j[skeleton_minus_bpts]
bi = i[bpts]
bj = j[bpts]
i = np.hstack((bi, si))
j = np.hstack((bj, sj))
b_vnum = np.arange(len(bi))
s_vnum = np.arange(len(si)) + len(bi)
all_vnum = np.hstack((b_vnum, s_vnum))
vertex_numbers = np.zeros(skeleton.shape, int)
vertex_numbers[i, j] = all_vnum
src = all_vnum
dest = all_vnum
for ioff, joff in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1),
(1, 0), (1, 1)):
consider = np.ones(len(si), bool)
if ioff == -1:
consider = si > 0
elif ioff == 1:
consider = si < skeleton.shape[0] - 1
if joff == -1:
consider = consider & (sj > 0)
elif joff == 1:
consider = consider & (sj < skeleton.shape[1] - 1)
ci = si[consider]
cj = sj[consider]
link = skeleton_minus_bpts[ci + ioff, cj + joff] & ((neighbors[ci,
cj] < 3) | (neighbors[ci + ioff, cj + joff] < 3))
ci = ci[link]
cj = cj[link]
src = np.hstack((src, vertex_numbers[ci, cj]))
dest = np.hstack((dest, vertex_numbers[ci + ioff, cj + joff]))
labeling = all_connected_components(src, dest)
vertex_numbers[i, j] = labeling + 1
return vertex_numbers, 0 if len(labeling) == 0 else int(np.max(labeling)
) + 1
| label_skeleton | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(skeleton):\n bpts = branchpoints(skeleton)\n neighbors = scind.convolve(skeleton.astype(int), np.ones((3, 3), int),\n mode='constant').astype(int)\n neighbors[~skeleton] = 0\n neighbors[skeleton] -= 1\n i, j = np.mgrid[0:skeleton.shape[0], 0:skeleton.shape[1]]\n skeleton_minus_bpts = skeleton & ~bpts\n si = i[skeleton_minus_bpts]\n sj = j[skeleton_minus_bpts]\n bi = i[bpts]\n bj = j[bpts]\n i = np.hstack((bi, si))\n j = np.hstack((bj, sj))\n b_vnum = np.arange(len(bi))\n s_vnum = np.arange(len(si)) + len(bi)\n all_vnum = np.hstack((b_vnum, s_vnum))\n vertex_numbers = np.zeros(skeleton.shape, int)\n vertex_numbers[i, j] = all_vnum\n src = all_vnum\n dest = all_vnum\n for ioff, joff in ((-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1),\n (1, 0), (1, 1)):\n consider = np.ones(len(si), bool)\n if ioff == -1:\n consider = si > 0\n elif ioff == 1:\n consider = si < skeleton.shape[0] - 1\n if joff == -1:\n consider = consider & (sj > 0)\n elif joff == 1:\n consider = consider & (sj < skeleton.shape[1] - 1)\n ci = si[consider]\n cj = sj[consider]\n link = skeleton_minus_bpts[ci + ioff, cj + joff] & ((neighbors[ci,\n cj] < 3) | (neighbors[ci + ioff, cj + joff] < 3))\n ci = ci[link]\n cj = cj[link]\n src = np.hstack((src, vertex_numbers[ci, cj]))\n dest = np.hstack((dest, vertex_numbers[ci + ioff, cj + joff]))\n labeling = all_connected_components(src, dest)\n vertex_numbers[i, j] = labeling + 1\n return vertex_numbers, 0 if len(labeling) == 0 else int(np.max(labeling)\n ) + 1\n",
"role": "user"
},
{
"content": "label_skeleton",
"role": "assistant"
}
] |
def x(labels, indices=None):
global __skel_length_table
if __skel_length_table is None:
tbl = np.zeros(512, np.float32)
for ii in range(-1, 2):
for jj in range(-1, 2):
if ii == 0 and jj == 0:
continue
idx = 2 ** (ii + 1 + (jj + 1) * 3) | 16
mask = np.arange(512) & idx == idx
if ii != 0 and jj != 0:
for adjacent_i, adjacent_j in ((ii - 1, jj), (ii, jj -
1), (ii + 1, jj), (ii, jj + 1)):
if any([(_ < -1 or _ > 1) for _ in (adjacent_i,
adjacent_j)]):
continue
aidx = 2 ** (adjacent_i + 1 + (adjacent_j + 1) * 3)
mask = mask & (np.arange(512) & aidx != aidx)
tbl[mask] += np.sqrt(ii * ii + jj * jj) / 2
__skel_length_table = tbl
if indices is None:
indices = np.arange(1, np.max(labels) + 1)
else:
indices = np.asanyarray(indices)
if len(indices) == 0:
return np.zeros(0)
score = __skel_length_table[table_idx_from_labels(labels)]
result = np.bincount(labels.ravel(), weights=score.ravel(), minlength=
np.max(indices) + 1)
return result[indices]
| skeleton_length | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, indices=None):\n global __skel_length_table\n if __skel_length_table is None:\n tbl = np.zeros(512, np.float32)\n for ii in range(-1, 2):\n for jj in range(-1, 2):\n if ii == 0 and jj == 0:\n continue\n idx = 2 ** (ii + 1 + (jj + 1) * 3) | 16\n mask = np.arange(512) & idx == idx\n if ii != 0 and jj != 0:\n for adjacent_i, adjacent_j in ((ii - 1, jj), (ii, jj - \n 1), (ii + 1, jj), (ii, jj + 1)):\n if any([(_ < -1 or _ > 1) for _ in (adjacent_i,\n adjacent_j)]):\n continue\n aidx = 2 ** (adjacent_i + 1 + (adjacent_j + 1) * 3)\n mask = mask & (np.arange(512) & aidx != aidx)\n tbl[mask] += np.sqrt(ii * ii + jj * jj) / 2\n __skel_length_table = tbl\n if indices is None:\n indices = np.arange(1, np.max(labels) + 1)\n else:\n indices = np.asanyarray(indices)\n if len(indices) == 0:\n return np.zeros(0)\n score = __skel_length_table[table_idx_from_labels(labels)]\n result = np.bincount(labels.ravel(), weights=score.ravel(), minlength=\n np.max(indices) + 1)\n return result[indices]\n",
"role": "user"
},
{
"content": "skeleton_length",
"role": "assistant"
}
] |
def x(labels):
colors = color_labels(labels)
max_color = np.max(colors)
result = np.zeros(labels.shape)
if max_color == 0:
return result
for i in range(1, max_color + 1):
mask = colors == i
result[mask] = scind.distance_transform_edt(mask)[mask]
return result
| distance_to_edge | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n colors = color_labels(labels)\n max_color = np.max(colors)\n result = np.zeros(labels.shape)\n if max_color == 0:\n return result\n for i in range(1, max_color + 1):\n mask = colors == i\n result[mask] = scind.distance_transform_edt(mask)[mask]\n return result\n",
"role": "user"
},
{
"content": "distance_to_edge",
"role": "assistant"
}
] |
def x(image, mask=None, structure=None, ties_are_ok=False):
global eight_connect
if not ties_are_ok:
result = regional_maximum(image, mask, structure, True)
if not np.any(result):
return result
distance = scind.distance_transform_edt(result)
labels, label_count = scind.label(result, eight_connect)
np.random.seed(0)
ro_distance = rank_order(distance)[0].astype(float)
count = np.product(ro_distance.shape)
ro_distance.flat += np.random.permutation(count).astype(float) / float(
count)
positions = scind.maximum_position(ro_distance, labels, np.arange(
label_count) + 1)
positions = np.array(positions, np.uint32)
result = np.zeros(image.shape, bool)
if positions.ndim == 1:
result[positions[0], positions[1]] = True
else:
result[positions[:, 0], positions[:, 1]] = True
return result
result = np.ones(image.shape, bool)
if structure is None:
structure = scind.generate_binary_structure(image.ndim, image.ndim)
big_mask = np.zeros(np.array(image.shape) + np.array(structure.shape), bool
)
structure_half_shape = np.array(structure.shape) // 2
big_mask[structure_half_shape[0]:structure_half_shape[0] + image.shape[
0], structure_half_shape[1]:structure_half_shape[1] + image.shape[1]
] = mask if mask is not None else True
for i in range(structure.shape[0]):
off_i = i - structure_half_shape[0]
for j in range(structure.shape[1]):
if i == structure_half_shape[0] and j == structure_half_shape[1]:
continue
off_j = j - structure_half_shape[1]
if structure[i, j]:
result = np.logical_and(result, big_mask[i:i + image.shape[
0], j:j + image.shape[1]])
src_i_min = max(0, -off_i)
src_i_max = min(image.shape[0], image.shape[0] - off_i)
off_i_min = max(0, off_i)
off_i_max = min(image.shape[0], image.shape[0] + off_i)
src_j_min = max(0, -off_j)
src_j_max = min(image.shape[1], image.shape[1] - off_j)
off_j_min = max(0, off_j)
off_j_max = min(image.shape[1], image.shape[1] + off_j)
min_mask = image[src_i_min:src_i_max, src_j_min:src_j_max
] < image[off_i_min:off_i_max, off_j_min:off_j_max]
result[src_i_min:src_i_max, src_j_min:src_j_max][min_mask
] = False
return result
| regional_maximum | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None, structure=None, ties_are_ok=False):\n global eight_connect\n if not ties_are_ok:\n result = regional_maximum(image, mask, structure, True)\n if not np.any(result):\n return result\n distance = scind.distance_transform_edt(result)\n labels, label_count = scind.label(result, eight_connect)\n np.random.seed(0)\n ro_distance = rank_order(distance)[0].astype(float)\n count = np.product(ro_distance.shape)\n ro_distance.flat += np.random.permutation(count).astype(float) / float(\n count)\n positions = scind.maximum_position(ro_distance, labels, np.arange(\n label_count) + 1)\n positions = np.array(positions, np.uint32)\n result = np.zeros(image.shape, bool)\n if positions.ndim == 1:\n result[positions[0], positions[1]] = True\n else:\n result[positions[:, 0], positions[:, 1]] = True\n return result\n result = np.ones(image.shape, bool)\n if structure is None:\n structure = scind.generate_binary_structure(image.ndim, image.ndim)\n big_mask = np.zeros(np.array(image.shape) + np.array(structure.shape), bool\n )\n structure_half_shape = np.array(structure.shape) // 2\n big_mask[structure_half_shape[0]:structure_half_shape[0] + image.shape[\n 0], structure_half_shape[1]:structure_half_shape[1] + image.shape[1]\n ] = mask if mask is not None else True\n for i in range(structure.shape[0]):\n off_i = i - structure_half_shape[0]\n for j in range(structure.shape[1]):\n if i == structure_half_shape[0] and j == structure_half_shape[1]:\n continue\n off_j = j - structure_half_shape[1]\n if structure[i, j]:\n result = np.logical_and(result, big_mask[i:i + image.shape[\n 0], j:j + image.shape[1]])\n src_i_min = max(0, -off_i)\n src_i_max = min(image.shape[0], image.shape[0] - off_i)\n off_i_min = max(0, off_i)\n off_i_max = min(image.shape[0], image.shape[0] + off_i)\n src_j_min = max(0, -off_j)\n src_j_max = min(image.shape[1], image.shape[1] - off_j)\n off_j_min = max(0, off_j)\n off_j_max = min(image.shape[1], image.shape[1] + off_j)\n min_mask = image[src_i_min:src_i_max, src_j_min:src_j_max\n ] < image[off_i_min:off_i_max, off_j_min:off_j_max]\n result[src_i_min:src_i_max, src_j_min:src_j_max][min_mask\n ] = False\n return result\n",
"role": "user"
},
{
"content": "regional_maximum",
"role": "assistant"
}
] |
def x(i, j):
if len(i) == 0:
return i
i1 = np.hstack((i, j))
j1 = np.hstack((j, i))
order = np.lexsort((j1, i1))
i = np.ascontiguousarray(i1[order], np.uint32)
j = np.ascontiguousarray(j1[order], np.uint32)
counts = np.ascontiguousarray(np.bincount(i.astype(int)), np.uint32)
indexes = np.ascontiguousarray(np.cumsum(counts) - counts, np.uint32)
labels = np.zeros(len(counts), np.uint32)
_all_connected_components(i, j, indexes, counts, labels)
return labels
| all_connected_components | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i, j):\n if len(i) == 0:\n return i\n i1 = np.hstack((i, j))\n j1 = np.hstack((j, i))\n order = np.lexsort((j1, i1))\n i = np.ascontiguousarray(i1[order], np.uint32)\n j = np.ascontiguousarray(j1[order], np.uint32)\n counts = np.ascontiguousarray(np.bincount(i.astype(int)), np.uint32)\n indexes = np.ascontiguousarray(np.cumsum(counts) - counts, np.uint32)\n labels = np.zeros(len(counts), np.uint32)\n _all_connected_components(i, j, indexes, counts, labels)\n return labels\n",
"role": "user"
},
{
"content": "all_connected_components",
"role": "assistant"
}
] |
def x(i, j):
if len(i) == 0:
return np.array([], int), np.array([], j.dtype), np.array([], j.dtype)
index = np.lexsort((j, i))
i = i[index]
j = j[index]
r_to_i = np.sort(np.unique(i))
i_to_r_off = np.min(i)
i_to_r = np.zeros(np.max(i) + 1 - i_to_r_off, int)
i_to_r[r_to_i - i_to_r_off] = np.arange(len(r_to_i))
r = np.cumsum(np.hstack(([False], i[:-1] != i[1:])))
src_count = np.bincount(r)
src_idx = np.hstack(([0], np.cumsum(src_count[:-1])))
dest_count = src_count * (src_count - 1) // 2
dest_idx = np.hstack(([0], np.cumsum(dest_count)))
dest_size = dest_idx[-1]
d_r = np.zeros(dest_size, i.dtype)
d_j1, d_j2 = np.zeros((2, dest_size), j.dtype)
not_empty_indices = np.arange(0, len(dest_idx) - 1)
not_empty_indices = not_empty_indices[dest_idx[:-1] != dest_idx[1:]]
increments = not_empty_indices - np.hstack([[0], not_empty_indices[:-1]])
d_r[dest_idx[not_empty_indices]] = increments
d_r = np.cumsum(d_r)
d_i = r_to_i[d_r]
d_r_idx = np.arange(len(d_r)) - dest_idx[d_r]
unique_src_count = np.unique(src_count)
unique_dest_len = (unique_src_count * (unique_src_count - 1) // 2).astype(
int)
i_sparse = np.hstack([(np.ones(dlen, int) * c) for c, dlen in zip(
unique_src_count, unique_dest_len)])
j_sparse = np.hstack([np.arange(dlen) for dlen in unique_dest_len])
v_j1_sparse = np.hstack([np.hstack([(np.ones(n - x - 1, int) * x) for x in
range(n)]) for n in unique_src_count])
v_j2_sparse = np.hstack([np.hstack([np.arange(x + 1, n) for x in range(
n)]) for n in unique_src_count])
if len(i_sparse) > 0:
j1_sparse = scipy.sparse.coo_matrix((v_j1_sparse, (i_sparse, j_sparse))
).tocsc()
j2_sparse = scipy.sparse.coo_matrix((v_j2_sparse, (i_sparse, j_sparse))
).tocsc()
else:
j1_sparse = j2_sparse = np.array([[]], j.dtype)
d_j1_idx = np.array(j1_sparse[src_count[d_r], d_r_idx]).flatten()
d_j1 = j[src_idx[d_r] + d_j1_idx]
d_j2_idx = np.array(j2_sparse[src_count[d_r], d_r_idx]).flatten()
d_j2 = j[src_idx[d_r] + d_j2_idx]
return d_i, d_j1, d_j2
| pairwise_permutations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(i, j):\n if len(i) == 0:\n return np.array([], int), np.array([], j.dtype), np.array([], j.dtype)\n index = np.lexsort((j, i))\n i = i[index]\n j = j[index]\n r_to_i = np.sort(np.unique(i))\n i_to_r_off = np.min(i)\n i_to_r = np.zeros(np.max(i) + 1 - i_to_r_off, int)\n i_to_r[r_to_i - i_to_r_off] = np.arange(len(r_to_i))\n r = np.cumsum(np.hstack(([False], i[:-1] != i[1:])))\n src_count = np.bincount(r)\n src_idx = np.hstack(([0], np.cumsum(src_count[:-1])))\n dest_count = src_count * (src_count - 1) // 2\n dest_idx = np.hstack(([0], np.cumsum(dest_count)))\n dest_size = dest_idx[-1]\n d_r = np.zeros(dest_size, i.dtype)\n d_j1, d_j2 = np.zeros((2, dest_size), j.dtype)\n not_empty_indices = np.arange(0, len(dest_idx) - 1)\n not_empty_indices = not_empty_indices[dest_idx[:-1] != dest_idx[1:]]\n increments = not_empty_indices - np.hstack([[0], not_empty_indices[:-1]])\n d_r[dest_idx[not_empty_indices]] = increments\n d_r = np.cumsum(d_r)\n d_i = r_to_i[d_r]\n d_r_idx = np.arange(len(d_r)) - dest_idx[d_r]\n unique_src_count = np.unique(src_count)\n unique_dest_len = (unique_src_count * (unique_src_count - 1) // 2).astype(\n int)\n i_sparse = np.hstack([(np.ones(dlen, int) * c) for c, dlen in zip(\n unique_src_count, unique_dest_len)])\n j_sparse = np.hstack([np.arange(dlen) for dlen in unique_dest_len])\n v_j1_sparse = np.hstack([np.hstack([(np.ones(n - x - 1, int) * x) for x in\n range(n)]) for n in unique_src_count])\n v_j2_sparse = np.hstack([np.hstack([np.arange(x + 1, n) for x in range(\n n)]) for n in unique_src_count])\n if len(i_sparse) > 0:\n j1_sparse = scipy.sparse.coo_matrix((v_j1_sparse, (i_sparse, j_sparse))\n ).tocsc()\n j2_sparse = scipy.sparse.coo_matrix((v_j2_sparse, (i_sparse, j_sparse))\n ).tocsc()\n else:\n j1_sparse = j2_sparse = np.array([[]], j.dtype)\n d_j1_idx = np.array(j1_sparse[src_count[d_r], d_r_idx]).flatten()\n d_j1 = j[src_idx[d_r] + d_j1_idx]\n d_j2_idx = np.array(j2_sparse[src_count[d_r], d_r_idx]).flatten()\n d_j2 = j[src_idx[d_r] + d_j2_idx]\n return d_i, d_j1, d_j2\n",
"role": "user"
},
{
"content": "pairwise_permutations",
"role": "assistant"
}
] |
def x(image, labels, footprint):
assert np.all(footprint.shape) & 1 == 1
footprint = footprint != 0
footprint_extent = (np.array(footprint.shape) - 1) // 2
if np.all(footprint_extent == 0):
return labels > 0
result = (labels > 0).copy()
big_labels = np.zeros(np.array(labels.shape) + footprint_extent * 2,
labels.dtype)
big_labels[[slice(fe, -fe) for fe in footprint_extent]] = labels
image_strides = np.array(image.strides) // image.dtype.itemsize
big_strides = np.array(big_labels.strides) // big_labels.dtype.itemsize
result_strides = np.array(result.strides) // result.dtype.itemsize
footprint_offsets = np.mgrid[[slice(-fe, fe + 1) for fe in
footprint_extent]]
footprint_offsets = footprint_offsets[:, footprint]
d = np.sum(footprint_offsets ** 2, 0)
footprint_offsets, d = footprint_offsets[:, d > 0], d[d > 0]
footprint_offsets = footprint_offsets[:, np.lexsort([d])]
fp_image_offsets = np.sum(image_strides[:, np.newaxis] *
footprint_offsets, 0)
fp_big_offsets = np.sum(big_strides[:, np.newaxis] * footprint_offsets, 0)
indexes = np.mgrid[[slice(0, x) for x in labels.shape]][:, labels > 0]
image_indexes = np.sum(image_strides[:, np.newaxis] * indexes, 0)
big_indexes = np.sum(big_strides[:, np.newaxis] * (indexes +
footprint_extent[:, np.newaxis]), 0)
result_indexes = np.sum(result_strides[:, np.newaxis] * indexes, 0)
big_labels_raveled = big_labels.ravel()
image_raveled = image.ravel()
result_raveled = result.ravel()
for fp_image_offset, fp_big_offset in zip(fp_image_offsets, fp_big_offsets
):
same_label = big_labels_raveled[big_indexes + fp_big_offset
] == big_labels_raveled[big_indexes]
less_than = image_raveled[image_indexes[same_label]] < image_raveled[
image_indexes[same_label] + fp_image_offset]
mask = ~same_label
mask[same_label] = ~less_than
result_raveled[result_indexes[~mask]] = False
result_indexes = result_indexes[mask]
big_indexes = big_indexes[mask]
image_indexes = image_indexes[mask]
return result
| is_local_maximum | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels, footprint):\n assert np.all(footprint.shape) & 1 == 1\n footprint = footprint != 0\n footprint_extent = (np.array(footprint.shape) - 1) // 2\n if np.all(footprint_extent == 0):\n return labels > 0\n result = (labels > 0).copy()\n big_labels = np.zeros(np.array(labels.shape) + footprint_extent * 2,\n labels.dtype)\n big_labels[[slice(fe, -fe) for fe in footprint_extent]] = labels\n image_strides = np.array(image.strides) // image.dtype.itemsize\n big_strides = np.array(big_labels.strides) // big_labels.dtype.itemsize\n result_strides = np.array(result.strides) // result.dtype.itemsize\n footprint_offsets = np.mgrid[[slice(-fe, fe + 1) for fe in\n footprint_extent]]\n footprint_offsets = footprint_offsets[:, footprint]\n d = np.sum(footprint_offsets ** 2, 0)\n footprint_offsets, d = footprint_offsets[:, d > 0], d[d > 0]\n footprint_offsets = footprint_offsets[:, np.lexsort([d])]\n fp_image_offsets = np.sum(image_strides[:, np.newaxis] *\n footprint_offsets, 0)\n fp_big_offsets = np.sum(big_strides[:, np.newaxis] * footprint_offsets, 0)\n indexes = np.mgrid[[slice(0, x) for x in labels.shape]][:, labels > 0]\n image_indexes = np.sum(image_strides[:, np.newaxis] * indexes, 0)\n big_indexes = np.sum(big_strides[:, np.newaxis] * (indexes +\n footprint_extent[:, np.newaxis]), 0)\n result_indexes = np.sum(result_strides[:, np.newaxis] * indexes, 0)\n big_labels_raveled = big_labels.ravel()\n image_raveled = image.ravel()\n result_raveled = result.ravel()\n for fp_image_offset, fp_big_offset in zip(fp_image_offsets, fp_big_offsets\n ):\n same_label = big_labels_raveled[big_indexes + fp_big_offset\n ] == big_labels_raveled[big_indexes]\n less_than = image_raveled[image_indexes[same_label]] < image_raveled[\n image_indexes[same_label] + fp_image_offset]\n mask = ~same_label\n mask[same_label] = ~less_than\n result_raveled[result_indexes[~mask]] = False\n result_indexes = result_indexes[mask]\n big_indexes = big_indexes[mask]\n image_indexes = image_indexes[mask]\n return result\n",
"role": "user"
},
{
"content": "is_local_maximum",
"role": "assistant"
}
] |
def x(labels, resolution=100, weights=None):
if weights is None:
weights = np.ones(labels.shape)
maxlabel = labels.max()
ci, cj = centers_of_labels(labels)
j, i = np.meshgrid(np.arange(labels.shape[0]), np.arange(labels.shape[1]))
di = i[labels > 0] - ci[labels[labels > 0] - 1]
dj = j[labels > 0] - cj[labels[labels > 0] - 1]
weights = weights[labels > 0]
labels = labels[labels > 0]
angle = np.arctan2(di, dj)
width = np.arctan(1.0 / np.sqrt(di ** 2 + dj ** 2 + np.finfo(float).eps))
lo = np.clip((angle - width) * resolution / (2 * np.pi), -resolution, 2 *
resolution).astype(int) + resolution
hi = np.clip((angle + width) * resolution / (2 * np.pi), -resolution, 2 *
resolution).astype(int) + resolution
hi[lo == hi] += 1
weights /= hi - lo
onset = scipy.sparse.coo_matrix((weights, (labels - 1, lo)), (maxlabel,
3 * resolution)).toarray()
offset = scipy.sparse.coo_matrix((weights, (labels - 1, hi)), (maxlabel,
3 * resolution)).toarray()
onoff = onset - offset
dist = np.cumsum(onoff, axis=1)
dist = dist[:, :resolution] + dist[:, resolution:2 * resolution] + dist[
:, 2 * resolution:]
return dist
| angular_distribution | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, resolution=100, weights=None):\n if weights is None:\n weights = np.ones(labels.shape)\n maxlabel = labels.max()\n ci, cj = centers_of_labels(labels)\n j, i = np.meshgrid(np.arange(labels.shape[0]), np.arange(labels.shape[1]))\n di = i[labels > 0] - ci[labels[labels > 0] - 1]\n dj = j[labels > 0] - cj[labels[labels > 0] - 1]\n weights = weights[labels > 0]\n labels = labels[labels > 0]\n angle = np.arctan2(di, dj)\n width = np.arctan(1.0 / np.sqrt(di ** 2 + dj ** 2 + np.finfo(float).eps))\n lo = np.clip((angle - width) * resolution / (2 * np.pi), -resolution, 2 *\n resolution).astype(int) + resolution\n hi = np.clip((angle + width) * resolution / (2 * np.pi), -resolution, 2 *\n resolution).astype(int) + resolution\n hi[lo == hi] += 1\n weights /= hi - lo\n onset = scipy.sparse.coo_matrix((weights, (labels - 1, lo)), (maxlabel,\n 3 * resolution)).toarray()\n offset = scipy.sparse.coo_matrix((weights, (labels - 1, hi)), (maxlabel,\n 3 * resolution)).toarray()\n onoff = onset - offset\n dist = np.cumsum(onoff, axis=1)\n dist = dist[:, :resolution] + dist[:, resolution:2 * resolution] + dist[\n :, 2 * resolution:]\n return dist\n",
"role": "user"
},
{
"content": "angular_distribution",
"role": "assistant"
}
] |
def x(chulls, counts, indexes):
if len(counts) == 0:
return np.zeros(0)
save_counts = counts
counts = np.atleast_1d(counts)
indexes = np.atleast_1d(indexes)
chull_idx = np.hstack(([0], np.cumsum(counts[:-1])))
save_chull_idx = chull_idx
chull_pts = chulls[:, 1:].astype(float)
antipodes = []
antipodes.append(np.column_stack([chull_idx[counts == 1]] * 2))
antipodes.append(np.column_stack([chull_idx[counts == 2], chull_idx[
counts == 2] + 1]))
chull_idx = chull_idx[counts > 2]
counts = counts[counts > 2]
if len(counts) > 0:
pm_idx = chull_idx + counts - 1
pm = chull_pts[pm_idx, :]
p1 = chull_pts[chull_idx, :]
vvv = Indexes([counts - 2])
v_idx = chull_idx[vvv.rev_idx] + vvv.idx[0] + 1
distances = distance2_to_line(chull_pts[v_idx], pm[vvv.rev_idx], p1
[vvv.rev_idx])
order = np.lexsort((vvv.idx[0], -distances, vvv.rev_idx))
antipode_idx = order[vvv.fwd_idx] + 1 - vvv.fwd_idx
vertex_idx = np.zeros(len(antipode_idx), int)
while len(chull_idx) > 0:
antipodes.append(np.column_stack((chull_idx + vertex_idx,
chull_idx + antipode_idx)))
if len(chull_idx) == 0:
break
dc = distance2_to_line(chull_pts[chull_idx + antipode_idx, :],
chull_pts[chull_idx + vertex_idx, :], chull_pts[chull_idx +
vertex_idx + 1, :])
next_antipode_idx = antipode_idx + 1
next_antipode_idx[next_antipode_idx == counts] = 0
dn = distance2_to_line(chull_pts[chull_idx + next_antipode_idx,
:], chull_pts[chull_idx + vertex_idx, :], chull_pts[
chull_idx + vertex_idx + 1, :])
advance_antipode = dc <= dn
antipode_idx[advance_antipode] += 1
vertex_idx[~advance_antipode] += 1
to_keep = (antipode_idx < counts) & (vertex_idx != antipode_idx)
antipode_idx = antipode_idx[to_keep]
vertex_idx = vertex_idx[to_keep]
chull_idx = chull_idx[to_keep]
counts = counts[to_keep]
antipodes = np.vstack(antipodes)
l = chulls[antipodes[:, 0], 0]
pt1 = chulls[antipodes[:, 0], 1:]
pt2 = chulls[antipodes[:, 1], 1:]
distances = np.sum((pt1 - pt2) ** 2, 1)
max_distance = np.sqrt(fixup_scipy_ndimage_result(scind.maximum(
distances, l, indexes)))
counts = save_counts
chull_idx = save_chull_idx
indexer = Indexes(counts)
degenerates = antipodes[:, 0] == antipodes[:, 1]
if np.all(degenerates):
return np.zeros(len(indexes)), max_distance
l = l[~degenerates]
antipodes = antipodes[~degenerates]
l = np.hstack((l, l))
antipodes = np.vstack((antipodes, antipodes[:, ::-1]))
v2_idx = indexer.idx[0][antipodes[:, 1]]
extras = antipodes[v2_idx == 0, :]
antipodes = np.vstack([antipodes, extras])
l = np.hstack((l, indexes[indexer.rev_idx[extras[:, 0]]]))
v2_idx = np.hstack((v2_idx, indexer.counts[0][indexer.rev_idx[extras[:,
1]]]))
order = np.lexsort((v2_idx, antipodes[:, 0], l))
antipodes = antipodes[order, :]
l = l[order]
v2_idx = v2_idx[order]
v1_idx = indexer.idx[0][antipodes[:, 0]]
good = np.hstack(((l[1:] == l[:-1]) & (v1_idx[1:] == v1_idx[:-1]) & (
v2_idx[1:] == v2_idx[:-1] + 1), [False]))
if not np.any(good):
return np.zeros(len(indexes)), max_distance
antipodes = antipodes[good, :]
l = l[good]
v2_idx = v2_idx[good]
v = chull_pts[antipodes[:, 0], :]
l0 = chull_pts[antipodes[:, 1], :]
l1_idx = antipodes[:, 1] + 1
needs_modulo = v2_idx == indexer.counts[0][indexer.rev_idx[antipodes[:, 1]]
] - 1
l1_idx[needs_modulo] -= indexer.counts[0][indexer.rev_idx[antipodes[
needs_modulo, 1]]]
l1 = chull_pts[l1_idx, :]
distances = distance2_to_line(v, l0, l1)
min_distance = np.sqrt(fixup_scipy_ndimage_result(scind.minimum(
distances, l, indexes)))
min_distance[np.isnan(min_distance)] = 0
return min_distance, max_distance
| feret_diameter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(chulls, counts, indexes):\n if len(counts) == 0:\n return np.zeros(0)\n save_counts = counts\n counts = np.atleast_1d(counts)\n indexes = np.atleast_1d(indexes)\n chull_idx = np.hstack(([0], np.cumsum(counts[:-1])))\n save_chull_idx = chull_idx\n chull_pts = chulls[:, 1:].astype(float)\n antipodes = []\n antipodes.append(np.column_stack([chull_idx[counts == 1]] * 2))\n antipodes.append(np.column_stack([chull_idx[counts == 2], chull_idx[\n counts == 2] + 1]))\n chull_idx = chull_idx[counts > 2]\n counts = counts[counts > 2]\n if len(counts) > 0:\n pm_idx = chull_idx + counts - 1\n pm = chull_pts[pm_idx, :]\n p1 = chull_pts[chull_idx, :]\n vvv = Indexes([counts - 2])\n v_idx = chull_idx[vvv.rev_idx] + vvv.idx[0] + 1\n distances = distance2_to_line(chull_pts[v_idx], pm[vvv.rev_idx], p1\n [vvv.rev_idx])\n order = np.lexsort((vvv.idx[0], -distances, vvv.rev_idx))\n antipode_idx = order[vvv.fwd_idx] + 1 - vvv.fwd_idx\n vertex_idx = np.zeros(len(antipode_idx), int)\n while len(chull_idx) > 0:\n antipodes.append(np.column_stack((chull_idx + vertex_idx, \n chull_idx + antipode_idx)))\n if len(chull_idx) == 0:\n break\n dc = distance2_to_line(chull_pts[chull_idx + antipode_idx, :],\n chull_pts[chull_idx + vertex_idx, :], chull_pts[chull_idx +\n vertex_idx + 1, :])\n next_antipode_idx = antipode_idx + 1\n next_antipode_idx[next_antipode_idx == counts] = 0\n dn = distance2_to_line(chull_pts[chull_idx + next_antipode_idx,\n :], chull_pts[chull_idx + vertex_idx, :], chull_pts[\n chull_idx + vertex_idx + 1, :])\n advance_antipode = dc <= dn\n antipode_idx[advance_antipode] += 1\n vertex_idx[~advance_antipode] += 1\n to_keep = (antipode_idx < counts) & (vertex_idx != antipode_idx)\n antipode_idx = antipode_idx[to_keep]\n vertex_idx = vertex_idx[to_keep]\n chull_idx = chull_idx[to_keep]\n counts = counts[to_keep]\n antipodes = np.vstack(antipodes)\n l = chulls[antipodes[:, 0], 0]\n pt1 = chulls[antipodes[:, 0], 1:]\n pt2 = chulls[antipodes[:, 1], 1:]\n distances = np.sum((pt1 - pt2) ** 2, 1)\n max_distance = np.sqrt(fixup_scipy_ndimage_result(scind.maximum(\n distances, l, indexes)))\n counts = save_counts\n chull_idx = save_chull_idx\n indexer = Indexes(counts)\n degenerates = antipodes[:, 0] == antipodes[:, 1]\n if np.all(degenerates):\n return np.zeros(len(indexes)), max_distance\n l = l[~degenerates]\n antipodes = antipodes[~degenerates]\n l = np.hstack((l, l))\n antipodes = np.vstack((antipodes, antipodes[:, ::-1]))\n v2_idx = indexer.idx[0][antipodes[:, 1]]\n extras = antipodes[v2_idx == 0, :]\n antipodes = np.vstack([antipodes, extras])\n l = np.hstack((l, indexes[indexer.rev_idx[extras[:, 0]]]))\n v2_idx = np.hstack((v2_idx, indexer.counts[0][indexer.rev_idx[extras[:,\n 1]]]))\n order = np.lexsort((v2_idx, antipodes[:, 0], l))\n antipodes = antipodes[order, :]\n l = l[order]\n v2_idx = v2_idx[order]\n v1_idx = indexer.idx[0][antipodes[:, 0]]\n good = np.hstack(((l[1:] == l[:-1]) & (v1_idx[1:] == v1_idx[:-1]) & (\n v2_idx[1:] == v2_idx[:-1] + 1), [False]))\n if not np.any(good):\n return np.zeros(len(indexes)), max_distance\n antipodes = antipodes[good, :]\n l = l[good]\n v2_idx = v2_idx[good]\n v = chull_pts[antipodes[:, 0], :]\n l0 = chull_pts[antipodes[:, 1], :]\n l1_idx = antipodes[:, 1] + 1\n needs_modulo = v2_idx == indexer.counts[0][indexer.rev_idx[antipodes[:, 1]]\n ] - 1\n l1_idx[needs_modulo] -= indexer.counts[0][indexer.rev_idx[antipodes[\n needs_modulo, 1]]]\n l1 = chull_pts[l1_idx, :]\n distances = distance2_to_line(v, l0, l1)\n min_distance = np.sqrt(fixup_scipy_ndimage_result(scind.minimum(\n distances, l, indexes)))\n min_distance[np.isnan(min_distance)] = 0\n return min_distance, max_distance\n",
"role": "user"
},
{
"content": "feret_diameter",
"role": "assistant"
}
] |
def x(p1, v, p2):
p1x = p1[:, 1]
p1y = p1[:, 0]
p2x = p2[:, 1]
p2y = p2[:, 0]
vx = v[:, 1]
vy = v[:, 0]
Dx = vx - p2x
Dy = vy - p2y
Dvp1x = p1x - vx
Dvp1y = p1y - vy
return Dvp1x * Dx + Dvp1y * Dy > 0
| is_obtuse | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(p1, v, p2):\n p1x = p1[:, 1]\n p1y = p1[:, 0]\n p2x = p2[:, 1]\n p2y = p2[:, 0]\n vx = v[:, 1]\n vy = v[:, 0]\n Dx = vx - p2x\n Dy = vy - p2y\n Dvp1x = p1x - vx\n Dvp1y = p1y - vy\n return Dvp1x * Dx + Dvp1y * Dy > 0\n",
"role": "user"
},
{
"content": "is_obtuse",
"role": "assistant"
}
] |
def x(labels, idxs):
idxs = np.atleast_1d(idxs)
if len(idxs) == 0:
return np.zeros((0, 2), int), np.zeros(0, int), np.zeros(0, int)
end_label = max(np.max(labels), np.max(idxs)) + 1
chosen_labels = np.zeros(int(end_label), bool)
chosen_labels[idxs] = True
traversal_order = np.array(((1, 0, 5), (1, -1, 6), (0, -1, 7), (-1, -1,
0), (-1, 0, 1), (-1, 1, 2), (0, 1, 3), (1, 1, 4)))
border = np.hstack((labels[0, :], labels[:, 0], labels[-1, :], labels[:,
-1]))
border = np.unique(border)
if any([(idx in border) for idx in idxs]):
big_labels = np.zeros((labels.shape[0] + 2, labels.shape[1] + 2),
np.uint32)
big_labels[1:-1, 1:-1] = labels
offset = np.ones(2, int)
labels = big_labels
del big_labels
else:
labels = np.ascontiguousarray(labels, np.uint32)
offset = np.zeros(2, int)
assert isinstance(labels, np.ndarray)
strides = np.array(labels.strides) // labels.dtype.itemsize
assert strides[1] == 1, 'Last stride must be 1 for modulo unravel to work'
stride_table = np.ascontiguousarray(np.sum(traversal_order[:, :2] *
strides, 1), np.int32)
new_direction_table = np.ascontiguousarray(traversal_order[:, 2], np.int32)
consider_only_these = (scind.grey_erosion(labels, footprint=np.ones((3,
3), bool)) != scind.grey_dilation(labels, footprint=np.ones((3, 3),
bool))) & chosen_labels[labels]
max_output = np.sum(consider_only_these) * 2
output = np.zeros(max_output, np.uint32)
i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]
rlabels = labels[consider_only_these]
if len(rlabels) == 0:
return np.zeros((0, 2), int), np.zeros(len(idxs), int), np.zeros(len
(idxs), int)
i = i[consider_only_these]
j = j[consider_only_these]
d = i * i + j * j
order = np.lexsort((d, rlabels))
stride_pts = i[order] * strides[0] + j[order] * strides[1]
rlabels = rlabels[order]
first = np.hstack(([True], rlabels[:-1] != rlabels[1:]))
first_strides = np.ascontiguousarray(stride_pts[first], np.uint32)
idx_of_first = rlabels[first]
output_count = np.zeros(len(idx_of_first), np.uint32)
trace_outlines(labels.ravel(), first_strides, stride_table,
new_direction_table, output, output_count)
output = output[:np.sum(output_count)]
mapper = np.zeros(np.max(idxs) + 1, int)
mapper[idxs] = np.arange(len(idxs))
coord_offsets = np.zeros(len(idxs), output_count.dtype)
coord_counts = np.zeros(len(idxs), output_count.dtype)
coord_counts[mapper[idx_of_first]] = output_count
if len(idx_of_first) > 1:
coord_offsets[mapper[idx_of_first[1:]]] = np.cumsum(output_count[:-
1], dtype=output_count.dtype)
coords = np.column_stack((output // strides[0] - offset[0], output %
strides[0] - offset[1]))
return coords, coord_offsets, coord_counts
| get_outline_pts | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels, idxs):\n idxs = np.atleast_1d(idxs)\n if len(idxs) == 0:\n return np.zeros((0, 2), int), np.zeros(0, int), np.zeros(0, int)\n end_label = max(np.max(labels), np.max(idxs)) + 1\n chosen_labels = np.zeros(int(end_label), bool)\n chosen_labels[idxs] = True\n traversal_order = np.array(((1, 0, 5), (1, -1, 6), (0, -1, 7), (-1, -1,\n 0), (-1, 0, 1), (-1, 1, 2), (0, 1, 3), (1, 1, 4)))\n border = np.hstack((labels[0, :], labels[:, 0], labels[-1, :], labels[:,\n -1]))\n border = np.unique(border)\n if any([(idx in border) for idx in idxs]):\n big_labels = np.zeros((labels.shape[0] + 2, labels.shape[1] + 2),\n np.uint32)\n big_labels[1:-1, 1:-1] = labels\n offset = np.ones(2, int)\n labels = big_labels\n del big_labels\n else:\n labels = np.ascontiguousarray(labels, np.uint32)\n offset = np.zeros(2, int)\n assert isinstance(labels, np.ndarray)\n strides = np.array(labels.strides) // labels.dtype.itemsize\n assert strides[1] == 1, 'Last stride must be 1 for modulo unravel to work'\n stride_table = np.ascontiguousarray(np.sum(traversal_order[:, :2] *\n strides, 1), np.int32)\n new_direction_table = np.ascontiguousarray(traversal_order[:, 2], np.int32)\n consider_only_these = (scind.grey_erosion(labels, footprint=np.ones((3,\n 3), bool)) != scind.grey_dilation(labels, footprint=np.ones((3, 3),\n bool))) & chosen_labels[labels]\n max_output = np.sum(consider_only_these) * 2\n output = np.zeros(max_output, np.uint32)\n i, j = np.mgrid[0:labels.shape[0], 0:labels.shape[1]]\n rlabels = labels[consider_only_these]\n if len(rlabels) == 0:\n return np.zeros((0, 2), int), np.zeros(len(idxs), int), np.zeros(len\n (idxs), int)\n i = i[consider_only_these]\n j = j[consider_only_these]\n d = i * i + j * j\n order = np.lexsort((d, rlabels))\n stride_pts = i[order] * strides[0] + j[order] * strides[1]\n rlabels = rlabels[order]\n first = np.hstack(([True], rlabels[:-1] != rlabels[1:]))\n first_strides = np.ascontiguousarray(stride_pts[first], np.uint32)\n idx_of_first = rlabels[first]\n output_count = np.zeros(len(idx_of_first), np.uint32)\n trace_outlines(labels.ravel(), first_strides, stride_table,\n new_direction_table, output, output_count)\n output = output[:np.sum(output_count)]\n mapper = np.zeros(np.max(idxs) + 1, int)\n mapper[idxs] = np.arange(len(idxs))\n coord_offsets = np.zeros(len(idxs), output_count.dtype)\n coord_counts = np.zeros(len(idxs), output_count.dtype)\n coord_counts[mapper[idx_of_first]] = output_count\n if len(idx_of_first) > 1:\n coord_offsets[mapper[idx_of_first[1:]]] = np.cumsum(output_count[:-\n 1], dtype=output_count.dtype)\n coords = np.column_stack((output // strides[0] - offset[0], output %\n strides[0] - offset[1]))\n return coords, coord_offsets, coord_counts\n",
"role": "user"
},
{
"content": "get_outline_pts",
"role": "assistant"
}
] |
def x(x):
M, N = x.shape
Mean = x.mean(0)
y = x - Mean
cov = numpy.dot(y.transpose(), y) / (M - 1)
V, PC = numpy.linalg.eig(cov)
order = (-V).argsort()
coeff = PC[:, order]
return coeff
| princomp | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n M, N = x.shape\n Mean = x.mean(0)\n y = x - Mean\n cov = numpy.dot(y.transpose(), y) / (M - 1)\n V, PC = numpy.linalg.eig(cov)\n order = (-V).argsort()\n coeff = PC[:, order]\n return coeff\n",
"role": "user"
},
{
"content": "princomp",
"role": "assistant"
}
] |
def x(n):
i, j = [x.flatten() for x in np.mgrid[0:n, 0:n]]
i, j = [x[i != j] for x in (i, j)]
order = np.lexsort((j, i, np.maximum(i, j)))
return np.column_stack((i[order], j[order]))
| all_pairs | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(n):\n i, j = [x.flatten() for x in np.mgrid[0:n, 0:n]]\n i, j = [x[i != j] for x in (i, j)]\n order = np.lexsort((j, i, np.maximum(i, j)))\n return np.column_stack((i[order], j[order]))\n",
"role": "user"
},
{
"content": "all_pairs",
"role": "assistant"
}
] |
def x(image, mask=None):
image = np.array(image, float)
if np.product(image.shape) == 0:
return image
if mask is None:
minval = np.min(image)
maxval = np.max(image)
if minval == maxval:
if minval < 0:
return np.zeros_like(image)
elif minval > 1:
return np.ones_like(image)
return image
else:
return (image - minval) / (maxval - minval)
else:
significant_pixels = image[mask]
if significant_pixels.size == 0:
return image
minval = np.min(significant_pixels)
maxval = np.max(significant_pixels)
if minval == maxval:
transformed_image = minval
else:
transformed_image = (significant_pixels - minval) / (maxval -
minval)
result = image.copy()
image[mask] = transformed_image
return image
| stretch | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n image = np.array(image, float)\n if np.product(image.shape) == 0:\n return image\n if mask is None:\n minval = np.min(image)\n maxval = np.max(image)\n if minval == maxval:\n if minval < 0:\n return np.zeros_like(image)\n elif minval > 1:\n return np.ones_like(image)\n return image\n else:\n return (image - minval) / (maxval - minval)\n else:\n significant_pixels = image[mask]\n if significant_pixels.size == 0:\n return image\n minval = np.min(significant_pixels)\n maxval = np.max(significant_pixels)\n if minval == maxval:\n transformed_image = minval\n else:\n transformed_image = (significant_pixels - minval) / (maxval -\n minval)\n result = image.copy()\n image[mask] = transformed_image\n return image\n",
"role": "user"
},
{
"content": "stretch",
"role": "assistant"
}
] |
def x(data, mask, radius, percent=50):
if mask is None:
mask = np.ones(data.shape, dtype=bool)
if np.all(~mask):
return data.copy()
if not np.issubdtype(data.dtype, np.int) or np.min(data) < 0 or np.max(data
) > 255:
ranked_data, translation = rank_order(data[mask], nbins=255)
was_ranked = True
else:
ranked_data = data[mask]
was_ranked = False
input = np.zeros(data.shape, np.uint8)
input[mask] = ranked_data
mmask = np.ascontiguousarray(mask, np.uint8)
output = np.zeros(data.shape, np.uint8)
_filter.median_filter(input, mmask, output, radius, percent)
if was_ranked:
result = translation[output]
else:
result = output
return result
| median_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, mask, radius, percent=50):\n if mask is None:\n mask = np.ones(data.shape, dtype=bool)\n if np.all(~mask):\n return data.copy()\n if not np.issubdtype(data.dtype, np.int) or np.min(data) < 0 or np.max(data\n ) > 255:\n ranked_data, translation = rank_order(data[mask], nbins=255)\n was_ranked = True\n else:\n ranked_data = data[mask]\n was_ranked = False\n input = np.zeros(data.shape, np.uint8)\n input[mask] = ranked_data\n mmask = np.ascontiguousarray(mask, np.uint8)\n output = np.zeros(data.shape, np.uint8)\n _filter.median_filter(input, mmask, output, radius, percent)\n if was_ranked:\n result = translation[output]\n else:\n result = output\n return result\n",
"role": "user"
},
{
"content": "median_filter",
"role": "assistant"
}
] |
def x(image, mask, sigma_spatial, sigma_range, sampling_spatial=None,
sampling_range=None):
if sampling_spatial is None:
sampling_spatial = sigma_spatial / 2.0
if sampling_range is None:
sampling_range = sigma_range / 2.0
if np.all(np.logical_not(mask)):
return image
masked_image = image[mask]
image_min = np.min(masked_image)
image_max = np.max(masked_image)
image_delta = image_max - image_min
if image_delta == 0:
return image
ds_sigma_spatial = sigma_spatial / sampling_spatial
ds_sigma_range = sigma_range / sampling_range
ds_i_limit = int(image.shape[0] / sampling_spatial) + 2
ds_j_limit = int(image.shape[1] / sampling_spatial) + 2
ds_z_limit = int(image_delta / sampling_range) + 2
grid_data = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))
grid_weights = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))
di, dj = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float
) / sampling_spatial
dz = (masked_image - image_min) / sampling_range
di = di[mask]
dj = dj[mask]
grid_data[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5).
astype(int)] += masked_image
grid_weights[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5)
.astype(int)] += 1
kernel_spatial_limit = int(2 * ds_sigma_spatial) + 1
kernel_range_limit = int(2 * ds_sigma_range) + 1
ki, kj, kz = np.mgrid[-kernel_spatial_limit:kernel_spatial_limit + 1, -
kernel_spatial_limit:kernel_spatial_limit + 1, -kernel_range_limit:
kernel_range_limit + 1]
kernel = np.exp(-0.5 * ((ki ** 2 + kj ** 2) / ds_sigma_spatial ** 2 +
kz ** 2 / ds_sigma_range ** 2))
blurred_grid_data = convolve(grid_data, kernel, mode='constant')
blurred_weights = convolve(grid_weights, kernel, mode='constant')
weight_mask = blurred_weights > 0
normalized_blurred_grid = np.zeros(grid_data.shape)
normalized_blurred_grid[weight_mask] = blurred_grid_data[weight_mask
] / blurred_weights[weight_mask]
dijz = np.vstack((di, dj, dz))
image_copy = image.copy()
image_copy[mask] = map_coordinates(normalized_blurred_grid, dijz, order=1)
return image_copy
| bilateral_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, sigma_spatial, sigma_range, sampling_spatial=None,\n sampling_range=None):\n if sampling_spatial is None:\n sampling_spatial = sigma_spatial / 2.0\n if sampling_range is None:\n sampling_range = sigma_range / 2.0\n if np.all(np.logical_not(mask)):\n return image\n masked_image = image[mask]\n image_min = np.min(masked_image)\n image_max = np.max(masked_image)\n image_delta = image_max - image_min\n if image_delta == 0:\n return image\n ds_sigma_spatial = sigma_spatial / sampling_spatial\n ds_sigma_range = sigma_range / sampling_range\n ds_i_limit = int(image.shape[0] / sampling_spatial) + 2\n ds_j_limit = int(image.shape[1] / sampling_spatial) + 2\n ds_z_limit = int(image_delta / sampling_range) + 2\n grid_data = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))\n grid_weights = np.zeros((ds_i_limit, ds_j_limit, ds_z_limit))\n di, dj = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float\n ) / sampling_spatial\n dz = (masked_image - image_min) / sampling_range\n di = di[mask]\n dj = dj[mask]\n grid_data[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5).\n astype(int)] += masked_image\n grid_weights[(di + 0.5).astype(int), (dj + 0.5).astype(int), (dz + 0.5)\n .astype(int)] += 1\n kernel_spatial_limit = int(2 * ds_sigma_spatial) + 1\n kernel_range_limit = int(2 * ds_sigma_range) + 1\n ki, kj, kz = np.mgrid[-kernel_spatial_limit:kernel_spatial_limit + 1, -\n kernel_spatial_limit:kernel_spatial_limit + 1, -kernel_range_limit:\n kernel_range_limit + 1]\n kernel = np.exp(-0.5 * ((ki ** 2 + kj ** 2) / ds_sigma_spatial ** 2 + \n kz ** 2 / ds_sigma_range ** 2))\n blurred_grid_data = convolve(grid_data, kernel, mode='constant')\n blurred_weights = convolve(grid_weights, kernel, mode='constant')\n weight_mask = blurred_weights > 0\n normalized_blurred_grid = np.zeros(grid_data.shape)\n normalized_blurred_grid[weight_mask] = blurred_grid_data[weight_mask\n ] / blurred_weights[weight_mask]\n dijz = np.vstack((di, dj, dz))\n image_copy = image.copy()\n image_copy[mask] = map_coordinates(normalized_blurred_grid, dijz, order=1)\n return image_copy\n",
"role": "user"
},
{
"content": "bilateral_filter",
"role": "assistant"
}
] |
def x(image, mask, size, sigma):
half_size = size // 2
i, j = np.mgrid[-half_size:half_size + 1, -half_size:half_size + 1].astype(
float) / float(sigma)
distance = (i ** 2 + j ** 2) / 2
gaussian = np.exp(-distance)
gaussian = gaussian / np.sum(gaussian)
log = (distance - 1) * gaussian
log = log - np.mean(log)
if mask is None:
mask = np.ones(image.shape[:2], bool)
masked_image = image.copy()
masked_image[~mask] = 0
output = convolve(masked_image, log, mode='constant', cval=0)
correction = convolve((~mask).astype(float), log, mode='constant', cval=1)
output += correction * image
output[~mask] = image[~mask]
return output
| laplacian_of_gaussian | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, size, sigma):\n half_size = size // 2\n i, j = np.mgrid[-half_size:half_size + 1, -half_size:half_size + 1].astype(\n float) / float(sigma)\n distance = (i ** 2 + j ** 2) / 2\n gaussian = np.exp(-distance)\n gaussian = gaussian / np.sum(gaussian)\n log = (distance - 1) * gaussian\n log = log - np.mean(log)\n if mask is None:\n mask = np.ones(image.shape[:2], bool)\n masked_image = image.copy()\n masked_image[~mask] = 0\n output = convolve(masked_image, log, mode='constant', cval=0)\n correction = convolve((~mask).astype(float), log, mode='constant', cval=1)\n output += correction * image\n output[~mask] = image[~mask]\n return output\n",
"role": "user"
},
{
"content": "laplacian_of_gaussian",
"role": "assistant"
}
] |
def x(image, mask, sigma, low_threshold, high_threshold):
fsmooth = lambda x: gaussian_filter(x, sigma, mode='constant')
smoothed = smooth_with_function_and_mask(image, fsmooth, mask)
jsobel = convolve(smoothed, [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
isobel = convolve(smoothed, [[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
abs_isobel = np.abs(isobel)
abs_jsobel = np.abs(jsobel)
magnitude = np.sqrt(isobel * isobel + jsobel * jsobel)
s = generate_binary_structure(2, 2)
emask = binary_erosion(mask, s, border_value=0)
emask = np.logical_and(emask, magnitude > 0)
local_maxima = np.zeros(image.shape, bool)
pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0,
abs_isobel >= abs_jsobel))
pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0,
abs_isobel >= abs_jsobel))
pts = np.logical_or(pts_plus, pts_minus)
pts = np.logical_and(emask, pts)
c1 = magnitude[1:, :][pts[:-1, :]]
c2 = magnitude[1:, 1:][pts[:-1, :-1]]
m = magnitude[pts]
w = abs_jsobel[pts] / abs_isobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[:-1, :][pts[1:, :]]
c2 = magnitude[:-1, :-1][pts[1:, 1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = np.logical_and(c_plus, c_minus)
pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0,
abs_isobel <= abs_jsobel))
pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0,
abs_isobel <= abs_jsobel))
pts = np.logical_or(pts_plus, pts_minus)
pts = np.logical_and(emask, pts)
c1 = magnitude[:, 1:][pts[:, :-1]]
c2 = magnitude[1:, 1:][pts[:-1, :-1]]
m = magnitude[pts]
w = abs_isobel[pts] / abs_jsobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[:, :-1][pts[:, 1:]]
c2 = magnitude[:-1, :-1][pts[1:, 1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = np.logical_and(c_plus, c_minus)
pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0,
abs_isobel <= abs_jsobel))
pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0,
abs_isobel <= abs_jsobel))
pts = np.logical_or(pts_plus, pts_minus)
pts = np.logical_and(emask, pts)
c1a = magnitude[:, 1:][pts[:, :-1]]
c2a = magnitude[:-1, 1:][pts[1:, :-1]]
m = magnitude[pts]
w = abs_isobel[pts] / abs_jsobel[pts]
c_plus = c2a * w + c1a * (1.0 - w) <= m
c1 = magnitude[:, :-1][pts[:, 1:]]
c2 = magnitude[1:, :-1][pts[:-1, 1:]]
c_minus = c2 * w + c1 * (1.0 - w) <= m
cc = np.logical_and(c_plus, c_minus)
local_maxima[pts] = np.logical_and(c_plus, c_minus)
pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0,
abs_isobel >= abs_jsobel))
pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0,
abs_isobel >= abs_jsobel))
pts = np.logical_or(pts_plus, pts_minus)
pts = np.logical_and(emask, pts)
c1 = magnitude[:-1, :][pts[1:, :]]
c2 = magnitude[:-1, 1:][pts[1:, :-1]]
m = magnitude[pts]
w = abs_jsobel[pts] / abs_isobel[pts]
c_plus = c2 * w + c1 * (1 - w) <= m
c1 = magnitude[1:, :][pts[:-1, :]]
c2 = magnitude[1:, :-1][pts[:-1, 1:]]
c_minus = c2 * w + c1 * (1 - w) <= m
local_maxima[pts] = np.logical_and(c_plus, c_minus)
high_mask = np.logical_and(local_maxima, magnitude >= high_threshold)
low_mask = np.logical_and(local_maxima, magnitude >= low_threshold)
labels, count = label(low_mask, np.ones((3, 3), bool))
if count == 0:
return low_mask
sums = fix(scind.sum(high_mask, labels, np.arange(count, dtype=np.int32
) + 1))
good_label = np.zeros((count + 1,), bool)
good_label[1:] = sums > 0
output_mask = good_label[labels]
return output_mask
| canny | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask, sigma, low_threshold, high_threshold):\n fsmooth = lambda x: gaussian_filter(x, sigma, mode='constant')\n smoothed = smooth_with_function_and_mask(image, fsmooth, mask)\n jsobel = convolve(smoothed, [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])\n isobel = convolve(smoothed, [[-1, -2, -1], [0, 0, 0], [1, 2, 1]])\n abs_isobel = np.abs(isobel)\n abs_jsobel = np.abs(jsobel)\n magnitude = np.sqrt(isobel * isobel + jsobel * jsobel)\n s = generate_binary_structure(2, 2)\n emask = binary_erosion(mask, s, border_value=0)\n emask = np.logical_and(emask, magnitude > 0)\n local_maxima = np.zeros(image.shape, bool)\n pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, \n abs_isobel >= abs_jsobel))\n pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, \n abs_isobel >= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[1:, :][pts[:-1, :]]\n c2 = magnitude[1:, 1:][pts[:-1, :-1]]\n m = magnitude[pts]\n w = abs_jsobel[pts] / abs_isobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[:-1, :][pts[1:, :]]\n c2 = magnitude[:-1, :-1][pts[1:, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel >= 0, np.logical_and(jsobel >= 0, \n abs_isobel <= abs_jsobel))\n pts_minus = np.logical_and(isobel <= 0, np.logical_and(jsobel <= 0, \n abs_isobel <= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[:, 1:][pts[:, :-1]]\n c2 = magnitude[1:, 1:][pts[:-1, :-1]]\n m = magnitude[pts]\n w = abs_isobel[pts] / abs_jsobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[:, :-1][pts[:, 1:]]\n c2 = magnitude[:-1, :-1][pts[1:, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, \n abs_isobel <= abs_jsobel))\n pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, \n abs_isobel <= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1a = magnitude[:, 1:][pts[:, :-1]]\n c2a = magnitude[:-1, 1:][pts[1:, :-1]]\n m = magnitude[pts]\n w = abs_isobel[pts] / abs_jsobel[pts]\n c_plus = c2a * w + c1a * (1.0 - w) <= m\n c1 = magnitude[:, :-1][pts[:, 1:]]\n c2 = magnitude[1:, :-1][pts[:-1, 1:]]\n c_minus = c2 * w + c1 * (1.0 - w) <= m\n cc = np.logical_and(c_plus, c_minus)\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n pts_plus = np.logical_and(isobel <= 0, np.logical_and(jsobel >= 0, \n abs_isobel >= abs_jsobel))\n pts_minus = np.logical_and(isobel >= 0, np.logical_and(jsobel <= 0, \n abs_isobel >= abs_jsobel))\n pts = np.logical_or(pts_plus, pts_minus)\n pts = np.logical_and(emask, pts)\n c1 = magnitude[:-1, :][pts[1:, :]]\n c2 = magnitude[:-1, 1:][pts[1:, :-1]]\n m = magnitude[pts]\n w = abs_jsobel[pts] / abs_isobel[pts]\n c_plus = c2 * w + c1 * (1 - w) <= m\n c1 = magnitude[1:, :][pts[:-1, :]]\n c2 = magnitude[1:, :-1][pts[:-1, 1:]]\n c_minus = c2 * w + c1 * (1 - w) <= m\n local_maxima[pts] = np.logical_and(c_plus, c_minus)\n high_mask = np.logical_and(local_maxima, magnitude >= high_threshold)\n low_mask = np.logical_and(local_maxima, magnitude >= low_threshold)\n labels, count = label(low_mask, np.ones((3, 3), bool))\n if count == 0:\n return low_mask\n sums = fix(scind.sum(high_mask, labels, np.arange(count, dtype=np.int32\n ) + 1))\n good_label = np.zeros((count + 1,), bool)\n good_label[1:] = sums > 0\n output_mask = good_label[labels]\n return output_mask\n",
"role": "user"
},
{
"content": "canny",
"role": "assistant"
}
] |
def x(image, mask=None):
result = np.zeros(image.shape)
if mask is None:
mask = np.ones(image.shape, bool)
big_mask = binary_erosion(mask, generate_binary_structure(2, 2),
border_value=0)
result[big_mask == False] = 0
q00 = image[:, :][big_mask]
q11 = image[1:, 1:][big_mask[:-1, :-1]]
qm11 = image[:-1, 1:][big_mask[1:, :-1]]
diagonal = q00 - qm11
anti_diagonal = q00 - q11
result[big_mask] = np.sqrt(diagonal * diagonal + anti_diagonal *
anti_diagonal)
return result
| roberts | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n result = np.zeros(image.shape)\n if mask is None:\n mask = np.ones(image.shape, bool)\n big_mask = binary_erosion(mask, generate_binary_structure(2, 2),\n border_value=0)\n result[big_mask == False] = 0\n q00 = image[:, :][big_mask]\n q11 = image[1:, 1:][big_mask[:-1, :-1]]\n qm11 = image[:-1, 1:][big_mask[1:, :-1]]\n diagonal = q00 - qm11\n anti_diagonal = q00 - q11\n result[big_mask] = np.sqrt(diagonal * diagonal + anti_diagonal *\n anti_diagonal)\n return result\n",
"role": "user"
},
{
"content": "roberts",
"role": "assistant"
}
] |
def x(image, mask=None):
return np.sqrt(hsobel(image, mask) ** 2 + vsobel(image, mask) ** 2)
| sobel | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n return np.sqrt(hsobel(image, mask) ** 2 + vsobel(image, mask) ** 2)\n",
"role": "user"
},
{
"content": "sobel",
"role": "assistant"
}
] |
def x(image, mask=None):
return np.sqrt(hprewitt(image, mask) ** 2 + vprewitt(image, mask) ** 2)
| prewitt | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n return np.sqrt(hprewitt(image, mask) ** 2 + vprewitt(image, mask) ** 2)\n",
"role": "user"
},
{
"content": "prewitt",
"role": "assistant"
}
] |
def x(image, mask=None):
if mask is None:
mask = np.ones(image.shape, bool)
big_mask = binary_erosion(mask, generate_binary_structure(2, 2),
border_value=0)
result = np.abs(convolve(image, np.array([[1, 1, 1], [0, 0, 0], [-1, -1,
-1]]).astype(float) / 3.0))
result[big_mask == False] = 0
return result
| hprewitt | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, mask=None):\n if mask is None:\n mask = np.ones(image.shape, bool)\n big_mask = binary_erosion(mask, generate_binary_structure(2, 2),\n border_value=0)\n result = np.abs(convolve(image, np.array([[1, 1, 1], [0, 0, 0], [-1, -1,\n -1]]).astype(float) / 3.0))\n result[big_mask == False] = 0\n return result\n",
"role": "user"
},
{
"content": "hprewitt",
"role": "assistant"
}
] |
def x(image, labels, frequency, theta):
nobjects = np.max(labels)
if nobjects == 0:
return image
centers = centers_of_labels(labels)
areas = fix(scind.sum(np.ones(image.shape), labels, np.arange(nobjects,
dtype=np.int32) + 1))
mask = labels > 0
i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float)
i = i[mask]
j = j[mask]
image = image[mask]
lm = labels[mask] - 1
i -= centers[0, lm]
j -= centers[1, lm]
sigma = np.sqrt(areas / np.pi) / 3.0
sigma = sigma[lm]
g_exp = 1000.0 / (2.0 * np.pi * sigma ** 2) * np.exp(-(i ** 2 + j ** 2) /
(2 * sigma ** 2))
g_angle = 2 * np.pi / frequency * (i * np.cos(theta) + j * np.sin(theta))
g_cos = g_exp * np.cos(g_angle)
g_sin = g_exp * np.sin(g_angle)
g_cos_mean = fix(scind.mean(g_cos, lm, np.arange(nobjects)))
i_mean = fix(scind.mean(image, lm, np.arange(nobjects)))
i_norm = image - i_mean[lm]
g_sin_mean = fix(scind.mean(g_sin, lm, np.arange(nobjects)))
g_cos -= g_cos_mean[lm]
g_sin -= g_sin_mean[lm]
g = np.zeros(mask.shape, dtype=np.complex)
g[mask] = i_norm * g_cos + i_norm * g_sin * 1.0j
return g
| gabor | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, labels, frequency, theta):\n nobjects = np.max(labels)\n if nobjects == 0:\n return image\n centers = centers_of_labels(labels)\n areas = fix(scind.sum(np.ones(image.shape), labels, np.arange(nobjects,\n dtype=np.int32) + 1))\n mask = labels > 0\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]].astype(float)\n i = i[mask]\n j = j[mask]\n image = image[mask]\n lm = labels[mask] - 1\n i -= centers[0, lm]\n j -= centers[1, lm]\n sigma = np.sqrt(areas / np.pi) / 3.0\n sigma = sigma[lm]\n g_exp = 1000.0 / (2.0 * np.pi * sigma ** 2) * np.exp(-(i ** 2 + j ** 2) /\n (2 * sigma ** 2))\n g_angle = 2 * np.pi / frequency * (i * np.cos(theta) + j * np.sin(theta))\n g_cos = g_exp * np.cos(g_angle)\n g_sin = g_exp * np.sin(g_angle)\n g_cos_mean = fix(scind.mean(g_cos, lm, np.arange(nobjects)))\n i_mean = fix(scind.mean(image, lm, np.arange(nobjects)))\n i_norm = image - i_mean[lm]\n g_sin_mean = fix(scind.mean(g_sin, lm, np.arange(nobjects)))\n g_cos -= g_cos_mean[lm]\n g_sin -= g_sin_mean[lm]\n g = np.zeros(mask.shape, dtype=np.complex)\n g[mask] = i_norm * g_cos + i_norm * g_sin * 1.0j\n return g\n",
"role": "user"
},
{
"content": "gabor",
"role": "assistant"
}
] |
def x(image, min_radius, max_radius, mask=None):
se = np.array([[False, True, False], [True, True, True], [False, True,
False]])
inverted_image = image.max() - image
previous_reconstructed_image = inverted_image
eroded_image = inverted_image
smoothed_image = np.zeros(image.shape)
for i in range(max_radius + 1):
eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)
reconstructed_image = grey_reconstruction(eroded_image,
inverted_image, footprint=se)
output_image = previous_reconstructed_image - reconstructed_image
if i >= min_radius:
smoothed_image = np.maximum(smoothed_image, output_image)
previous_reconstructed_image = reconstructed_image
return smoothed_image
| enhance_dark_holes | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, min_radius, max_radius, mask=None):\n se = np.array([[False, True, False], [True, True, True], [False, True, \n False]])\n inverted_image = image.max() - image\n previous_reconstructed_image = inverted_image\n eroded_image = inverted_image\n smoothed_image = np.zeros(image.shape)\n for i in range(max_radius + 1):\n eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)\n reconstructed_image = grey_reconstruction(eroded_image,\n inverted_image, footprint=se)\n output_image = previous_reconstructed_image - reconstructed_image\n if i >= min_radius:\n smoothed_image = np.maximum(smoothed_image, output_image)\n previous_reconstructed_image = reconstructed_image\n return smoothed_image\n",
"role": "user"
},
{
"content": "enhance_dark_holes",
"role": "assistant"
}
] |
def x(image, min_radius, max_radius, mask=None):
se = np.array([[False, True, False], [True, True, True], [False, True,
False]])
inverted_image = image.max() - image
previous_opened_image = image
eroded_image = image
selected_granules_image = np.zeros(image.shape)
for i in range(max_radius + 1):
eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)
opened_image = grey_dilation(eroded_image, inverted_image, footprint=se
)
output_image = previous_opened_image - opened_image
if i >= min_radius:
selected_granules_image = np.maximum(selected_granules_image,
output_image)
previous_opened_image = opened_image
return selected_granules_image
| granulometry_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, min_radius, max_radius, mask=None):\n se = np.array([[False, True, False], [True, True, True], [False, True, \n False]])\n inverted_image = image.max() - image\n previous_opened_image = image\n eroded_image = image\n selected_granules_image = np.zeros(image.shape)\n for i in range(max_radius + 1):\n eroded_image = grey_erosion(eroded_image, mask=mask, footprint=se)\n opened_image = grey_dilation(eroded_image, inverted_image, footprint=se\n )\n output_image = previous_opened_image - opened_image\n if i >= min_radius:\n selected_granules_image = np.maximum(selected_granules_image,\n output_image)\n previous_opened_image = opened_image\n return selected_granules_image\n",
"role": "user"
},
{
"content": "granulometry_filter",
"role": "assistant"
}
] |
def x(image, radius, mask=None):
crad = int(np.ceil(radius - 0.5))
x, y = np.mgrid[-crad:crad + 1, -crad:crad + 1].astype(float)
maxxy = np.maximum(abs(x), abs(y))
minxy = np.minimum(abs(x), abs(y))
m1 = (radius ** 2 < (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * (minxy - 0.5
) + (radius ** 2 >= (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * np.real(
np.sqrt(np.asarray(radius ** 2 - (maxxy + 0.5) ** 2, dtype=complex)))
m2 = (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * (minxy + 0.5
) + (radius ** 2 <= (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * np.real(
np.sqrt(np.asarray(radius ** 2 - (maxxy - 0.5) ** 2, dtype=complex)))
sgrid = (radius ** 2 * (0.5 * (np.arcsin(m2 / radius) - np.arcsin(m1 /
radius)) + 0.25 * (np.sin(2 * np.arcsin(m2 / radius)) - np.sin(2 *
np.arcsin(m1 / radius)))) - (maxxy - 0.5) * (m2 - m1) + (m1 - minxy +
0.5)) * ((radius ** 2 < (maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2) &
(radius ** 2 > (maxxy - 0.5) ** 2 + (minxy - 0.5) ** 2) | (minxy ==
0) & (maxxy - 0.5 < radius) & (maxxy + 0.5 >= radius))
sgrid = sgrid + ((maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2 < radius ** 2)
sgrid[crad, crad] = np.minimum(np.pi * radius ** 2, np.pi / 2)
if crad > 0 and radius > crad - 0.5 and radius ** 2 < (crad - 0.5
) ** 2 + 0.25:
m1 = np.sqrt(radius ** 2 - (crad - 0.5) ** 2)
m1n = m1 / radius
sg0 = 2 * (radius ** 2 * (0.5 * np.arcsin(m1n) + 0.25 * np.sin(2 *
np.arcsin(m1n))) - m1 * (crad - 0.5))
sgrid[2 * crad, crad] = sg0
sgrid[crad, 2 * crad] = sg0
sgrid[crad, 0] = sg0
sgrid[0, crad] = sg0
sgrid[2 * crad - 1, crad] = sgrid[2 * crad - 1, crad] - sg0
sgrid[crad, 2 * crad - 1] = sgrid[crad, 2 * crad - 1] - sg0
sgrid[crad, 1] = sgrid[crad, 1] - sg0
sgrid[1, crad] = sgrid[1, crad] - sg0
sgrid[crad, crad] = np.minimum(sgrid[crad, crad], 1)
kernel = sgrid / sgrid.sum()
output = convolve(image, kernel, mode='constant')
if mask is None:
mask = np.ones(image.shape, np.uint8)
else:
mask = np.array(mask, np.uint8)
output = masked_convolution(image, mask, kernel)
output[mask == 0] = image[mask == 0]
return output
| circular_average_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, radius, mask=None):\n crad = int(np.ceil(radius - 0.5))\n x, y = np.mgrid[-crad:crad + 1, -crad:crad + 1].astype(float)\n maxxy = np.maximum(abs(x), abs(y))\n minxy = np.minimum(abs(x), abs(y))\n m1 = (radius ** 2 < (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * (minxy - 0.5\n ) + (radius ** 2 >= (maxxy + 0.5) ** 2 + (minxy - 0.5) ** 2) * np.real(\n np.sqrt(np.asarray(radius ** 2 - (maxxy + 0.5) ** 2, dtype=complex)))\n m2 = (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * (minxy + 0.5\n ) + (radius ** 2 <= (maxxy - 0.5) ** 2 + (minxy + 0.5) ** 2) * np.real(\n np.sqrt(np.asarray(radius ** 2 - (maxxy - 0.5) ** 2, dtype=complex)))\n sgrid = (radius ** 2 * (0.5 * (np.arcsin(m2 / radius) - np.arcsin(m1 /\n radius)) + 0.25 * (np.sin(2 * np.arcsin(m2 / radius)) - np.sin(2 *\n np.arcsin(m1 / radius)))) - (maxxy - 0.5) * (m2 - m1) + (m1 - minxy +\n 0.5)) * ((radius ** 2 < (maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2) &\n (radius ** 2 > (maxxy - 0.5) ** 2 + (minxy - 0.5) ** 2) | (minxy ==\n 0) & (maxxy - 0.5 < radius) & (maxxy + 0.5 >= radius))\n sgrid = sgrid + ((maxxy + 0.5) ** 2 + (minxy + 0.5) ** 2 < radius ** 2)\n sgrid[crad, crad] = np.minimum(np.pi * radius ** 2, np.pi / 2)\n if crad > 0 and radius > crad - 0.5 and radius ** 2 < (crad - 0.5\n ) ** 2 + 0.25:\n m1 = np.sqrt(radius ** 2 - (crad - 0.5) ** 2)\n m1n = m1 / radius\n sg0 = 2 * (radius ** 2 * (0.5 * np.arcsin(m1n) + 0.25 * np.sin(2 *\n np.arcsin(m1n))) - m1 * (crad - 0.5))\n sgrid[2 * crad, crad] = sg0\n sgrid[crad, 2 * crad] = sg0\n sgrid[crad, 0] = sg0\n sgrid[0, crad] = sg0\n sgrid[2 * crad - 1, crad] = sgrid[2 * crad - 1, crad] - sg0\n sgrid[crad, 2 * crad - 1] = sgrid[crad, 2 * crad - 1] - sg0\n sgrid[crad, 1] = sgrid[crad, 1] - sg0\n sgrid[1, crad] = sgrid[1, crad] - sg0\n sgrid[crad, crad] = np.minimum(sgrid[crad, crad], 1)\n kernel = sgrid / sgrid.sum()\n output = convolve(image, kernel, mode='constant')\n if mask is None:\n mask = np.ones(image.shape, np.uint8)\n else:\n mask = np.array(mask, np.uint8)\n output = masked_convolution(image, mask, kernel)\n output[mask == 0] = image[mask == 0]\n return output\n",
"role": "user"
},
{
"content": "circular_average_filter",
"role": "assistant"
}
] |
def x():
om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
tm = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]])
return KalmanState(om, tm)
| velocity_kalman_model | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])\n tm = np.array([[1, 0, 1, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]])\n return KalmanState(om, tm)\n",
"role": "user"
},
{
"content": "velocity_kalman_model",
"role": "assistant"
}
] |
def x():
om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])
tm = np.array([[1, 0, -1, 0], [0, 1, 0, -1], [0, 0, 1, 0], [0, 0, 0, 1]])
return KalmanState(om, tm)
| reverse_velocity_kalman_model | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x():\n om = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])\n tm = np.array([[1, 0, -1, 0], [0, 1, 0, -1], [0, 0, 1, 0], [0, 0, 0, 1]])\n return KalmanState(om, tm)\n",
"role": "user"
},
{
"content": "reverse_velocity_kalman_model",
"role": "assistant"
}
] |
def x(kalman_state, old_indices, coordinates, q, r):
assert isinstance(kalman_state, KalmanState)
old_indices = np.array(old_indices)
if len(old_indices) == 0:
return KalmanState(kalman_state.observation_matrix, kalman_state.
translation_matrix)
matching = old_indices != -1
new_indices = np.arange(len(old_indices))[~matching]
retained_indices = np.arange(len(old_indices))[matching]
new_coords = coordinates[new_indices]
observation_matrix_t = kalman_state.observation_matrix.transpose()
if len(retained_indices) > 0:
kalman_state = kalman_state.deep_copy()
coordinates = coordinates[retained_indices]
kalman_state.map_frames(old_indices[retained_indices])
state_vec = kalman_state.predicted_state_vec
state_cov = dot_n(dot_n(kalman_state.translation_matrix,
kalman_state.state_cov), kalman_state.translation_matrix.
transpose()) + q[matching]
kalman_gain_numerator = dot_n(state_cov, observation_matrix_t)
kalman_gain_denominator = dot_n(dot_n(kalman_state.
observation_matrix, state_cov), observation_matrix_t) + r[matching]
kalman_gain_denominator = inv_n(kalman_gain_denominator)
kalman_gain = dot_n(kalman_gain_numerator, kalman_gain_denominator)
difference = coordinates - dot_n(kalman_state.observation_matrix,
state_vec[:, :, np.newaxis])[:, :, 0]
state_noise = dot_n(kalman_gain, difference[:, :, np.newaxis])[:, :, 0]
state_vec = state_vec + state_noise
state_cov = state_cov - dot_n(dot_n(kalman_gain, kalman_state.
observation_matrix), state_cov)
idx = np.arange(len(state_noise))
all_state_noise = np.vstack((kalman_state.state_noise, state_noise))
all_state_noise_idx = np.hstack((kalman_state.state_noise_idx, idx))
noise_var = np.zeros((len(idx), all_state_noise.shape[1]))
for i in range(all_state_noise.shape[1]):
noise_var[:, i] = fix(scind.variance(all_state_noise[:, i],
all_state_noise_idx, idx))
obs_vec = dot_n(kalman_state.observation_matrix, state_vec[:, :, np
.newaxis])[:, :, 0]
kalman_state = KalmanState(kalman_state.observation_matrix,
kalman_state.translation_matrix, state_vec, state_cov,
noise_var, all_state_noise, all_state_noise_idx)
else:
kalman_state = KalmanState(kalman_state.observation_matrix,
kalman_state.translation_matrix)
if len(new_coords) > 0:
state_vec = dot_n(observation_matrix_t, new_coords[:, :, np.newaxis])[
:, :, 0]
nstates = kalman_state.state_len
nnew_features = len(new_indices)
cov_vec = SMALL_KALMAN_COV / np.dot(observation_matrix_t, np.ones(
kalman_state.obs_len))
cov_vec[~np.isfinite(cov_vec)] = LARGE_KALMAN_COV
cov_matrix = np.diag(cov_vec)
state_cov = cov_matrix[np.newaxis, :, :][np.zeros(nnew_features, int)]
noise_var = np.ones((len(new_indices), kalman_state.state_len))
kalman_state.add_features(retained_indices, new_indices, state_vec,
state_cov, noise_var)
return kalman_state
| kalman_filter | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(kalman_state, old_indices, coordinates, q, r):\n assert isinstance(kalman_state, KalmanState)\n old_indices = np.array(old_indices)\n if len(old_indices) == 0:\n return KalmanState(kalman_state.observation_matrix, kalman_state.\n translation_matrix)\n matching = old_indices != -1\n new_indices = np.arange(len(old_indices))[~matching]\n retained_indices = np.arange(len(old_indices))[matching]\n new_coords = coordinates[new_indices]\n observation_matrix_t = kalman_state.observation_matrix.transpose()\n if len(retained_indices) > 0:\n kalman_state = kalman_state.deep_copy()\n coordinates = coordinates[retained_indices]\n kalman_state.map_frames(old_indices[retained_indices])\n state_vec = kalman_state.predicted_state_vec\n state_cov = dot_n(dot_n(kalman_state.translation_matrix,\n kalman_state.state_cov), kalman_state.translation_matrix.\n transpose()) + q[matching]\n kalman_gain_numerator = dot_n(state_cov, observation_matrix_t)\n kalman_gain_denominator = dot_n(dot_n(kalman_state.\n observation_matrix, state_cov), observation_matrix_t) + r[matching]\n kalman_gain_denominator = inv_n(kalman_gain_denominator)\n kalman_gain = dot_n(kalman_gain_numerator, kalman_gain_denominator)\n difference = coordinates - dot_n(kalman_state.observation_matrix,\n state_vec[:, :, np.newaxis])[:, :, 0]\n state_noise = dot_n(kalman_gain, difference[:, :, np.newaxis])[:, :, 0]\n state_vec = state_vec + state_noise\n state_cov = state_cov - dot_n(dot_n(kalman_gain, kalman_state.\n observation_matrix), state_cov)\n idx = np.arange(len(state_noise))\n all_state_noise = np.vstack((kalman_state.state_noise, state_noise))\n all_state_noise_idx = np.hstack((kalman_state.state_noise_idx, idx))\n noise_var = np.zeros((len(idx), all_state_noise.shape[1]))\n for i in range(all_state_noise.shape[1]):\n noise_var[:, i] = fix(scind.variance(all_state_noise[:, i],\n all_state_noise_idx, idx))\n obs_vec = dot_n(kalman_state.observation_matrix, state_vec[:, :, np\n .newaxis])[:, :, 0]\n kalman_state = KalmanState(kalman_state.observation_matrix,\n kalman_state.translation_matrix, state_vec, state_cov,\n noise_var, all_state_noise, all_state_noise_idx)\n else:\n kalman_state = KalmanState(kalman_state.observation_matrix,\n kalman_state.translation_matrix)\n if len(new_coords) > 0:\n state_vec = dot_n(observation_matrix_t, new_coords[:, :, np.newaxis])[\n :, :, 0]\n nstates = kalman_state.state_len\n nnew_features = len(new_indices)\n cov_vec = SMALL_KALMAN_COV / np.dot(observation_matrix_t, np.ones(\n kalman_state.obs_len))\n cov_vec[~np.isfinite(cov_vec)] = LARGE_KALMAN_COV\n cov_matrix = np.diag(cov_vec)\n state_cov = cov_matrix[np.newaxis, :, :][np.zeros(nnew_features, int)]\n noise_var = np.ones((len(new_indices), kalman_state.state_len))\n kalman_state.add_features(retained_indices, new_indices, state_vec,\n state_cov, noise_var)\n return kalman_state\n",
"role": "user"
},
{
"content": "kalman_filter",
"role": "assistant"
}
] |
def x(image, angle, decay, sigma):
normalized = image - np.mean(image)
rotated = scind.rotate(normalized, -angle)
smoothed = scind.gaussian_filter1d(rotated, sigma
) if sigma > 0 else rotated
result_fwd = smoothed.copy()
for i in range(1, result_fwd.shape[0]):
result_fwd[i] += result_fwd[i - 1] * decay
result_rev = smoothed.copy()
for i in reversed(range(result_rev.shape[0] - 1)):
result_rev[i] += result_rev[i + 1] * decay
result = (result_fwd - result_rev) / 2
result = scind.rotate(result, angle)
ipad = int((result.shape[0] - image.shape[0]) / 2)
jpad = int((result.shape[1] - image.shape[1]) / 2)
result = result[ipad:ipad + image.shape[0], jpad:jpad + image.shape[1]]
img_min, img_max = np.min(image), np.max(image)
result_min, result_max = np.min(result), np.max(result)
if img_min == img_max or result_min == result_max:
return np.zeros(result.shape)
result = (result - result_min) / (result_max - result_min)
result = img_min + result * (img_max - img_min)
return result
| line_integration | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, angle, decay, sigma):\n normalized = image - np.mean(image)\n rotated = scind.rotate(normalized, -angle)\n smoothed = scind.gaussian_filter1d(rotated, sigma\n ) if sigma > 0 else rotated\n result_fwd = smoothed.copy()\n for i in range(1, result_fwd.shape[0]):\n result_fwd[i] += result_fwd[i - 1] * decay\n result_rev = smoothed.copy()\n for i in reversed(range(result_rev.shape[0] - 1)):\n result_rev[i] += result_rev[i + 1] * decay\n result = (result_fwd - result_rev) / 2\n result = scind.rotate(result, angle)\n ipad = int((result.shape[0] - image.shape[0]) / 2)\n jpad = int((result.shape[1] - image.shape[1]) / 2)\n result = result[ipad:ipad + image.shape[0], jpad:jpad + image.shape[1]]\n img_min, img_max = np.min(image), np.max(image)\n result_min, result_max = np.min(result), np.max(result)\n if img_min == img_max or result_min == result_max:\n return np.zeros(result.shape)\n result = (result - result_min) / (result_max - result_min)\n result = img_min + result * (img_max - img_min)\n return result\n",
"role": "user"
},
{
"content": "line_integration",
"role": "assistant"
}
] |
def x(img, sigma, mask=None):
if mask is None:
mask = np.ones(img.shape, bool)
else:
img = img.copy()
img[~mask] = 0
gmask = scind.gaussian_filter(mask.astype(float), sigma, mode='constant')
img_mean = scind.gaussian_filter(img, sigma, mode='constant') / gmask
img_squared = scind.gaussian_filter(img ** 2, sigma, mode='constant'
) / gmask
var = img_squared - img_mean ** 2
return var
| variance_transform | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, sigma, mask=None):\n if mask is None:\n mask = np.ones(img.shape, bool)\n else:\n img = img.copy()\n img[~mask] = 0\n gmask = scind.gaussian_filter(mask.astype(float), sigma, mode='constant')\n img_mean = scind.gaussian_filter(img, sigma, mode='constant') / gmask\n img_squared = scind.gaussian_filter(img ** 2, sigma, mode='constant'\n ) / gmask\n var = img_squared - img_mean ** 2\n return var\n",
"role": "user"
},
{
"content": "variance_transform",
"role": "assistant"
}
] |
def x(x):
assert x.ndim == 3
assert x.shape[1] == x.shape[2]
c = np.array([[(cofactor_n(x, j, i) * (1 - (i + j) % 2 * 2)) for j in
range(x.shape[1])] for i in range(x.shape[1])]).transpose(2, 0, 1)
return c / det_n(x)[:, np.newaxis, np.newaxis]
| inv_n | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n assert x.ndim == 3\n assert x.shape[1] == x.shape[2]\n c = np.array([[(cofactor_n(x, j, i) * (1 - (i + j) % 2 * 2)) for j in\n range(x.shape[1])] for i in range(x.shape[1])]).transpose(2, 0, 1)\n return c / det_n(x)[:, np.newaxis, np.newaxis]\n",
"role": "user"
},
{
"content": "inv_n",
"role": "assistant"
}
] |
def x(x):
assert x.ndim == 3
assert x.shape[1] == x.shape[2]
if x.shape[1] == 1:
return x[:, 0, 0]
result = np.zeros(x.shape[0])
for permutation in permutations(np.arange(x.shape[1])):
sign = parity(permutation)
result += np.prod([x[:, i, permutation[i]] for i in range(x.shape[1
])], 0) * sign
sign = -sign
return result
| det_n | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n assert x.ndim == 3\n assert x.shape[1] == x.shape[2]\n if x.shape[1] == 1:\n return x[:, 0, 0]\n result = np.zeros(x.shape[0])\n for permutation in permutations(np.arange(x.shape[1])):\n sign = parity(permutation)\n result += np.prod([x[:, i, permutation[i]] for i in range(x.shape[1\n ])], 0) * sign\n sign = -sign\n return result\n",
"role": "user"
},
{
"content": "det_n",
"role": "assistant"
}
] |
def x(x):
order = np.lexsort((x,))
hit = np.zeros(len(x), bool)
p = 0
for j in range(len(x)):
if not hit[j]:
cycle = 1
i = order[j]
while i != j:
hit[i] = True
i = order[i]
cycle += 1
p += cycle - 1
return 1 if p % 2 == 0 else -1
| parity | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n order = np.lexsort((x,))\n hit = np.zeros(len(x), bool)\n p = 0\n for j in range(len(x)):\n if not hit[j]:\n cycle = 1\n i = order[j]\n while i != j:\n hit[i] = True\n i = order[i]\n cycle += 1\n p += cycle - 1\n return 1 if p % 2 == 0 else -1\n",
"role": "user"
},
{
"content": "parity",
"role": "assistant"
}
] |
def x(x, i, j):
m = x.shape[1]
mr = np.arange(m)
i_idx = mr[mr != i]
j_idx = mr[mr != j]
return det_n(x[:, i_idx[:, np.newaxis], j_idx[np.newaxis, :]])
| cofactor_n | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, i, j):\n m = x.shape[1]\n mr = np.arange(m)\n i_idx = mr[mr != i]\n j_idx = mr[mr != j]\n return det_n(x[:, i_idx[:, np.newaxis], j_idx[np.newaxis, :]])\n",
"role": "user"
},
{
"content": "cofactor_n",
"role": "assistant"
}
] |
def x(x, y):
if x.ndim == 2:
if y.ndim == 2:
return np.dot(x, y)
x3 = False
y3 = True
nlen = y.shape[0]
elif y.ndim == 2:
nlen = x.shape[0]
x3 = True
y3 = False
else:
assert x.shape[0] == y.shape[0]
nlen = x.shape[0]
x3 = True
y3 = True
assert x.shape[1 + x3] == y.shape[0 + y3]
n, i, j, k = np.mgrid[0:nlen, 0:x.shape[0 + x3], 0:y.shape[1 + y3], 0:y
.shape[0 + y3]]
return np.sum((x[n, i, k] if x3 else x[i, k]) * (y[n, k, j] if y3 else
y[k, j]), 3)
| dot_n | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y):\n if x.ndim == 2:\n if y.ndim == 2:\n return np.dot(x, y)\n x3 = False\n y3 = True\n nlen = y.shape[0]\n elif y.ndim == 2:\n nlen = x.shape[0]\n x3 = True\n y3 = False\n else:\n assert x.shape[0] == y.shape[0]\n nlen = x.shape[0]\n x3 = True\n y3 = True\n assert x.shape[1 + x3] == y.shape[0 + y3]\n n, i, j, k = np.mgrid[0:nlen, 0:x.shape[0 + x3], 0:y.shape[1 + y3], 0:y\n .shape[0 + y3]]\n return np.sum((x[n, i, k] if x3 else x[i, k]) * (y[n, k, j] if y3 else\n y[k, j]), 3)\n",
"role": "user"
},
{
"content": "dot_n",
"role": "assistant"
}
] |
def x(x):
yield list(x)
x = np.array(x)
a = np.arange(len(x))
while True:
ak_lt_ak_next = np.argwhere(a[:-1] < a[1:])
if len(ak_lt_ak_next) == 0:
raise StopIteration()
k = ak_lt_ak_next[-1, 0]
ak_lt_al = np.argwhere(a[k] < a)
l = ak_lt_al[-1, 0]
a[k], a[l] = a[l], a[k]
if k < len(x) - 1:
a[k + 1:] = a[:k:-1].copy()
yield x[a].tolist()
| permutations | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n yield list(x)\n x = np.array(x)\n a = np.arange(len(x))\n while True:\n ak_lt_ak_next = np.argwhere(a[:-1] < a[1:])\n if len(ak_lt_ak_next) == 0:\n raise StopIteration()\n k = ak_lt_ak_next[-1, 0]\n ak_lt_al = np.argwhere(a[k] < a)\n l = ak_lt_al[-1, 0]\n a[k], a[l] = a[l], a[k]\n if k < len(x) - 1:\n a[k + 1:] = a[:k:-1].copy()\n yield x[a].tolist()\n",
"role": "user"
},
{
"content": "permutations",
"role": "assistant"
}
] |
def x(image, levels=256, mask=None, chunksize=CONVEX_HULL_CHUNKSIZE,
pass_cutoff=16):
if mask is None:
img_min = np.min(image)
img_max = np.max(image)
else:
unmasked_pixels = image[mask]
if len(unmasked_pixels) == 0:
return np.zeros(image.shape, image.dtype)
img_min = np.min(unmasked_pixels)
img_max = np.max(unmasked_pixels)
img_shape = tuple(image.shape)
if img_min == img_max:
return image
scale = img_min + np.arange(levels).astype(image.dtype) * (img_max -
img_min) / float(levels - 1)
image = (image - img_min) * (levels - 1) / (img_max - img_min)
if mask is not None:
image[~mask] = 0
if levels > pass_cutoff:
sub_levels = int(np.sqrt(levels))
rough_image = convex_hull_transform(np.floor(image), sub_levels)
image = np.maximum(image, rough_image)
del rough_image
image = image.astype(int)
unique = np.unique(image)
new_values = np.zeros(levels, int)
new_values[unique] = np.arange(len(unique))
scale = scale[unique]
image = new_values[image]
min_image = grey_erosion(image, footprint=np.ones((3, 3), bool)).astype(int
)
min_image[0, :] = 0
min_image[-1, :] = 0
min_image[:, 0] = 0
min_image[:, -1] = 0
i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]
mask = image > min_image
i = i[mask]
j = j[mask]
min_image = min_image[mask]
image = image[mask]
count = image - min_image
npoints = np.sum(count)
first_index_in_big = np.cumsum(count) - count
first_i = np.zeros(0, int)
first_j = np.zeros(0, int)
first_levels = np.zeros(0, int)
chunkstart = 0
while chunkstart < len(count):
idx = first_index_in_big[chunkstart]
iend = idx + chunksize
if iend >= npoints:
chunkend = len(count)
iend = npoints
else:
chunkend = np.searchsorted(first_index_in_big, iend)
if chunkend < len(count):
iend = first_index_in_big[chunkend]
else:
iend = npoints
chunk_first_index_in_big = first_index_in_big[chunkstart:chunkend
] - idx
chunkpoints = iend - idx
index_in_small = np.zeros(chunkpoints, int)
index_in_small[0] = chunkstart
index_in_small[chunk_first_index_in_big[1:]] = 1
index_in_small = np.cumsum(index_in_small)
levels = np.ones(chunkpoints, int)
levels[0] = min_image[chunkstart] + 1
levels[chunk_first_index_in_big[1:]] = min_image[chunkstart + 1:
chunkend] - image[chunkstart:chunkend - 1] + 1
levels = np.cumsum(levels)
ijv = np.column_stack((i[index_in_small], j[index_in_small], levels))
pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))
first_i = np.hstack((first_i, pts[:, 1]))
first_j = np.hstack((first_j, pts[:, 2]))
first_levels = np.hstack((first_levels, pts[:, 0]))
chunkstart = chunkend
ijv = np.column_stack((first_i, first_j, first_levels))
pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))
labels = pts[:, 0]
i = pts[:, 1]
j = pts[:, 2]
first_index = np.cumsum(counts) - counts
last_index = first_index + counts - 1
next = np.arange(len(labels)) + 1
next[last_index] = first_index
index, count, i, j = get_line_pts(i, j, i[next], j[next])
big_index = np.zeros(len(i), int)
big_index[index[1:]] = 1
big_index = np.cumsum(big_index)
labels = labels[big_index]
order = np.lexsort((labels, i, j))
i = i[order]
j = j[order]
labels = labels[order]
mask = np.hstack(((i[1:] != i[:-1]) | (j[1:] != j[:-1]), [True]))
i = i[mask]
j = j[mask]
labels = labels[mask]
first = np.hstack(([True], j[1:] != j[:-1]))
top = np.zeros(img_shape, labels.dtype)
top[i[first], j[first]] = labels[first]
top[i[~first], j[~first]] = (labels[1:] - labels[:-1])[~first[1:]]
top = np.cumsum(top, 0)
bottom = np.zeros(img_shape, labels.dtype)
bottom[0, j[first]] = labels[first]
last = np.hstack((first[1:], [True]))
bottom[i[:-1][~first[1:]] + 1, j[~first]] = (labels[1:] - labels[:-1])[
~first[1:]]
llast = last & (i < img_shape[0] - 1)
bottom[i[llast] + 1, j[llast]] = -labels[llast]
bottom = np.cumsum(bottom, 0)
image = np.minimum(top, bottom)
return scale[image]
| convex_hull_transform | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, levels=256, mask=None, chunksize=CONVEX_HULL_CHUNKSIZE,\n pass_cutoff=16):\n if mask is None:\n img_min = np.min(image)\n img_max = np.max(image)\n else:\n unmasked_pixels = image[mask]\n if len(unmasked_pixels) == 0:\n return np.zeros(image.shape, image.dtype)\n img_min = np.min(unmasked_pixels)\n img_max = np.max(unmasked_pixels)\n img_shape = tuple(image.shape)\n if img_min == img_max:\n return image\n scale = img_min + np.arange(levels).astype(image.dtype) * (img_max -\n img_min) / float(levels - 1)\n image = (image - img_min) * (levels - 1) / (img_max - img_min)\n if mask is not None:\n image[~mask] = 0\n if levels > pass_cutoff:\n sub_levels = int(np.sqrt(levels))\n rough_image = convex_hull_transform(np.floor(image), sub_levels)\n image = np.maximum(image, rough_image)\n del rough_image\n image = image.astype(int)\n unique = np.unique(image)\n new_values = np.zeros(levels, int)\n new_values[unique] = np.arange(len(unique))\n scale = scale[unique]\n image = new_values[image]\n min_image = grey_erosion(image, footprint=np.ones((3, 3), bool)).astype(int\n )\n min_image[0, :] = 0\n min_image[-1, :] = 0\n min_image[:, 0] = 0\n min_image[:, -1] = 0\n i, j = np.mgrid[0:image.shape[0], 0:image.shape[1]]\n mask = image > min_image\n i = i[mask]\n j = j[mask]\n min_image = min_image[mask]\n image = image[mask]\n count = image - min_image\n npoints = np.sum(count)\n first_index_in_big = np.cumsum(count) - count\n first_i = np.zeros(0, int)\n first_j = np.zeros(0, int)\n first_levels = np.zeros(0, int)\n chunkstart = 0\n while chunkstart < len(count):\n idx = first_index_in_big[chunkstart]\n iend = idx + chunksize\n if iend >= npoints:\n chunkend = len(count)\n iend = npoints\n else:\n chunkend = np.searchsorted(first_index_in_big, iend)\n if chunkend < len(count):\n iend = first_index_in_big[chunkend]\n else:\n iend = npoints\n chunk_first_index_in_big = first_index_in_big[chunkstart:chunkend\n ] - idx\n chunkpoints = iend - idx\n index_in_small = np.zeros(chunkpoints, int)\n index_in_small[0] = chunkstart\n index_in_small[chunk_first_index_in_big[1:]] = 1\n index_in_small = np.cumsum(index_in_small)\n levels = np.ones(chunkpoints, int)\n levels[0] = min_image[chunkstart] + 1\n levels[chunk_first_index_in_big[1:]] = min_image[chunkstart + 1:\n chunkend] - image[chunkstart:chunkend - 1] + 1\n levels = np.cumsum(levels)\n ijv = np.column_stack((i[index_in_small], j[index_in_small], levels))\n pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))\n first_i = np.hstack((first_i, pts[:, 1]))\n first_j = np.hstack((first_j, pts[:, 2]))\n first_levels = np.hstack((first_levels, pts[:, 0]))\n chunkstart = chunkend\n ijv = np.column_stack((first_i, first_j, first_levels))\n pts, counts = convex_hull_ijv(ijv, np.arange(1, len(unique)))\n labels = pts[:, 0]\n i = pts[:, 1]\n j = pts[:, 2]\n first_index = np.cumsum(counts) - counts\n last_index = first_index + counts - 1\n next = np.arange(len(labels)) + 1\n next[last_index] = first_index\n index, count, i, j = get_line_pts(i, j, i[next], j[next])\n big_index = np.zeros(len(i), int)\n big_index[index[1:]] = 1\n big_index = np.cumsum(big_index)\n labels = labels[big_index]\n order = np.lexsort((labels, i, j))\n i = i[order]\n j = j[order]\n labels = labels[order]\n mask = np.hstack(((i[1:] != i[:-1]) | (j[1:] != j[:-1]), [True]))\n i = i[mask]\n j = j[mask]\n labels = labels[mask]\n first = np.hstack(([True], j[1:] != j[:-1]))\n top = np.zeros(img_shape, labels.dtype)\n top[i[first], j[first]] = labels[first]\n top[i[~first], j[~first]] = (labels[1:] - labels[:-1])[~first[1:]]\n top = np.cumsum(top, 0)\n bottom = np.zeros(img_shape, labels.dtype)\n bottom[0, j[first]] = labels[first]\n last = np.hstack((first[1:], [True]))\n bottom[i[:-1][~first[1:]] + 1, j[~first]] = (labels[1:] - labels[:-1])[\n ~first[1:]]\n llast = last & (i < img_shape[0] - 1)\n bottom[i[llast] + 1, j[llast]] = -labels[llast]\n bottom = np.cumsum(bottom, 0)\n image = np.minimum(top, bottom)\n return scale[image]\n",
"role": "user"
},
{
"content": "convex_hull_transform",
"role": "assistant"
}
] |
def x(img, radius, nangles=None, mask=None):
a = np.zeros(img.shape)
m = np.zeros(img.shape)
if nangles is None:
nangles = int(np.pi * radius + 3.5) & ~3
for i in range(nangles):
theta = 2 * np.pi * float(i) / float(nangles)
x = int(np.round(radius * np.cos(theta)))
y = int(np.round(radius * np.sin(theta)))
xmin = max(0, -x)
xmax = min(img.shape[1] - x, img.shape[1])
ymin = max(0, -y)
ymax = min(img.shape[0] - y, img.shape[0])
dest = slice(ymin, ymax), slice(xmin, xmax)
src = slice(ymin + y, ymax + y), slice(xmin + x, xmax + x)
if mask is not None:
a[dest][mask[src]] += img[src][mask[src]]
m[dest][mask[src]] += 1
else:
a[dest] += img[src]
m[dest] += 1
a[m > 0] /= m[m > 0]
return a
| circular_hough | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, radius, nangles=None, mask=None):\n a = np.zeros(img.shape)\n m = np.zeros(img.shape)\n if nangles is None:\n nangles = int(np.pi * radius + 3.5) & ~3\n for i in range(nangles):\n theta = 2 * np.pi * float(i) / float(nangles)\n x = int(np.round(radius * np.cos(theta)))\n y = int(np.round(radius * np.sin(theta)))\n xmin = max(0, -x)\n xmax = min(img.shape[1] - x, img.shape[1])\n ymin = max(0, -y)\n ymax = min(img.shape[0] - y, img.shape[0])\n dest = slice(ymin, ymax), slice(xmin, xmax)\n src = slice(ymin + y, ymax + y), slice(xmin + x, xmax + x)\n if mask is not None:\n a[dest][mask[src]] += img[src][mask[src]]\n m[dest][mask[src]] += 1\n else:\n a[dest] += img[src]\n m[dest] += 1\n a[m > 0] /= m[m > 0]\n return a\n",
"role": "user"
},
{
"content": "circular_hough",
"role": "assistant"
}
] |
def x(image, return_hessian=True, return_eigenvalues=True,
return_eigenvectors=True):
hessian = np.zeros((image.shape[0], image.shape[1], 2, 2))
hessian[1:-1, :, 0, 0] = image[:-2, :] - 2 * image[1:-1, :] + image[2:, :]
hessian[1:-1, 1:-1, 0, 1] = hessian[1:-1, 1:-1, 0, 1] = (image[2:, 2:] +
image[:-2, :-2] - image[2:, :-2] - image[:-2, 2:]) / 4
hessian[:, 1:-1, 1, 1] = image[:, :-2] - 2 * image[:, 1:-1] + image[:, 2:]
A = hessian[:, :, 0, 0]
B = hessian[:, :, 0, 1]
C = hessian[:, :, 1, 1]
b = -(A + C)
c = A * C - B * B
discriminant = b * b - 4 * c
pn = np.array([1, -1])[np.newaxis, np.newaxis, :]
L = (-b[:, :, np.newaxis] + np.sqrt(discriminant)[:, :, np.newaxis] * pn
) / 2
L[np.abs(L[:, :, 1]) > np.abs(L[:, :, 0]), :] = L[np.abs(L[:, :, 1]) >
np.abs(L[:, :, 0]), ::-1]
if return_eigenvectors:
v = np.ones((image.shape[0], image.shape[1], 2, 2)) * np.nan
v[:, :, :, 0] = L - hessian[:, :, 1, 1, np.newaxis]
v[:, :, :, 1] = hessian[:, :, 0, 1, np.newaxis]
default = np.array([[1, 0], [0, 1]])[np.newaxis, :, :]
v[hessian[:, :, 0, 1] == 0] = default
d = np.sqrt(np.sum(v * v, 3))
v /= d[:, :, :, np.newaxis]
result = []
if return_hessian:
result.append(hessian)
if return_eigenvalues:
result.append(L)
if return_eigenvectors:
result.append(v)
if len(result) == 0:
return
elif len(result) == 1:
return result[0]
return tuple(result)
| hessian | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, return_hessian=True, return_eigenvalues=True,\n return_eigenvectors=True):\n hessian = np.zeros((image.shape[0], image.shape[1], 2, 2))\n hessian[1:-1, :, 0, 0] = image[:-2, :] - 2 * image[1:-1, :] + image[2:, :]\n hessian[1:-1, 1:-1, 0, 1] = hessian[1:-1, 1:-1, 0, 1] = (image[2:, 2:] +\n image[:-2, :-2] - image[2:, :-2] - image[:-2, 2:]) / 4\n hessian[:, 1:-1, 1, 1] = image[:, :-2] - 2 * image[:, 1:-1] + image[:, 2:]\n A = hessian[:, :, 0, 0]\n B = hessian[:, :, 0, 1]\n C = hessian[:, :, 1, 1]\n b = -(A + C)\n c = A * C - B * B\n discriminant = b * b - 4 * c\n pn = np.array([1, -1])[np.newaxis, np.newaxis, :]\n L = (-b[:, :, np.newaxis] + np.sqrt(discriminant)[:, :, np.newaxis] * pn\n ) / 2\n L[np.abs(L[:, :, 1]) > np.abs(L[:, :, 0]), :] = L[np.abs(L[:, :, 1]) >\n np.abs(L[:, :, 0]), ::-1]\n if return_eigenvectors:\n v = np.ones((image.shape[0], image.shape[1], 2, 2)) * np.nan\n v[:, :, :, 0] = L - hessian[:, :, 1, 1, np.newaxis]\n v[:, :, :, 1] = hessian[:, :, 0, 1, np.newaxis]\n default = np.array([[1, 0], [0, 1]])[np.newaxis, :, :]\n v[hessian[:, :, 0, 1] == 0] = default\n d = np.sqrt(np.sum(v * v, 3))\n v /= d[:, :, :, np.newaxis]\n result = []\n if return_hessian:\n result.append(hessian)\n if return_eigenvalues:\n result.append(L)\n if return_eigenvectors:\n result.append(v)\n if len(result) == 0:\n return\n elif len(result) == 1:\n return result[0]\n return tuple(result)\n",
"role": "user"
},
{
"content": "hessian",
"role": "assistant"
}
] |
def x(image, gradient=1, max_iter=100, convergence=0.01, percentile=90.0):
pe = np.zeros((image.shape[0] + 2, image.shape[1] + 2))
if image.shape[0] > 64 and image.shape[1] > 64:
sub_image = image[::2, ::2]
sub_pe = poisson_equation(sub_image, gradient=gradient * 2,
max_iter=max_iter, convergence=convergence)
coordinates = np.mgrid[0:sub_pe.shape[0] * 2, 0:sub_pe.shape[1] * 2
].astype(float) / 2
pe[1:sub_image.shape[0] * 2 + 1, 1:sub_image.shape[1] * 2 + 1
] = scind.map_coordinates(sub_pe, coordinates, order=1)
pe[:image.shape[0], :image.shape[1]][~image] = 0
else:
pe[1:-1, 1:-1] = image
i, j = np.mgrid[0:pe.shape[0], 0:pe.shape[1]]
mask = (i > 0) & (i < pe.shape[0] - 1) & (j > 0) & (j < pe.shape[1] - 1)
mask[mask] = image[i[mask] - 1, j[mask] - 1]
i = i[mask]
j = j[mask]
if len(i) == 0:
return pe[1:-1, 1:-1]
if len(i) == 1:
pe[mask] = 1
return pe[1:-1, 1:-1]
for itr in range(max_iter):
next_pe = (pe[i + 1, j] + pe[i - 1, j] + pe[i, j + 1] + pe[i, j - 1]
) / 4 + 1
difference = np.abs((pe[mask] - next_pe) / next_pe)
pe[mask] = next_pe
if np.percentile(difference, percentile) <= convergence:
break
return pe[1:-1, 1:-1]
| poisson_equation | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, gradient=1, max_iter=100, convergence=0.01, percentile=90.0):\n pe = np.zeros((image.shape[0] + 2, image.shape[1] + 2))\n if image.shape[0] > 64 and image.shape[1] > 64:\n sub_image = image[::2, ::2]\n sub_pe = poisson_equation(sub_image, gradient=gradient * 2,\n max_iter=max_iter, convergence=convergence)\n coordinates = np.mgrid[0:sub_pe.shape[0] * 2, 0:sub_pe.shape[1] * 2\n ].astype(float) / 2\n pe[1:sub_image.shape[0] * 2 + 1, 1:sub_image.shape[1] * 2 + 1\n ] = scind.map_coordinates(sub_pe, coordinates, order=1)\n pe[:image.shape[0], :image.shape[1]][~image] = 0\n else:\n pe[1:-1, 1:-1] = image\n i, j = np.mgrid[0:pe.shape[0], 0:pe.shape[1]]\n mask = (i > 0) & (i < pe.shape[0] - 1) & (j > 0) & (j < pe.shape[1] - 1)\n mask[mask] = image[i[mask] - 1, j[mask] - 1]\n i = i[mask]\n j = j[mask]\n if len(i) == 0:\n return pe[1:-1, 1:-1]\n if len(i) == 1:\n pe[mask] = 1\n return pe[1:-1, 1:-1]\n for itr in range(max_iter):\n next_pe = (pe[i + 1, j] + pe[i - 1, j] + pe[i, j + 1] + pe[i, j - 1]\n ) / 4 + 1\n difference = np.abs((pe[mask] - next_pe) / next_pe)\n pe[mask] = next_pe\n if np.percentile(difference, percentile) <= convergence:\n break\n return pe[1:-1, 1:-1]\n",
"role": "user"
},
{
"content": "poisson_equation",
"role": "assistant"
}
] |
def x(self):
if not self.has_cached_predicted_state_vec:
self.p_state_vec = dot_n(self.translation_matrix, self.state_vec[:,
:, np.newaxis])[:, :, 0]
return self.p_state_vec
| predicted_state_vec | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.has_cached_predicted_state_vec:\n self.p_state_vec = dot_n(self.translation_matrix, self.state_vec[:,\n :, np.newaxis])[:, :, 0]\n return self.p_state_vec\n",
"role": "user"
},
{
"content": "predicted_state_vec",
"role": "assistant"
}
] |
def x(self):
if not self.has_cached_obs_vec:
self.obs_vec = dot_n(self.observation_matrix, self.
predicted_state_vec[:, :, np.newaxis])[:, :, 0]
return self.obs_vec
| predicted_obs_vec | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n if not self.has_cached_obs_vec:\n self.obs_vec = dot_n(self.observation_matrix, self.\n predicted_state_vec[:, :, np.newaxis])[:, :, 0]\n return self.obs_vec\n",
"role": "user"
},
{
"content": "predicted_obs_vec",
"role": "assistant"
}
] |
def x(self, old_indices):
nfeatures = len(old_indices)
noldfeatures = len(self.state_vec)
if nfeatures > 0:
self.state_vec = self.state_vec[old_indices]
self.state_cov = self.state_cov[old_indices]
self.noise_var = self.noise_var[old_indices]
if self.has_cached_obs_vec:
self.obs_vec = self.obs_vec[old_indices]
if self.has_cached_predicted_state_vec:
self.p_state_vec = self.p_state_vec[old_indices]
if len(self.state_noise_idx) > 0:
reverse_indices = -np.ones(noldfeatures, int)
reverse_indices[old_indices] = np.arange(nfeatures)
self.state_noise_idx = reverse_indices[self.state_noise_idx]
self.state_noise = self.state_noise[self.state_noise_idx != -1, :]
self.state_noise_idx = self.state_noise_idx[self.
state_noise_idx != -1]
| map_frames | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, old_indices):\n nfeatures = len(old_indices)\n noldfeatures = len(self.state_vec)\n if nfeatures > 0:\n self.state_vec = self.state_vec[old_indices]\n self.state_cov = self.state_cov[old_indices]\n self.noise_var = self.noise_var[old_indices]\n if self.has_cached_obs_vec:\n self.obs_vec = self.obs_vec[old_indices]\n if self.has_cached_predicted_state_vec:\n self.p_state_vec = self.p_state_vec[old_indices]\n if len(self.state_noise_idx) > 0:\n reverse_indices = -np.ones(noldfeatures, int)\n reverse_indices[old_indices] = np.arange(nfeatures)\n self.state_noise_idx = reverse_indices[self.state_noise_idx]\n self.state_noise = self.state_noise[self.state_noise_idx != -1, :]\n self.state_noise_idx = self.state_noise_idx[self.\n state_noise_idx != -1]\n",
"role": "user"
},
{
"content": "map_frames",
"role": "assistant"
}
] |
def x(self, kept_indices, new_indices, new_state_vec, new_state_cov,
new_noise_var):
assert len(kept_indices) == len(self.state_vec)
assert len(new_indices) == len(new_state_vec)
assert len(new_indices) == len(new_state_cov)
assert len(new_indices) == len(new_noise_var)
if self.has_cached_obs_vec:
del self.obs_vec
if self.has_cached_predicted_state_vec:
del self.predicted_obs_vec
nfeatures = len(kept_indices) + len(new_indices)
next_state_vec = np.zeros((nfeatures, self.state_len))
next_state_cov = np.zeros((nfeatures, self.state_len, self.state_len))
next_noise_var = np.zeros((nfeatures, self.state_len))
if len(kept_indices) > 0:
next_state_vec[kept_indices] = self.state_vec
next_state_cov[kept_indices] = self.state_cov
next_noise_var[kept_indices] = self.noise_var
if len(self.state_noise_idx) > 0:
self.state_noise_idx = kept_indices[self.state_noise_idx]
if len(new_indices) > 0:
next_state_vec[new_indices] = new_state_vec
next_state_cov[new_indices] = new_state_cov
next_noise_var[new_indices] = new_noise_var
self.state_vec = next_state_vec
self.state_cov = next_state_cov
self.noise_var = next_noise_var
| add_features | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, kept_indices, new_indices, new_state_vec, new_state_cov,\n new_noise_var):\n assert len(kept_indices) == len(self.state_vec)\n assert len(new_indices) == len(new_state_vec)\n assert len(new_indices) == len(new_state_cov)\n assert len(new_indices) == len(new_noise_var)\n if self.has_cached_obs_vec:\n del self.obs_vec\n if self.has_cached_predicted_state_vec:\n del self.predicted_obs_vec\n nfeatures = len(kept_indices) + len(new_indices)\n next_state_vec = np.zeros((nfeatures, self.state_len))\n next_state_cov = np.zeros((nfeatures, self.state_len, self.state_len))\n next_noise_var = np.zeros((nfeatures, self.state_len))\n if len(kept_indices) > 0:\n next_state_vec[kept_indices] = self.state_vec\n next_state_cov[kept_indices] = self.state_cov\n next_noise_var[kept_indices] = self.noise_var\n if len(self.state_noise_idx) > 0:\n self.state_noise_idx = kept_indices[self.state_noise_idx]\n if len(new_indices) > 0:\n next_state_vec[new_indices] = new_state_vec\n next_state_cov[new_indices] = new_state_cov\n next_noise_var[new_indices] = new_noise_var\n self.state_vec = next_state_vec\n self.state_cov = next_state_cov\n self.noise_var = next_noise_var\n",
"role": "user"
},
{
"content": "add_features",
"role": "assistant"
}
] |
def x(self):
c = KalmanState(self.observation_matrix, self.translation_matrix)
c.state_vec = self.state_vec.copy()
c.state_cov = self.state_cov.copy()
c.noise_var = self.noise_var.copy()
c.state_noise = self.state_noise.copy()
c.state_noise_idx = self.state_noise_idx.copy()
return c
| deep_copy | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self):\n c = KalmanState(self.observation_matrix, self.translation_matrix)\n c.state_vec = self.state_vec.copy()\n c.state_cov = self.state_cov.copy()\n c.noise_var = self.noise_var.copy()\n c.state_noise = self.state_noise.copy()\n c.state_noise_idx = self.state_noise_idx.copy()\n return c\n",
"role": "user"
},
{
"content": "deep_copy",
"role": "assistant"
}
] |
def x(x, percents):
x = np.array(x).flatten()
listx = np.sort(x)
xpcts = []
lenlistx = len(listx)
refs = []
for i in range(0, lenlistx):
r = 100 * ((0.5 + i) / lenlistx)
refs.append(r)
rpcts = []
for p in percents:
if p < refs[0]:
rpcts.append(listx[0])
elif p > refs[-1]:
rpcts.append(listx[-1])
else:
for j in range(0, lenlistx):
if refs[j] <= p and refs[j + 1] >= p:
my = listx[j + 1] - listx[j]
mx = refs[j + 1] - refs[j]
m = my / mx
rpcts.append(m * (p - refs[j]) + listx[j])
break
xpcts.append(rpcts)
return np.array(xpcts).transpose()
| prcntiles | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, percents):\n x = np.array(x).flatten()\n listx = np.sort(x)\n xpcts = []\n lenlistx = len(listx)\n refs = []\n for i in range(0, lenlistx):\n r = 100 * ((0.5 + i) / lenlistx)\n refs.append(r)\n rpcts = []\n for p in percents:\n if p < refs[0]:\n rpcts.append(listx[0])\n elif p > refs[-1]:\n rpcts.append(listx[-1])\n else:\n for j in range(0, lenlistx):\n if refs[j] <= p and refs[j + 1] >= p:\n my = listx[j + 1] - listx[j]\n mx = refs[j + 1] - refs[j]\n m = my / mx\n rpcts.append(m * (p - refs[j]) + listx[j])\n break\n xpcts.append(rpcts)\n return np.array(xpcts).transpose()\n",
"role": "user"
},
{
"content": "prcntiles",
"role": "assistant"
}
] |
def x(data):
pct = prcntiles(np.array(data), [1, 20, 80, 99])
upper = pct[3] - pct[2]
mid = pct[2] - pct[1]
lower = pct[1] - pct[0]
if upper > mid:
uo = 1
else:
uo = 0
if lower > mid:
lo = 1
else:
lo = 0
if uo == 1:
if lo == 1:
mode = 0
else:
mode = -1
elif lo == 1:
mode = 1
else:
mode = 0
return mode
| automode | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data):\n pct = prcntiles(np.array(data), [1, 20, 80, 99])\n upper = pct[3] - pct[2]\n mid = pct[2] - pct[1]\n lower = pct[1] - pct[0]\n if upper > mid:\n uo = 1\n else:\n uo = 0\n if lower > mid:\n lo = 1\n else:\n lo = 0\n if uo == 1:\n if lo == 1:\n mode = 0\n else:\n mode = -1\n elif lo == 1:\n mode = 1\n else:\n mode = 0\n return mode\n",
"role": "user"
},
{
"content": "automode",
"role": "assistant"
}
] |
def x(u):
X = np.array([(1.0 - u) ** 3, 4 - 6.0 * u ** 2 + 3.0 * u ** 3, 1.0 +
3.0 * u + 3.0 * u ** 2 - 3.0 * u ** 3, u ** 3]) * (1.0 / 6)
return X
| spline_factors | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(u):\n X = np.array([(1.0 - u) ** 3, 4 - 6.0 * u ** 2 + 3.0 * u ** 3, 1.0 + \n 3.0 * u + 3.0 * u ** 2 - 3.0 * u ** 3, u ** 3]) * (1.0 / 6)\n return X\n",
"role": "user"
},
{
"content": "spline_factors",
"role": "assistant"
}
] |
def x(picklist, val):
assert np.all(np.sort(picklist) == picklist
), 'pick list is not ordered correctly'
val = np.array(val)
i_pick, i_val = np.mgrid[0:len(picklist), 0:len(val)]
is_not_larger = picklist[i_pick] <= val[i_val]
p = np.sum(is_not_larger, 0)
return p
| pick | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(picklist, val):\n assert np.all(np.sort(picklist) == picklist\n ), 'pick list is not ordered correctly'\n val = np.array(val)\n i_pick, i_val = np.mgrid[0:len(picklist), 0:len(val)]\n is_not_larger = picklist[i_pick] <= val[i_val]\n p = np.sum(is_not_larger, 0)\n return p\n",
"role": "user"
},
{
"content": "pick",
"role": "assistant"
}
] |
def x(x, low, high):
y = x.copy()
y[y < low] = low
y[y > high] = high
return y
| confine | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, low, high):\n y = x.copy()\n y[y < low] = low\n y[y > high] = high\n return y\n",
"role": "user"
},
{
"content": "confine",
"role": "assistant"
}
] |
def x(x, m_y, sigma):
e_y = [np.exp(1.0 / (2 * float(sigma) ** 2) * -(n - m_y) ** 2) for n in
np.array(x)]
y = [(1.0 / (float(sigma) * np.sqrt(2 * np.pi)) * e) for e in e_y]
return np.array(y)
| gauss | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, m_y, sigma):\n e_y = [np.exp(1.0 / (2 * float(sigma) ** 2) * -(n - m_y) ** 2) for n in\n np.array(x)]\n y = [(1.0 / (float(sigma) * np.sqrt(2 * np.pi)) * e) for e in e_y]\n return np.array(y)\n",
"role": "user"
},
{
"content": "gauss",
"role": "assistant"
}
] |
def x(x, m_y, sigma):
return gauss(x, m_y, sigma) * [(-1 / sigma ** 2 + (n - m_y) ** 2 /
sigma ** 4) for n in x]
| d2gauss | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, m_y, sigma):\n return gauss(x, m_y, sigma) * [(-1 / sigma ** 2 + (n - m_y) ** 2 / \n sigma ** 4) for n in x]\n",
"role": "user"
},
{
"content": "d2gauss",
"role": "assistant"
}
] |
def x(x, y, px, py, mask=None):
V = np.kron(spline_matrix(x, px), spline_matrix(y, py))
lenV = len(V)
if mask is not None:
indices = np.nonzero(mask.T.flatten())
if len(indices) > 1:
indices = np.nonzero(mask.T.flatten())[1][0]
newV = V.T[indices]
V = newV.T
V = V.reshape((V.shape[0], V.shape[1]))
return V
| spline_matrix2d | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, px, py, mask=None):\n V = np.kron(spline_matrix(x, px), spline_matrix(y, py))\n lenV = len(V)\n if mask is not None:\n indices = np.nonzero(mask.T.flatten())\n if len(indices) > 1:\n indices = np.nonzero(mask.T.flatten())[1][0]\n newV = V.T[indices]\n V = newV.T\n V = V.reshape((V.shape[0], V.shape[1]))\n return V\n",
"role": "user"
},
{
"content": "spline_matrix2d",
"role": "assistant"
}
] |
def x(x, y, z, px, py, mask=None):
if mask is None:
V = np.array(spline_matrix2d(x, y, px, py))
a = np.array(z.T.flatten())
pz = np.linalg.lstsq(V.T, a.T)[0].T
else:
V = np.array(spline_matrix2d(x, y, px, py, mask))
indices = np.nonzero(np.array(mask).T.flatten())
if len(indices[0]) == 0:
pz = np.zeros((len(py), len(px)))
else:
a = np.array(z.T.flatten()[indices[0]])
pz = np.linalg.lstsq(V.T, a.T)[0].T
pz = pz.reshape((len(py), len(px)))
return pz.transpose()
| splinefit2d | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x, y, z, px, py, mask=None):\n if mask is None:\n V = np.array(spline_matrix2d(x, y, px, py))\n a = np.array(z.T.flatten())\n pz = np.linalg.lstsq(V.T, a.T)[0].T\n else:\n V = np.array(spline_matrix2d(x, y, px, py, mask))\n indices = np.nonzero(np.array(mask).T.flatten())\n if len(indices[0]) == 0:\n pz = np.zeros((len(py), len(px)))\n else:\n a = np.array(z.T.flatten()[indices[0]])\n pz = np.linalg.lstsq(V.T, a.T)[0].T\n pz = pz.reshape((len(py), len(px)))\n return pz.transpose()\n",
"role": "user"
},
{
"content": "splinefit2d",
"role": "assistant"
}
] |
def x(img, mask=None, mode=MODE_AUTO, thresh=2, splinepoints=5, scale=1,
maxiter=40, convergence=0.001):
assert img.ndim == 2, 'Image must be 2-d'
assert splinepoints >= 3, 'The minimum grid size is 3x3'
assert maxiter >= 1
assert mode in [MODE_AUTO, MODE_BRIGHT, MODE_DARK, MODE_GRAY
], mode + ' is not a valid background mode'
orig_shape = np.array(img.shape).copy()
input_mask = mask
if mask is None:
mask = np.ones(orig_shape, dtype=bool)
clip_imin = clip_jmin = 0
clip_imax = img.shape[0]
clip_jmax = img.shape[1]
clip_shape = orig_shape
else:
isum = np.sum(mask, 1)
jsum = np.sum(mask, 0)
clip_imin = np.min(np.argwhere(isum != 0))
clip_imax = np.max(np.argwhere(isum != 0)) + 1
clip_jmin = np.min(np.argwhere(jsum != 0))
clip_jmax = np.max(np.argwhere(jsum != 0)) + 1
clip_shape = np.array([clip_imax - clip_imin, clip_jmax - clip_jmin])
subsample_shape = (clip_shape / scale).astype(int)
ratio = (clip_shape.astype(float) - 1) / (subsample_shape.astype(float) - 1
)
transform = np.array([[ratio[0], 0], [0, ratio[1]]])
inverse_transform = np.array([[1.0 / ratio[0], 0], [0, 1.0 / ratio[1]]])
img = affine_transform(img[clip_imin:clip_imax, clip_jmin:clip_jmax],
transform, output_shape=tuple(subsample_shape), order=2)
mask = affine_transform(mask[clip_imin:clip_imax, clip_jmin:clip_jmax].
astype(float), transform, output_shape=tuple(subsample_shape), order=2
) > 0.5
orig_mask = mask
if mode == 'auto':
mode = automode(img[orig_mask])
elif mode == 'dark' or mode == 'low':
mode = -1
elif mode == 'bright' or mode == 'high':
mode = 1
elif mode == 'gray' or mode == 'grey' or mode == 'mid':
mode = 0
stop_criterion = max((np.max(img) - np.min(img)) * convergence, np.
finfo(img.dtype).eps)
[r, c] = img.shape
oldres = np.zeros((r, c))
for i in range(maxiter):
px, py, pz = splineimage(img, splinepoints, np.array(mask))
res = evalspline2d(np.arange(c), np.arange(r), px, py, pz)
comp = img - res
diff = res[orig_mask] - oldres[orig_mask]
stddiff = unbiased_std(diff)
if stddiff < stop_criterion:
break
elif i == maxiter:
warnings.warn(
"""Background did not converge after %d iterations.
Make sure that the foreground/background mode is correct."""
% i)
oldres = res
backgr = comp[mask]
sigma = unbiased_std(backgr)
cut = sigma * thresh
if mode < 0:
mask = comp < cut
elif mode > 0:
mask = comp > -cut
else:
mask = abs(comp) < cut
mask &= orig_mask
nnz = np.sum(mask)
if nnz < 0.01 * np.sum(orig_mask):
warnings.warn(
"""Less than 1%% of the pixels used for fitting,
try starting again with a larger threshold value"""
)
break
output = np.zeros(orig_shape, img.dtype)
output[clip_imin:clip_imax, clip_jmin:clip_jmax] = affine_transform(res,
inverse_transform, output_shape=tuple(clip_shape), order=3)
if input_mask is not None:
output[~input_mask] = 0
return output
| backgr | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, mask=None, mode=MODE_AUTO, thresh=2, splinepoints=5, scale=1,\n maxiter=40, convergence=0.001):\n assert img.ndim == 2, 'Image must be 2-d'\n assert splinepoints >= 3, 'The minimum grid size is 3x3'\n assert maxiter >= 1\n assert mode in [MODE_AUTO, MODE_BRIGHT, MODE_DARK, MODE_GRAY\n ], mode + ' is not a valid background mode'\n orig_shape = np.array(img.shape).copy()\n input_mask = mask\n if mask is None:\n mask = np.ones(orig_shape, dtype=bool)\n clip_imin = clip_jmin = 0\n clip_imax = img.shape[0]\n clip_jmax = img.shape[1]\n clip_shape = orig_shape\n else:\n isum = np.sum(mask, 1)\n jsum = np.sum(mask, 0)\n clip_imin = np.min(np.argwhere(isum != 0))\n clip_imax = np.max(np.argwhere(isum != 0)) + 1\n clip_jmin = np.min(np.argwhere(jsum != 0))\n clip_jmax = np.max(np.argwhere(jsum != 0)) + 1\n clip_shape = np.array([clip_imax - clip_imin, clip_jmax - clip_jmin])\n subsample_shape = (clip_shape / scale).astype(int)\n ratio = (clip_shape.astype(float) - 1) / (subsample_shape.astype(float) - 1\n )\n transform = np.array([[ratio[0], 0], [0, ratio[1]]])\n inverse_transform = np.array([[1.0 / ratio[0], 0], [0, 1.0 / ratio[1]]])\n img = affine_transform(img[clip_imin:clip_imax, clip_jmin:clip_jmax],\n transform, output_shape=tuple(subsample_shape), order=2)\n mask = affine_transform(mask[clip_imin:clip_imax, clip_jmin:clip_jmax].\n astype(float), transform, output_shape=tuple(subsample_shape), order=2\n ) > 0.5\n orig_mask = mask\n if mode == 'auto':\n mode = automode(img[orig_mask])\n elif mode == 'dark' or mode == 'low':\n mode = -1\n elif mode == 'bright' or mode == 'high':\n mode = 1\n elif mode == 'gray' or mode == 'grey' or mode == 'mid':\n mode = 0\n stop_criterion = max((np.max(img) - np.min(img)) * convergence, np.\n finfo(img.dtype).eps)\n [r, c] = img.shape\n oldres = np.zeros((r, c))\n for i in range(maxiter):\n px, py, pz = splineimage(img, splinepoints, np.array(mask))\n res = evalspline2d(np.arange(c), np.arange(r), px, py, pz)\n comp = img - res\n diff = res[orig_mask] - oldres[orig_mask]\n stddiff = unbiased_std(diff)\n if stddiff < stop_criterion:\n break\n elif i == maxiter:\n warnings.warn(\n \"\"\"Background did not converge after %d iterations.\nMake sure that the foreground/background mode is correct.\"\"\"\n % i)\n oldres = res\n backgr = comp[mask]\n sigma = unbiased_std(backgr)\n cut = sigma * thresh\n if mode < 0:\n mask = comp < cut\n elif mode > 0:\n mask = comp > -cut\n else:\n mask = abs(comp) < cut\n mask &= orig_mask\n nnz = np.sum(mask)\n if nnz < 0.01 * np.sum(orig_mask):\n warnings.warn(\n \"\"\"Less than 1%% of the pixels used for fitting,\ntry starting again with a larger threshold value\"\"\"\n )\n break\n output = np.zeros(orig_shape, img.dtype)\n output[clip_imin:clip_imax, clip_jmin:clip_jmax] = affine_transform(res,\n inverse_transform, output_shape=tuple(clip_shape), order=3)\n if input_mask is not None:\n output[~input_mask] = 0\n return output\n",
"role": "user"
},
{
"content": "backgr",
"role": "assistant"
}
] |
def x(img, sigma, splinepoints, scale):
from PIL import Image
import pylab
from matplotlib.image import pil_to_array
from centrosome.filter import canny
import matplotlib
img = Image.open(img)
if img.mode == 'I;16':
imgdata = np.fromstring(img.tostring(), np.uint8)
imgdata.shape = int(imgdata.shape[0] / 2), 2
imgdata = imgdata.astype(np.uint16)
hi, lo = (0, 1) if img.tag.prefix == 'MM' else (1, 0)
imgdata = imgdata[:, hi] * 256 + imgdata[:, lo]
img_size = list(img.size)
img_size.reverse()
new_img = imgdata.reshape(img_size)
if 281 in img.tag:
img = new_img.astype(np.float32) / img.tag[281][0]
elif np.max(new_img) < 4096:
img = new_img.astype(np.float32) / 4095.0
else:
img = new_img.astype(np.float32) / 65535.0
else:
img = pil_to_array(img)
pylab.subplot(1, 3, 1).imshow(img, cmap=matplotlib.cm.Greys_r)
pylab.show()
if len(img.shape) > 2:
raise ValueError('Image must be grayscale')
edges = canny(img, np.ones(img.shape, bool), 2, 0.1, 0.3)
ci = np.cumsum(edges, 0)
cj = np.cumsum(edges, 1)
i, j = np.mgrid[0:img.shape[0], 0:img.shape[1]]
mask = ci > 0
mask = mask & (cj > 0)
mask[1:, :] &= ci[0:-1, :] < ci[-1, j[0:-1, :]]
mask[:, 1:] &= cj[:, 0:-1] < cj[i[:, 0:-1], -1]
import time
t0 = time.clock()
bg = backgr(img, mask, MODE_AUTO, sigma, splinepoints=splinepoints,
scale=scale)
print('Executed in %f sec' % (time.clock() - t0))
bg[~mask] = img[~mask]
pylab.subplot(1, 3, 2).imshow(img - bg, cmap=matplotlib.cm.Greys_r)
pylab.subplot(1, 3, 3).imshow(bg, cmap=matplotlib.cm.Greys_r)
pylab.show()
| bg_compensate | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(img, sigma, splinepoints, scale):\n from PIL import Image\n import pylab\n from matplotlib.image import pil_to_array\n from centrosome.filter import canny\n import matplotlib\n img = Image.open(img)\n if img.mode == 'I;16':\n imgdata = np.fromstring(img.tostring(), np.uint8)\n imgdata.shape = int(imgdata.shape[0] / 2), 2\n imgdata = imgdata.astype(np.uint16)\n hi, lo = (0, 1) if img.tag.prefix == 'MM' else (1, 0)\n imgdata = imgdata[:, hi] * 256 + imgdata[:, lo]\n img_size = list(img.size)\n img_size.reverse()\n new_img = imgdata.reshape(img_size)\n if 281 in img.tag:\n img = new_img.astype(np.float32) / img.tag[281][0]\n elif np.max(new_img) < 4096:\n img = new_img.astype(np.float32) / 4095.0\n else:\n img = new_img.astype(np.float32) / 65535.0\n else:\n img = pil_to_array(img)\n pylab.subplot(1, 3, 1).imshow(img, cmap=matplotlib.cm.Greys_r)\n pylab.show()\n if len(img.shape) > 2:\n raise ValueError('Image must be grayscale')\n edges = canny(img, np.ones(img.shape, bool), 2, 0.1, 0.3)\n ci = np.cumsum(edges, 0)\n cj = np.cumsum(edges, 1)\n i, j = np.mgrid[0:img.shape[0], 0:img.shape[1]]\n mask = ci > 0\n mask = mask & (cj > 0)\n mask[1:, :] &= ci[0:-1, :] < ci[-1, j[0:-1, :]]\n mask[:, 1:] &= cj[:, 0:-1] < cj[i[:, 0:-1], -1]\n import time\n t0 = time.clock()\n bg = backgr(img, mask, MODE_AUTO, sigma, splinepoints=splinepoints,\n scale=scale)\n print('Executed in %f sec' % (time.clock() - t0))\n bg[~mask] = img[~mask]\n pylab.subplot(1, 3, 2).imshow(img - bg, cmap=matplotlib.cm.Greys_r)\n pylab.subplot(1, 3, 3).imshow(bg, cmap=matplotlib.cm.Greys_r)\n pylab.show()\n",
"role": "user"
},
{
"content": "bg_compensate",
"role": "assistant"
}
] |
def x(a):
a = np.asanyarray(a)
if a.size == 0:
return np.zeros(0, a.dtype)
aa = a.flatten()
aa.sort()
indices = np.hstack([[0], np.where(aa[:-1] != aa[1:])[0] + 1, [aa.size]])
counts = indices[1:] - indices[:-1]
best_indices = indices[:-1][counts == np.max(counts)]
return aa[best_indices]
| mode | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(a):\n a = np.asanyarray(a)\n if a.size == 0:\n return np.zeros(0, a.dtype)\n aa = a.flatten()\n aa.sort()\n indices = np.hstack([[0], np.where(aa[:-1] != aa[1:])[0] + 1, [aa.size]])\n counts = indices[1:] - indices[:-1]\n best_indices = indices[:-1][counts == np.max(counts)]\n return aa[best_indices]\n",
"role": "user"
},
{
"content": "mode",
"role": "assistant"
}
] |
def x(data, min_threshold=None, max_threshold=None, bins=256):
assert min_threshold is None or max_threshold is None or min_threshold < max_threshold
def x(threshold):
if not min_threshold is None and threshold < min_threshold:
threshold = min_threshold
if not max_threshold is None and threshold > max_threshold:
threshold = max_threshold
return threshold
data = np.atleast_1d(data)
data = data[~np.isnan(data)]
if len(data) == 0:
return (min_threshold if not min_threshold is None else
max_threshold if not max_threshold is None else 0)
elif len(data) == 1:
return constrain(data[0])
if bins > len(data):
bins = len(data)
data.sort()
var = running_variance(data)
rvar = np.flipud(running_variance(np.flipud(data)))
thresholds = data[1:len(data):len(data) // bins]
score_low = var[0:len(data) - 1:len(data) // bins] * np.arange(0, len(
data) - 1, len(data) // bins)
score_high = rvar[1:len(data):len(data) // bins] * (len(data) - np.
arange(1, len(data), len(data) // bins))
scores = score_low + score_high
if len(scores) == 0:
return constrain(thresholds[0])
index = np.argwhere(scores == scores.min()).flatten()
if len(index) == 0:
return constrain(thresholds[0])
index = index[0]
if index == 0:
index_low = 0
else:
index_low = index - 1
if index == len(thresholds) - 1:
index_high = len(thresholds) - 1
else:
index_high = index + 1
return constrain((thresholds[index_low] + thresholds[index_high]) / 2)
| otsu | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, min_threshold=None, max_threshold=None, bins=256):\n assert min_threshold is None or max_threshold is None or min_threshold < max_threshold\n\n def x(threshold):\n if not min_threshold is None and threshold < min_threshold:\n threshold = min_threshold\n if not max_threshold is None and threshold > max_threshold:\n threshold = max_threshold\n return threshold\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n if len(data) == 0:\n return (min_threshold if not min_threshold is None else \n max_threshold if not max_threshold is None else 0)\n elif len(data) == 1:\n return constrain(data[0])\n if bins > len(data):\n bins = len(data)\n data.sort()\n var = running_variance(data)\n rvar = np.flipud(running_variance(np.flipud(data)))\n thresholds = data[1:len(data):len(data) // bins]\n score_low = var[0:len(data) - 1:len(data) // bins] * np.arange(0, len(\n data) - 1, len(data) // bins)\n score_high = rvar[1:len(data):len(data) // bins] * (len(data) - np.\n arange(1, len(data), len(data) // bins))\n scores = score_low + score_high\n if len(scores) == 0:\n return constrain(thresholds[0])\n index = np.argwhere(scores == scores.min()).flatten()\n if len(index) == 0:\n return constrain(thresholds[0])\n index = index[0]\n if index == 0:\n index_low = 0\n else:\n index_low = index - 1\n if index == len(thresholds) - 1:\n index_high = len(thresholds) - 1\n else:\n index_high = index + 1\n return constrain((thresholds[index_low] + thresholds[index_high]) / 2)\n",
"role": "user"
},
{
"content": "otsu",
"role": "assistant"
}
] |
def x(data, bins=256):
data = np.atleast_1d(data)
data = data[~np.isnan(data)]
if len(data) == 0:
return 0
elif len(data) == 1:
return data[0]
if bins > len(data):
bins = len(data)
data.sort()
var = running_variance(data) + 1.0 / 512.0
rvar = np.flipud(running_variance(np.flipud(data))) + 1.0 / 512.0
thresholds = data[1:len(data):len(data) // bins]
w = np.arange(0, len(data) - 1, len(data) // bins)
score_low = w * np.log(var[0:len(data) - 1:len(data) // bins] * w * np.
sqrt(2 * np.pi * np.exp(1)))
score_low[np.isnan(score_low)] = 0
w = len(data) - np.arange(1, len(data), len(data) // bins)
score_high = w * np.log(rvar[1:len(data):len(data) // bins] * w * np.
sqrt(2 * np.pi * np.exp(1)))
score_high[np.isnan(score_high)] = 0
scores = score_low + score_high
index = np.argwhere(scores == scores.min()).flatten()
if len(index) == 0:
return thresholds[0]
index = index[0]
if index == 0:
index_low = 0
else:
index_low = index - 1
if index == len(thresholds) - 1:
index_high = len(thresholds) - 1
else:
index_high = index + 1
return (thresholds[index_low] + thresholds[index_high]) / 2
| entropy | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, bins=256):\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n if len(data) == 0:\n return 0\n elif len(data) == 1:\n return data[0]\n if bins > len(data):\n bins = len(data)\n data.sort()\n var = running_variance(data) + 1.0 / 512.0\n rvar = np.flipud(running_variance(np.flipud(data))) + 1.0 / 512.0\n thresholds = data[1:len(data):len(data) // bins]\n w = np.arange(0, len(data) - 1, len(data) // bins)\n score_low = w * np.log(var[0:len(data) - 1:len(data) // bins] * w * np.\n sqrt(2 * np.pi * np.exp(1)))\n score_low[np.isnan(score_low)] = 0\n w = len(data) - np.arange(1, len(data), len(data) // bins)\n score_high = w * np.log(rvar[1:len(data):len(data) // bins] * w * np.\n sqrt(2 * np.pi * np.exp(1)))\n score_high[np.isnan(score_high)] = 0\n scores = score_low + score_high\n index = np.argwhere(scores == scores.min()).flatten()\n if len(index) == 0:\n return thresholds[0]\n index = index[0]\n if index == 0:\n index_low = 0\n else:\n index_low = index - 1\n if index == len(thresholds) - 1:\n index_high = len(thresholds) - 1\n else:\n index_high = index + 1\n return (thresholds[index_low] + thresholds[index_high]) / 2\n",
"role": "user"
},
{
"content": "entropy",
"role": "assistant"
}
] |
def x(data, min_threshold=None, max_threshold=None, bins=128):
assert min_threshold is None or max_threshold is None or min_threshold < max_threshold
data = np.atleast_1d(data)
data = data[~np.isnan(data)]
data.sort()
if len(data) == 0:
return 0
var = running_variance(data)
rvar = np.flipud(running_variance(np.flipud(data)))
if bins > len(data):
bins = len(data)
bin_len = int(len(data) // bins)
thresholds = data[0:len(data):bin_len]
score_low = var[0:len(data):bin_len] * np.arange(0, len(data), bin_len)
score_high = rvar[0:len(data):bin_len] * (len(data) - np.arange(0, len(
data), bin_len))
cs = data.cumsum()
cs2 = (data ** 2).cumsum()
i, j = np.mgrid[0:score_low.shape[0], 0:score_high.shape[0]] * bin_len
diff = (j - i).astype(float)
w = diff
mean = (cs[j] - cs[i]) / diff
mean2 = (cs2[j] - cs2[i]) / diff
score_middle = w * (mean2 - mean ** 2)
score_middle[i >= j] = np.Inf
score = score_low[i * bins // len(data)] + score_middle + score_high[j *
bins // len(data)]
best_score = np.min(score)
best_i_j = np.argwhere(score == best_score)
return thresholds[best_i_j[0, 0]], thresholds[best_i_j[0, 1]]
| otsu3 | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(data, min_threshold=None, max_threshold=None, bins=128):\n assert min_threshold is None or max_threshold is None or min_threshold < max_threshold\n data = np.atleast_1d(data)\n data = data[~np.isnan(data)]\n data.sort()\n if len(data) == 0:\n return 0\n var = running_variance(data)\n rvar = np.flipud(running_variance(np.flipud(data)))\n if bins > len(data):\n bins = len(data)\n bin_len = int(len(data) // bins)\n thresholds = data[0:len(data):bin_len]\n score_low = var[0:len(data):bin_len] * np.arange(0, len(data), bin_len)\n score_high = rvar[0:len(data):bin_len] * (len(data) - np.arange(0, len(\n data), bin_len))\n cs = data.cumsum()\n cs2 = (data ** 2).cumsum()\n i, j = np.mgrid[0:score_low.shape[0], 0:score_high.shape[0]] * bin_len\n diff = (j - i).astype(float)\n w = diff\n mean = (cs[j] - cs[i]) / diff\n mean2 = (cs2[j] - cs2[i]) / diff\n score_middle = w * (mean2 - mean ** 2)\n score_middle[i >= j] = np.Inf\n score = score_low[i * bins // len(data)] + score_middle + score_high[j *\n bins // len(data)]\n best_score = np.min(score)\n best_i_j = np.argwhere(score == best_score)\n return thresholds[best_i_j[0, 0]], thresholds[best_i_j[0, 1]]\n",
"role": "user"
},
{
"content": "otsu3",
"role": "assistant"
}
] |
def x(var, bins, w=None, decimate=True):
if w is None:
n = len(var)
w = np.arange(0, n, n // bins) / float(n)
if decimate:
n = len(var)
var = var[0:n:n // bins]
score = w * np.log(var * w * np.sqrt(2 * np.pi * np.exp(1)))
score[np.isnan(score)] = np.Inf
return score
| entropy_score | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(var, bins, w=None, decimate=True):\n if w is None:\n n = len(var)\n w = np.arange(0, n, n // bins) / float(n)\n if decimate:\n n = len(var)\n var = var[0:n:n // bins]\n score = w * np.log(var * w * np.sqrt(2 * np.pi * np.exp(1)))\n score[np.isnan(score)] = np.Inf\n return score\n",
"role": "user"
},
{
"content": "entropy_score",
"role": "assistant"
}
] |
def x(x):
n = len(x)
m = x.cumsum() / np.arange(1, n + 1)
x_minus_mprev = x[1:] - m[:-1]
x_minus_m = x[1:] - m[1:]
s = (x_minus_mprev * x_minus_m).cumsum()
var = s / np.arange(1, n)
return np.hstack(([0], var))
| running_variance | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(x):\n n = len(x)\n m = x.cumsum() / np.arange(1, n + 1)\n x_minus_mprev = x[1:] - m[:-1]\n x_minus_m = x[1:] - m[1:]\n s = (x_minus_mprev * x_minus_m).cumsum()\n var = s / np.arange(1, n)\n return np.hstack(([0], var))\n",
"role": "user"
},
{
"content": "running_variance",
"role": "assistant"
}
] |
def x(labels):
output = numpy.zeros(labels.shape, labels.dtype)
lr_different = labels[1:, :] != labels[:-1, :]
ud_different = labels[:, 1:] != labels[:, :-1]
d1_different = labels[1:, 1:] != labels[:-1, :-1]
d2_different = labels[1:, :-1] != labels[:-1, 1:]
different = numpy.zeros(labels.shape, bool)
different[1:, :][lr_different] = True
different[:-1, :][lr_different] = True
different[:, 1:][ud_different] = True
different[:, :-1][ud_different] = True
different[1:, 1:][d1_different] = True
different[:-1, :-1][d1_different] = True
different[1:, :-1][d2_different] = True
different[:-1, 1:][d2_different] = True
different[0, :] = True
different[:, 0] = True
different[-1, :] = True
different[:, -1] = True
output[different] = labels[different]
return output
| outline | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n output = numpy.zeros(labels.shape, labels.dtype)\n lr_different = labels[1:, :] != labels[:-1, :]\n ud_different = labels[:, 1:] != labels[:, :-1]\n d1_different = labels[1:, 1:] != labels[:-1, :-1]\n d2_different = labels[1:, :-1] != labels[:-1, 1:]\n different = numpy.zeros(labels.shape, bool)\n different[1:, :][lr_different] = True\n different[:-1, :][lr_different] = True\n different[:, 1:][ud_different] = True\n different[:, :-1][ud_different] = True\n different[1:, 1:][d1_different] = True\n different[:-1, :-1][d1_different] = True\n different[1:, :-1][d2_different] = True\n different[:-1, 1:][d2_different] = True\n different[0, :] = True\n different[:, 0] = True\n different[-1, :] = True\n different[:, -1] = True\n output[different] = labels[different]\n return output\n",
"role": "user"
},
{
"content": "outline",
"role": "assistant"
}
] |
def x(point1, point2):
x1, y1 = point1
x2, y2 = point2
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
| euclidean_dist | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(point1, point2):\n x1, y1 = point1\n x2, y2 = point2\n return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)\n",
"role": "user"
},
{
"content": "euclidean_dist",
"role": "assistant"
}
] |
def x(labels):
labels = labels.astype(int)
areas = scipy.ndimage.measurements.sum(labels != 0, labels, list(range(
1, numpy.max(labels) + 1)))
existing_labels = [i for i, a in enumerate(areas, 1) if a > 0]
existing_areas = [a for a in areas if a > 0]
existing_centers = scipy.ndimage.measurements.center_of_mass(labels !=
0, labels, existing_labels)
zipped = zip(existing_labels, existing_centers, existing_areas)
features = [CellFeatures(c, a, i, labels.shape) for i, c, a in zipped if
a != 0]
return features
| from_labels | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(labels):\n labels = labels.astype(int)\n areas = scipy.ndimage.measurements.sum(labels != 0, labels, list(range(\n 1, numpy.max(labels) + 1)))\n existing_labels = [i for i, a in enumerate(areas, 1) if a > 0]\n existing_areas = [a for a in areas if a > 0]\n existing_centers = scipy.ndimage.measurements.center_of_mass(labels != \n 0, labels, existing_labels)\n zipped = zip(existing_labels, existing_centers, existing_areas)\n features = [CellFeatures(c, a, i, labels.shape) for i, c, a in zipped if\n a != 0]\n return features\n",
"role": "user"
},
{
"content": "from_labels",
"role": "assistant"
}
] |
def x(detections_1, detections_2, assignments):
traces = []
for d1n, d2n in six.iteritems(assignments):
if d1n < len(detections_1) and d2n < len(detections_2):
traces.append(Trace(detections_1[d1n], detections_2[d2n]))
return traces
| from_detections_assignment | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(detections_1, detections_2, assignments):\n traces = []\n for d1n, d2n in six.iteritems(assignments):\n if d1n < len(detections_1) and d2n < len(detections_2):\n traces.append(Trace(detections_1[d1n], detections_2[d2n]))\n return traces\n",
"role": "user"
},
{
"content": "from_detections_assignment",
"role": "assistant"
}
] |
def x(self, label_image_1, label_image_2):
self.scale = self.parameters_tracking['avgCellDiameter'] / 35.0
detections_1 = self.derive_detections(label_image_1)
detections_2 = self.derive_detections(label_image_2)
traces = self.find_initials_traces(detections_1, detections_2)
for _ in range(int(self.parameters_tracking['iterations'])):
traces = self.improve_traces(detections_1, detections_2, traces)
return [(trace.previous_cell.number, trace.current_cell.number) for
trace in traces]
| run_tracking | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, label_image_1, label_image_2):\n self.scale = self.parameters_tracking['avgCellDiameter'] / 35.0\n detections_1 = self.derive_detections(label_image_1)\n detections_2 = self.derive_detections(label_image_2)\n traces = self.find_initials_traces(detections_1, detections_2)\n for _ in range(int(self.parameters_tracking['iterations'])):\n traces = self.improve_traces(detections_1, detections_2, traces)\n return [(trace.previous_cell.number, trace.current_cell.number) for\n trace in traces]\n",
"role": "user"
},
{
"content": "run_tracking",
"role": "assistant"
}
] |
def x(self, cell_detection):
return cell_detection.area > self.parameters_tracking['big_size'
] * self.scale * self.scale
| is_cell_big | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, cell_detection):\n return cell_detection.area > self.parameters_tracking['big_size'\n ] * self.scale * self.scale\n",
"role": "user"
},
{
"content": "is_cell_big",
"role": "assistant"
}
] |
def x(cell, all_cells, k, max_dist):
all_cells = [c for c in all_cells if c != cell]
sorted_cells = sorted([(cell.distance(c), c) for c in all_cells])
return [sc[1] for sc in sorted_cells[:k] if sc[0] <= max_dist]
| find_closest_neighbours | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(cell, all_cells, k, max_dist):\n all_cells = [c for c in all_cells if c != cell]\n sorted_cells = sorted([(cell.distance(c), c) for c in all_cells])\n return [sc[1] for sc in sorted_cells[:k] if sc[0] <= max_dist]\n",
"role": "user"
},
{
"content": "find_closest_neighbours",
"role": "assistant"
}
] |
def x(self, d1, d2):
distance = euclidean_dist(d1.center, d2.center) / self.scale
area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)
return distance + self.parameters_cost_initial['area_weight'] * area_change
| calculate_basic_cost | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, d1, d2):\n distance = euclidean_dist(d1.center, d2.center) / self.scale\n area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)\n return distance + self.parameters_cost_initial['area_weight'] * area_change\n",
"role": "user"
},
{
"content": "calculate_basic_cost",
"role": "assistant"
}
] |
def x(self, d1, d2, neighbours, motions):
my_nbrs_with_motion = [n for n in neighbours[d1] if n in motions]
my_motion = d1.center[0] - d2.center[0], d1.center[1] - d2.center[1]
if my_nbrs_with_motion == []:
distance = euclidean_dist(d1.center, d2.center) / self.scale
else:
distance = min([euclidean_dist(my_motion, motions[n]) for n in
my_nbrs_with_motion]) / self.scale
area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)
return distance + self.parameters_cost_iteration['area_weight'
] * area_change
| calculate_localised_cost | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, d1, d2, neighbours, motions):\n my_nbrs_with_motion = [n for n in neighbours[d1] if n in motions]\n my_motion = d1.center[0] - d2.center[0], d1.center[1] - d2.center[1]\n if my_nbrs_with_motion == []:\n distance = euclidean_dist(d1.center, d2.center) / self.scale\n else:\n distance = min([euclidean_dist(my_motion, motions[n]) for n in\n my_nbrs_with_motion]) / self.scale\n area_change = 1 - min(d1.area, d2.area) / max(d1.area, d2.area)\n return distance + self.parameters_cost_iteration['area_weight'\n ] * area_change\n",
"role": "user"
},
{
"content": "calculate_localised_cost",
"role": "assistant"
}
] |
def x(self, detections_1, detections_2, calculate_match_cost, params):
global invalid_match
size_sum = len(detections_1) + len(detections_2)
cost_matrix = numpy.zeros((size_sum, size_sum))
cost_matrix[0:len(detections_1), len(detections_2):size_sum] = params[
'default_empty_cost'] + (1 - numpy.eye(len(detections_1), len(
detections_1))) * invalid_match
cost_matrix[len(detections_1):size_sum, 0:len(detections_2)] = params[
'default_empty_cost'] + (1 - numpy.eye(len(detections_2), len(
detections_2))) * invalid_match
for row in [i for i in range(0, len(detections_1)) if detections_1[i].
is_reliable() and (not params['check_if_big'] or self.is_cell_big(
detections_1[i]))]:
cost_matrix[row, len(detections_2):size_sum] *= params[
'default_empty_reliable_cost_mult']
for col in [i for i in range(0, len(detections_2)) if detections_2[i].
is_reliable() and (not params['check_if_big'] or self.is_cell_big(
detections_2[i]))]:
cost_matrix[len(detections_1):size_sum, col] *= params[
'default_empty_reliable_cost_mult']
def x(detection_1, detection_2):
if detection_1.distance(detection_2) <= self.parameters_tracking[
'max_distance']:
return calculate_match_cost(detection_1, detection_2)
else:
return invalid_match
cost_matrix[0:len(detections_1), 0:len(detections_2)] = [[
cost_if_not_too_far(d1, d2) for d2 in detections_2] for d1 in
detections_1]
return cost_matrix
| calculate_costs | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, detections_1, detections_2, calculate_match_cost, params):\n global invalid_match\n size_sum = len(detections_1) + len(detections_2)\n cost_matrix = numpy.zeros((size_sum, size_sum))\n cost_matrix[0:len(detections_1), len(detections_2):size_sum] = params[\n 'default_empty_cost'] + (1 - numpy.eye(len(detections_1), len(\n detections_1))) * invalid_match\n cost_matrix[len(detections_1):size_sum, 0:len(detections_2)] = params[\n 'default_empty_cost'] + (1 - numpy.eye(len(detections_2), len(\n detections_2))) * invalid_match\n for row in [i for i in range(0, len(detections_1)) if detections_1[i].\n is_reliable() and (not params['check_if_big'] or self.is_cell_big(\n detections_1[i]))]:\n cost_matrix[row, len(detections_2):size_sum] *= params[\n 'default_empty_reliable_cost_mult']\n for col in [i for i in range(0, len(detections_2)) if detections_2[i].\n is_reliable() and (not params['check_if_big'] or self.is_cell_big(\n detections_2[i]))]:\n cost_matrix[len(detections_1):size_sum, col] *= params[\n 'default_empty_reliable_cost_mult']\n\n def x(detection_1, detection_2):\n if detection_1.distance(detection_2) <= self.parameters_tracking[\n 'max_distance']:\n return calculate_match_cost(detection_1, detection_2)\n else:\n return invalid_match\n cost_matrix[0:len(detections_1), 0:len(detections_2)] = [[\n cost_if_not_too_far(d1, d2) for d2 in detections_2] for d1 in\n detections_1]\n return cost_matrix\n",
"role": "user"
},
{
"content": "calculate_costs",
"role": "assistant"
}
] |
def x(self, costs):
if costs is None or len(costs) == 0:
return dict()
n = costs.shape[0]
pairs = [(i, j) for i in range(0, n) for j in range(0, n) if costs[i, j
] < invalid_match]
costs_list = [costs[i, j] for i, j in pairs]
assignment = lapjv.lapjv(list(zip(*pairs))[0], list(zip(*pairs))[1],
costs_list)
indexes = enumerate(list(assignment[0]))
return dict([(row, col) for row, col in indexes])
| solve_assignement | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(self, costs):\n if costs is None or len(costs) == 0:\n return dict()\n n = costs.shape[0]\n pairs = [(i, j) for i in range(0, n) for j in range(0, n) if costs[i, j\n ] < invalid_match]\n costs_list = [costs[i, j] for i, j in pairs]\n assignment = lapjv.lapjv(list(zip(*pairs))[0], list(zip(*pairs))[1],\n costs_list)\n indexes = enumerate(list(assignment[0]))\n return dict([(row, col) for row, col in indexes])\n",
"role": "user"
},
{
"content": "solve_assignement",
"role": "assistant"
}
] |
def x(image, bits):
rr = np.random.RandomState()
rr.seed(0)
r = rr.normal(size=image.shape)
delta = pow(2.0, -bits)
image_copy = np.clip(image, delta, 1)
result = np.exp2(np.log2(image_copy + delta) * r + (1 - r) * np.log2(
image_copy))
result[result > 1] = 1
result[result < 0] = 0
return result
| smooth_with_noise | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, bits):\n rr = np.random.RandomState()\n rr.seed(0)\n r = rr.normal(size=image.shape)\n delta = pow(2.0, -bits)\n image_copy = np.clip(image, delta, 1)\n result = np.exp2(np.log2(image_copy + delta) * r + (1 - r) * np.log2(\n image_copy))\n result[result > 1] = 1\n result[result < 0] = 0\n return result\n",
"role": "user"
},
{
"content": "smooth_with_noise",
"role": "assistant"
}
] |
def x(image, function, mask):
not_mask = np.logical_not(mask)
bleed_over = function(mask.astype(float))
masked_image = np.zeros(image.shape, image.dtype)
masked_image[mask] = image[mask]
smoothed_image = function(masked_image)
output_image = smoothed_image / (bleed_over + np.finfo(float).eps)
return output_image
| smooth_with_function_and_mask | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(image, function, mask):\n not_mask = np.logical_not(mask)\n bleed_over = function(mask.astype(float))\n masked_image = np.zeros(image.shape, image.dtype)\n masked_image[mask] = image[mask]\n smoothed_image = function(masked_image)\n output_image = smoothed_image / (bleed_over + np.finfo(float).eps)\n return output_image\n",
"role": "user"
},
{
"content": "smooth_with_function_and_mask",
"role": "assistant"
}
] |
def x(sd, radius):
i, j = np.mgrid[-radius:radius + 1, -radius:radius + 1].astype(float
) / radius
mask = i ** 2 + j ** 2 <= 1
i = i * radius / sd
j = j * radius / sd
kernel = np.zeros((2 * radius + 1, 2 * radius + 1))
kernel[mask] = np.e ** (-(i[mask] ** 2 + j[mask] ** 2) / (2 * sd ** 2))
kernel = kernel / np.sum(kernel)
return kernel
| circular_gaussian_kernel | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(sd, radius):\n i, j = np.mgrid[-radius:radius + 1, -radius:radius + 1].astype(float\n ) / radius\n mask = i ** 2 + j ** 2 <= 1\n i = i * radius / sd\n j = j * radius / sd\n kernel = np.zeros((2 * radius + 1, 2 * radius + 1))\n kernel[mask] = np.e ** (-(i[mask] ** 2 + j[mask] ** 2) / (2 * sd ** 2))\n kernel = kernel / np.sum(kernel)\n return kernel\n",
"role": "user"
},
{
"content": "circular_gaussian_kernel",
"role": "assistant"
}
] |
def x(pixel_data, mask, clip=True):
mask = np.logical_and(mask, pixel_data > 0)
if not np.any(mask):
return pixel_data
x, y = np.mgrid[0:pixel_data.shape[0], 0:pixel_data.shape[1]]
x2 = x * x
y2 = y * y
xy = x * y
o = np.ones(pixel_data.shape)
a = np.array([x[mask], y[mask], x2[mask], y2[mask], xy[mask], o[mask]])
coeffs = scipy.linalg.lstsq(a.transpose(), pixel_data[mask])[0]
output_pixels = np.sum([(coeff * index) for coeff, index in zip(coeffs,
[x, y, x2, y2, xy, o])], 0)
if clip:
output_pixels[output_pixels > 1] = 1
output_pixels[output_pixels < 0] = 0
return output_pixels
| fit_polynomial | [
{
"content": "Given the source code of a python function, suggest a fitting name for the function.",
"role": "system"
},
{
"content": "def x(pixel_data, mask, clip=True):\n mask = np.logical_and(mask, pixel_data > 0)\n if not np.any(mask):\n return pixel_data\n x, y = np.mgrid[0:pixel_data.shape[0], 0:pixel_data.shape[1]]\n x2 = x * x\n y2 = y * y\n xy = x * y\n o = np.ones(pixel_data.shape)\n a = np.array([x[mask], y[mask], x2[mask], y2[mask], xy[mask], o[mask]])\n coeffs = scipy.linalg.lstsq(a.transpose(), pixel_data[mask])[0]\n output_pixels = np.sum([(coeff * index) for coeff, index in zip(coeffs,\n [x, y, x2, y2, xy, o])], 0)\n if clip:\n output_pixels[output_pixels > 1] = 1\n output_pixels[output_pixels < 0] = 0\n return output_pixels\n",
"role": "user"
},
{
"content": "fit_polynomial",
"role": "assistant"
}
] |