The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Couldn't cast array of type timestamp[s] to null
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp>
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in cast_array_to_feature
                  arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in <listcomp>
                  arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2116, in cast_array_to_feature
                  return array_cast(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper
                  return func(array, *args, **kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1962, in array_cast
                  raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}")
              TypeError: Couldn't cast array of type timestamp[s] to null
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

url
string
repository_url
string
labels_url
string
comments_url
string
events_url
string
html_url
string
id
int64
node_id
string
number
int64
title
string
user
dict
labels
list
state
string
locked
bool
assignee
null
assignees
sequence
milestone
null
comments
sequence
created_at
int64
updated_at
int64
closed_at
null
author_association
string
active_lock_reason
null
body
string
reactions
dict
timeline_url
string
performed_via_github_app
null
state_reason
null
draft
float64
pull_request
dict
is_pull_request
bool
https://api.github.com/repos/huggingface/datasets/issues/6740
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6740/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6740/comments
https://api.github.com/repos/huggingface/datasets/issues/6740/events
https://github.com/huggingface/datasets/issues/6740
2,193,172,074
I_kwDODunzps6CuSZq
6,740
Support for loading geotiff files as a part of the ImageFolder
{ "avatar_url": "https://avatars.githubusercontent.com/u/31362090?v=4", "events_url": "https://api.github.com/users/sunny1401/events{/privacy}", "followers_url": "https://api.github.com/users/sunny1401/followers", "following_url": "https://api.github.com/users/sunny1401/following{/other_user}", "gists_url": "https://api.github.com/users/sunny1401/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sunny1401", "id": 31362090, "login": "sunny1401", "node_id": "MDQ6VXNlcjMxMzYyMDkw", "organizations_url": "https://api.github.com/users/sunny1401/orgs", "received_events_url": "https://api.github.com/users/sunny1401/received_events", "repos_url": "https://api.github.com/users/sunny1401/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sunny1401/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sunny1401/subscriptions", "type": "User", "url": "https://api.github.com/users/sunny1401" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
1,710,792,039,000
1,710,792,039,000
null
NONE
null
### Feature request Request for adding rasterio support to load geotiff as a part of ImageFolder, instead of using PIL ### Motivation As of now, there are many datasets in HuggingFace Hub which are predominantly focussed towards RemoteSensing or are from RemoteSensing. The current ImageFolder (if I have understood correctly) uses PIL. This is not really optimized because mostly these datasets have images with many channels and additional metadata. Using PIL makes one loose it unless we provide a custom script. Hence, maybe an API could be added to have this in common? ### Your contribution If the issue is accepted - i can contribute the code, because I would like to have it automated and generalised.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6740/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6740/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6739
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6739/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6739/comments
https://api.github.com/repos/huggingface/datasets/issues/6739/events
https://github.com/huggingface/datasets/pull/6739
2,192,730,134
PR_kwDODunzps5p-Bwe
6,739
Transpose images with EXIF Orientation tag
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
open
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6739). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005295 / 0.011353 (-0.006058) | 0.003402 / 0.011008 (-0.007606) | 0.062860 / 0.038508 (0.024352) | 0.029627 / 0.023109 (0.006518) | 0.238359 / 0.275898 (-0.037539) | 0.262940 / 0.323480 (-0.060540) | 0.003077 / 0.007986 (-0.004909) | 0.002676 / 0.004328 (-0.001652) | 0.048731 / 0.004250 (0.044480) | 0.043989 / 0.037052 (0.006936) | 0.255702 / 0.258489 (-0.002787) | 0.282667 / 0.293841 (-0.011174) | 0.028019 / 0.128546 (-0.100527) | 0.010195 / 0.075646 (-0.065451) | 0.205472 / 0.419271 (-0.213800) | 0.036551 / 0.043533 (-0.006982) | 0.243282 / 0.255139 (-0.011857) | 0.261925 / 0.283200 (-0.021274) | 0.020506 / 0.141683 (-0.121177) | 1.137228 / 1.452155 (-0.314927) | 1.183935 / 1.492716 (-0.308782) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.100290 / 0.018006 (0.082284) | 0.316279 / 0.000490 (0.315790) | 0.000239 / 0.000200 (0.000039) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.017979 / 0.037411 (-0.019432) | 0.061616 / 0.014526 (0.047090) | 0.072989 / 0.176557 (-0.103568) | 0.118667 / 0.737135 (-0.618468) | 0.074266 / 0.296338 (-0.222072) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.287971 / 0.215209 (0.072762) | 2.845235 / 2.077655 (0.767581) | 1.501983 / 1.504120 (-0.002137) | 1.389824 / 1.541195 (-0.151370) | 1.415616 / 1.468490 (-0.052874) | 0.568727 / 4.584777 (-4.016050) | 2.368330 / 3.745712 (-1.377382) | 2.844329 / 5.269862 (-2.425532) | 1.809038 / 4.565676 (-2.756639) | 0.063699 / 0.424275 (-0.360576) | 0.004972 / 0.007607 (-0.002635) | 0.340092 / 0.226044 (0.114048) | 3.369146 / 2.268929 (1.100217) | 1.863423 / 55.444624 (-53.581201) | 1.608334 / 6.876477 (-5.268142) | 1.624479 / 2.142072 (-0.517594) | 0.632439 / 4.805227 (-4.172788) | 0.116862 / 6.500664 (-6.383802) | 0.042558 / 0.075469 (-0.032911) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967922 / 1.841788 (-0.873866) | 11.730612 / 8.074308 (3.656304) | 9.321333 / 10.191392 (-0.870059) | 0.142604 / 0.680424 (-0.537819) | 0.013934 / 0.534201 (-0.520267) | 0.285992 / 0.579283 (-0.293292) | 0.267639 / 0.434364 (-0.166724) | 0.324972 / 0.540337 (-0.215365) | 0.427077 / 1.386936 (-0.959859) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005806 / 0.011353 (-0.005547) | 0.003771 / 0.011008 (-0.007237) | 0.049542 / 0.038508 (0.011034) | 0.030182 / 0.023109 (0.007073) | 0.303923 / 0.275898 (0.028025) | 0.325623 / 0.323480 (0.002143) | 0.004327 / 0.007986 (-0.003659) | 0.002818 / 0.004328 (-0.001510) | 0.048237 / 0.004250 (0.043987) | 0.047490 / 0.037052 (0.010437) | 0.316556 / 0.258489 (0.058067) | 0.348352 / 0.293841 (0.054512) | 0.029444 / 0.128546 (-0.099102) | 0.010544 / 0.075646 (-0.065102) | 0.057382 / 0.419271 (-0.361890) | 0.056210 / 0.043533 (0.012677) | 0.305495 / 0.255139 (0.050356) | 0.321570 / 0.283200 (0.038370) | 0.019546 / 0.141683 (-0.122137) | 1.141732 / 1.452155 (-0.310423) | 1.223626 / 1.492716 (-0.269091) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093864 / 0.018006 (0.075858) | 0.309715 / 0.000490 (0.309226) | 0.000217 / 0.000200 (0.000017) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022047 / 0.037411 (-0.015364) | 0.074885 / 0.014526 (0.060359) | 0.088440 / 0.176557 (-0.088117) | 0.127033 / 0.737135 (-0.610103) | 0.089048 / 0.296338 (-0.207290) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292624 / 0.215209 (0.077415) | 2.877592 / 2.077655 (0.799937) | 1.607036 / 1.504120 (0.102916) | 1.487819 / 1.541195 (-0.053376) | 1.517318 / 1.468490 (0.048828) | 0.553321 / 4.584777 (-4.031456) | 2.415577 / 3.745712 (-1.330135) | 2.691411 / 5.269862 (-2.578450) | 1.743395 / 4.565676 (-2.822282) | 0.062187 / 0.424275 (-0.362088) | 0.005073 / 0.007607 (-0.002534) | 0.342907 / 0.226044 (0.116863) | 3.402054 / 2.268929 (1.133126) | 1.979481 / 55.444624 (-53.465143) | 1.702885 / 6.876477 (-5.173592) | 1.868279 / 2.142072 (-0.273794) | 0.640095 / 4.805227 (-4.165132) | 0.117138 / 6.500664 (-6.383526) | 0.042197 / 0.075469 (-0.033272) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007495 / 1.841788 (-0.834292) | 12.037309 / 8.074308 (3.963001) | 10.227670 / 10.191392 (0.036278) | 0.149533 / 0.680424 (-0.530891) | 0.015282 / 0.534201 (-0.518919) | 0.287357 / 0.579283 (-0.291926) | 0.285109 / 0.434364 (-0.149255) | 0.324027 / 0.540337 (-0.216311) | 0.442482 / 1.386936 (-0.944454) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#19b40860acf3b3ba8db727fcf3b1b99ebb8d7e33 \"CML watermark\")\n" ]
1,710,780,186,000
1,710,781,297,000
null
CONTRIBUTOR
null
Closes https://github.com/huggingface/datasets/issues/6252
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6739/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6739/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6739.diff", "html_url": "https://github.com/huggingface/datasets/pull/6739", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6739.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6739" }
true
https://api.github.com/repos/huggingface/datasets/issues/6738
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6738/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6738/comments
https://api.github.com/repos/huggingface/datasets/issues/6738/events
https://github.com/huggingface/datasets/issues/6738
2,192,386,536
I_kwDODunzps6CrSno
6,738
Dict feature is non-nullable while nested dict feature is
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna" }
[]
open
false
null
[]
null
[ "It looks like a bug, by default every feature should be nullable.", "I've linked a PR with a fix :)", "@mariosasko awesome thank you!" ]
1,710,772,307,000
1,710,772,307,000
null
CONTRIBUTOR
null
When i try to create a `Dataset` object with None values inside a dict column, like this: ```python from datasets import Dataset, Features, Value Dataset.from_dict( { "dict": [{"a": 0, "b": 0}, None], }, features=Features( {"dict": {"a": Value("int16"), "b": Value("int16")}} ) ) ``` i get `ValueError: Got None but expected a dictionary instead`. At the same time, having None in _nested_ dict feature works, for example, this doesn't throw any errors: ```python from datasets import Dataset, Features, Value, Sequence dataset = Dataset.from_dict( { "list_dict": [[{"a": 0, "b": 0}], None], "sequence_dict": [[{"a": 0, "b": 0}], None], }, features=Features({ "list_dict": [{"a": Value("int16"), "b": Value("int16")}], "sequence_dict": Sequence({"a": Value("int16"), "b": Value("int16")}), }) ) ``` Other types of features also seem to be nullable (but I haven't checked all of them). Version of `datasets` is the latest atm (2.18.0) Is this an expected behavior or a bug?
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6738/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6738/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6737
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6737/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6737/comments
https://api.github.com/repos/huggingface/datasets/issues/6737/events
https://github.com/huggingface/datasets/issues/6737
2,190,198,425
I_kwDODunzps6Ci8aZ
6,737
Invalid pattern: '**' can only be an entire path component
{ "avatar_url": "https://avatars.githubusercontent.com/u/28976175?v=4", "events_url": "https://api.github.com/users/JPonsa/events{/privacy}", "followers_url": "https://api.github.com/users/JPonsa/followers", "following_url": "https://api.github.com/users/JPonsa/following{/other_user}", "gists_url": "https://api.github.com/users/JPonsa/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/JPonsa", "id": 28976175, "login": "JPonsa", "node_id": "MDQ6VXNlcjI4OTc2MTc1", "organizations_url": "https://api.github.com/users/JPonsa/orgs", "received_events_url": "https://api.github.com/users/JPonsa/received_events", "repos_url": "https://api.github.com/users/JPonsa/repos", "site_admin": false, "starred_url": "https://api.github.com/users/JPonsa/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/JPonsa/subscriptions", "type": "User", "url": "https://api.github.com/users/JPonsa" }
[]
open
false
null
[]
null
[ "I couldn't reproduce the issue on my side on MacOS, I guess the issue comes from the recent `fsspec` on Windows.\r\n\r\nCan you try downgrading to `fsspec==2023.9.2` for now ? It would also be great to investigate this and see if we need a fix in `datasets` or `fsspec`" ]
1,710,617,326,000
1,710,762,566,000
null
NONE
null
### Describe the bug ValueError: Invalid pattern: '**' can only be an entire path component when loading any dataset ### Steps to reproduce the bug import datasets ds = datasets.load_dataset("TokenBender/code_instructions_122k_alpaca_style") ### Expected behavior loading the dataset successfully ### Environment info - `datasets` version: 2.18.0 - Platform: Windows-10-10.0.22631-SP0 - Python version: 3.11.7 - `huggingface_hub` version: 0.20.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2023.12.2
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6737/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6737/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6736
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6736/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6736/comments
https://api.github.com/repos/huggingface/datasets/issues/6736/events
https://github.com/huggingface/datasets/issues/6736
2,190,181,422
I_kwDODunzps6Ci4Qu
6,736
Mosaic Streaming (MDS) Support
{ "avatar_url": "https://avatars.githubusercontent.com/u/2498509?v=4", "events_url": "https://api.github.com/users/siddk/events{/privacy}", "followers_url": "https://api.github.com/users/siddk/followers", "following_url": "https://api.github.com/users/siddk/following{/other_user}", "gists_url": "https://api.github.com/users/siddk/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/siddk", "id": 2498509, "login": "siddk", "node_id": "MDQ6VXNlcjI0OTg1MDk=", "organizations_url": "https://api.github.com/users/siddk/orgs", "received_events_url": "https://api.github.com/users/siddk/received_events", "repos_url": "https://api.github.com/users/siddk/repos", "site_admin": false, "starred_url": "https://api.github.com/users/siddk/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/siddk/subscriptions", "type": "User", "url": "https://api.github.com/users/siddk" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[ "Hi ! that would be great :) Though note that `datasets` doesn't implement format-specific resuming when streaming, so in general I think it's better if users can use the mosaic-streaming library to read their MDS datasets. I wonder if they support `hf://` paths though...\r\n\r\nAnyway for those interested, the code for WebDataset is a single file here: https://github.com/huggingface/datasets/blob/main/src/datasets/packaged_modules/webdataset/webdataset.py.\r\n\r\nIt implements `_split_generators` that downloads files and returns the lists of splits (train/validation/test) and `_split_generators` to generate examples (dicts) from the downloaded files. Streaming is automatically supported by making download steps lazy and by extending `open()` to work with remote URLs." ]
1,710,614,524,000
1,710,774,814,000
null
NONE
null
### Feature request I'm a huge fan of the current HF Datasets `webdataset` integration (especially the built-in streaming support). However, I'd love to upload some robotics and multimodal datasets I've processed for use with [Mosaic Streaming](https://docs.mosaicml.com/projects/streaming/en/stable/), specifically their [MDS Format](https://docs.mosaicml.com/projects/streaming/en/stable/fundamentals/dataset_format.html#mds). Because the shard files have similar semantics to WebDataset, I'm hoping that adding such support won't be too much trouble? ### Motivation One of the downsides with WebDataset is a lack of out-of-the-box determinism (especially for large-scale training and reproducibility), easy job resumption, and the ability to quickly debug / visualize individual examples. Mosaic Streaming provides a [great interface for this out of the box](https://docs.mosaicml.com/projects/streaming/en/stable/#key-features), so I'd love to see it supported in HF Datasets. ### Your contribution Happy to help test things / provide example data. Can potentially submit a PR if maintainers could point me to the necessary WebDataset logic / steps for adding a new streaming format!
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6736/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6736/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6735
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6735/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6735/comments
https://api.github.com/repos/huggingface/datasets/issues/6735/events
https://github.com/huggingface/datasets/pull/6735
2,189,132,932
PR_kwDODunzps5px84g
6,735
Add `mode` parameter to `Image` feature
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6735). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005009 / 0.011353 (-0.006344) | 0.003547 / 0.011008 (-0.007461) | 0.063014 / 0.038508 (0.024506) | 0.027699 / 0.023109 (0.004589) | 0.247140 / 0.275898 (-0.028758) | 0.273610 / 0.323480 (-0.049870) | 0.003115 / 0.007986 (-0.004871) | 0.002712 / 0.004328 (-0.001616) | 0.049134 / 0.004250 (0.044883) | 0.041582 / 0.037052 (0.004530) | 0.269992 / 0.258489 (0.011503) | 0.294516 / 0.293841 (0.000675) | 0.027818 / 0.128546 (-0.100728) | 0.010568 / 0.075646 (-0.065078) | 0.207710 / 0.419271 (-0.211561) | 0.035767 / 0.043533 (-0.007766) | 0.260058 / 0.255139 (0.004919) | 0.277615 / 0.283200 (-0.005585) | 0.020192 / 0.141683 (-0.121491) | 1.116863 / 1.452155 (-0.335292) | 1.156868 / 1.492716 (-0.335848) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095087 / 0.018006 (0.077081) | 0.303249 / 0.000490 (0.302759) | 0.000215 / 0.000200 (0.000015) | 0.000053 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018866 / 0.037411 (-0.018545) | 0.063853 / 0.014526 (0.049328) | 0.073863 / 0.176557 (-0.102693) | 0.121399 / 0.737135 (-0.615737) | 0.076014 / 0.296338 (-0.220325) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289843 / 0.215209 (0.074634) | 2.844085 / 2.077655 (0.766431) | 1.528022 / 1.504120 (0.023902) | 1.397352 / 1.541195 (-0.143843) | 1.394676 / 1.468490 (-0.073814) | 0.555899 / 4.584777 (-4.028878) | 2.354010 / 3.745712 (-1.391702) | 2.737715 / 5.269862 (-2.532146) | 1.731260 / 4.565676 (-2.834416) | 0.062315 / 0.424275 (-0.361960) | 0.004920 / 0.007607 (-0.002687) | 0.342921 / 0.226044 (0.116877) | 3.416529 / 2.268929 (1.147600) | 1.862941 / 55.444624 (-53.581684) | 1.599661 / 6.876477 (-5.276816) | 1.617200 / 2.142072 (-0.524873) | 0.635129 / 4.805227 (-4.170099) | 0.121651 / 6.500664 (-6.379013) | 0.041867 / 0.075469 (-0.033602) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.990825 / 1.841788 (-0.850962) | 11.435576 / 8.074308 (3.361268) | 9.490194 / 10.191392 (-0.701198) | 0.133295 / 0.680424 (-0.547129) | 0.014061 / 0.534201 (-0.520140) | 0.288648 / 0.579283 (-0.290635) | 0.268874 / 0.434364 (-0.165490) | 0.323288 / 0.540337 (-0.217049) | 0.426090 / 1.386936 (-0.960846) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006712 / 0.011353 (-0.004641) | 0.003723 / 0.011008 (-0.007285) | 0.049814 / 0.038508 (0.011306) | 0.039323 / 0.023109 (0.016213) | 0.279244 / 0.275898 (0.003346) | 0.297139 / 0.323480 (-0.026341) | 0.004197 / 0.007986 (-0.003788) | 0.002753 / 0.004328 (-0.001576) | 0.048820 / 0.004250 (0.044569) | 0.049593 / 0.037052 (0.012541) | 0.287247 / 0.258489 (0.028758) | 0.338078 / 0.293841 (0.044237) | 0.029303 / 0.128546 (-0.099243) | 0.010292 / 0.075646 (-0.065354) | 0.057852 / 0.419271 (-0.361419) | 0.053390 / 0.043533 (0.009857) | 0.275155 / 0.255139 (0.020016) | 0.292891 / 0.283200 (0.009692) | 0.020007 / 0.141683 (-0.121676) | 1.161731 / 1.452155 (-0.290424) | 1.232162 / 1.492716 (-0.260555) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092848 / 0.018006 (0.074842) | 0.301180 / 0.000490 (0.300690) | 0.000236 / 0.000200 (0.000036) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022477 / 0.037411 (-0.014934) | 0.077012 / 0.014526 (0.062486) | 0.087335 / 0.176557 (-0.089222) | 0.126761 / 0.737135 (-0.610374) | 0.089249 / 0.296338 (-0.207090) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290722 / 0.215209 (0.075513) | 2.884485 / 2.077655 (0.806830) | 1.565775 / 1.504120 (0.061656) | 1.442369 / 1.541195 (-0.098825) | 1.453995 / 1.468490 (-0.014495) | 0.563193 / 4.584777 (-4.021584) | 2.413610 / 3.745712 (-1.332102) | 2.684567 / 5.269862 (-2.585295) | 1.753322 / 4.565676 (-2.812354) | 0.061879 / 0.424275 (-0.362396) | 0.005080 / 0.007607 (-0.002527) | 0.347274 / 0.226044 (0.121229) | 3.435836 / 2.268929 (1.166907) | 1.937893 / 55.444624 (-53.506731) | 1.657824 / 6.876477 (-5.218653) | 1.777767 / 2.142072 (-0.364305) | 0.656757 / 4.805227 (-4.148471) | 0.117144 / 6.500664 (-6.383520) | 0.040691 / 0.075469 (-0.034778) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.012435 / 1.841788 (-0.829353) | 12.038001 / 8.074308 (3.963693) | 10.363947 / 10.191392 (0.172555) | 0.140711 / 0.680424 (-0.539713) | 0.014937 / 0.534201 (-0.519264) | 0.291070 / 0.579283 (-0.288213) | 0.277180 / 0.434364 (-0.157184) | 0.327433 / 0.540337 (-0.212904) | 0.439767 / 1.386936 (-0.947169) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0b55ec53e980855d71ae22f8b3d12b2a0d476a51 \"CML watermark\")\n" ]
1,710,523,272,000
1,710,776,868,000
null
CONTRIBUTOR
null
Fix https://github.com/huggingface/datasets/issues/6675
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6735/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6735/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6735.diff", "html_url": "https://github.com/huggingface/datasets/pull/6735", "merged_at": "2024-03-18T15:41:33", "patch_url": "https://github.com/huggingface/datasets/pull/6735.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6735" }
true
https://api.github.com/repos/huggingface/datasets/issues/6734
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6734/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6734/comments
https://api.github.com/repos/huggingface/datasets/issues/6734/events
https://github.com/huggingface/datasets/issues/6734
2,187,646,694
I_kwDODunzps6CZNbm
6,734
Tokenization slows towards end of dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/98723285?v=4", "events_url": "https://api.github.com/users/ethansmith2000/events{/privacy}", "followers_url": "https://api.github.com/users/ethansmith2000/followers", "following_url": "https://api.github.com/users/ethansmith2000/following{/other_user}", "gists_url": "https://api.github.com/users/ethansmith2000/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ethansmith2000", "id": 98723285, "login": "ethansmith2000", "node_id": "U_kgDOBeJl1Q", "organizations_url": "https://api.github.com/users/ethansmith2000/orgs", "received_events_url": "https://api.github.com/users/ethansmith2000/received_events", "repos_url": "https://api.github.com/users/ethansmith2000/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ethansmith2000/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ethansmith2000/subscriptions", "type": "User", "url": "https://api.github.com/users/ethansmith2000" }
[]
open
false
null
[]
null
[ "Hi ! First note that if the dataset is not heterogeneous / shuffled, there might be places in the data with shorter texts that are faster to tokenize.\r\n\r\nMoreover, the way `num_proc` works is by slicing the dataset and passing each slice to a process to run the `map()` function. So at the very end of `map()`, some processes might have finished transforming their slice of data while others are still running, causing the throughput to become lower.", "I did see some comments about how num_proc=None could help and outputting numpy arrays can also help in the docs, but this seems quite odd now dropping down to 1it/s\r\n\r\n```bash\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46048888/46390354 [12:33:30<4:20:32, 21.84 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46049888/46390354 [12:36:11<8:37:59, 10.95 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46050888/46390354 [12:46:35<24:56:56, 3.78 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46051888/46390354 [12:56:43<35:08:10, 2.68 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46052888/46390354 [13:06:58<42:05:41, 2.23 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46053888/46390354 [13:16:01<44:40:18, 2.09 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46054888/46390354 [13:25:11<46:35:28, 2.00 examples/s]\r\nRunning tokenizer on dataset (num_proc=48): 99%|█████████▉| 46055888/46390354 [13:34:23<47:55:34, 1.94 examples/s]\r\n```\r\n\r\n" ]
1,710,473,256,000
1,710,516,479,000
null
NONE
null
### Describe the bug Mapped tokenization slows down substantially towards end of dataset. train set started off very slow, caught up to 20k then tapered off til the end. what's particularly strange is that the tokenization crashed a few times before due to errors with invalid tokens somewhere or corrupted downloads, and the speed ups/downs consistently happened the same times ```bash Running tokenizer on dataset (num_proc=48): 0%| | 847000/881416735 [12:18<252:45:45, 967.72 examples/s] Running tokenizer on dataset (num_proc=48): 0%| | 848000/881416735 [12:19<224:16:10, 1090.66 examples/s] Running tokenizer on dataset (num_proc=48): 10%|▉ | 84964000/881416735 [3:48:00<11:21:34, 19476.01 examples/s] Running tokenizer on dataset (num_proc=48): 10%|▉ | 84967000/881416735 [3:48:00<12:04:01, 18333.79 examples/s] Running tokenizer on dataset (num_proc=48): 61%|██████ | 538631977/881416735 [13:46:40<27:50:04, 3420.84 examples/s] Running tokenizer on dataset (num_proc=48): 61%|██████ | 538632977/881416735 [13:46:40<23:48:20, 3999.77 examples/s] Running tokenizer on dataset (num_proc=48): 100%|█████████▉| 881365886/881416735 [38:30:19<04:34, 185.10 examples/s] Running tokenizer on dataset (num_proc=48): 100%|█████████▉| 881366886/881416735 [38:30:25<04:36, 180.57 examples/s] ``` and validation set as well ```bash Running tokenizer on dataset (num_proc=48): 90%|████████▉ | 41544000/46390354 [28:44<02:37, 30798.76 examples/s] Running tokenizer on dataset (num_proc=48): 90%|████████▉ | 41550000/46390354 [28:44<02:08, 37698.08 examples/s] Running tokenizer on dataset (num_proc=48): 96%|█████████▋| 44747422/46390354 [2:15:48<12:22:44, 36.87 examples/s] Running tokenizer on dataset (num_proc=48): 96%|█████████▋| 44747422/46390354 [2:16:00<12:22:44, 36.87 examples/s] ``` ### Steps to reproduce the bug using the following kwargs ```python with accelerator.main_process_first(): lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=48 load_from_cache_file=True, desc=f"Grouping texts in chunks of {block_size}", ) ``` running through slurm script ```bash #SBATCH --partition=gpu-nvidia-a100 #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --gpus-per-task=8 #SBATCH --cpus-per-task=96 ``` using this dataset https://huggingface.co./datasets/togethercomputer/RedPajama-Data-1T ### Expected behavior Constant speed throughout ### Environment info - `datasets` version: 2.15.0 - Platform: Linux-5.15.0-1049-aws-x86_64-with-glibc2.10 - Python version: 3.8.18 - `huggingface_hub` version: 0.19.4 - PyArrow version: 14.0.1 - Pandas version: 2.0.3 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6734/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6734/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6733
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6733/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6733/comments
https://api.github.com/repos/huggingface/datasets/issues/6733/events
https://github.com/huggingface/datasets/issues/6733
2,186,811,724
I_kwDODunzps6CWBlM
6,733
EmptyDatasetError when loading dataset downloaded with HuggingFace cli
{ "avatar_url": "https://avatars.githubusercontent.com/u/77196999?v=4", "events_url": "https://api.github.com/users/StwayneXG/events{/privacy}", "followers_url": "https://api.github.com/users/StwayneXG/followers", "following_url": "https://api.github.com/users/StwayneXG/following{/other_user}", "gists_url": "https://api.github.com/users/StwayneXG/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/StwayneXG", "id": 77196999, "login": "StwayneXG", "node_id": "MDQ6VXNlcjc3MTk2OTk5", "organizations_url": "https://api.github.com/users/StwayneXG/orgs", "received_events_url": "https://api.github.com/users/StwayneXG/received_events", "repos_url": "https://api.github.com/users/StwayneXG/repos", "site_admin": false, "starred_url": "https://api.github.com/users/StwayneXG/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/StwayneXG/subscriptions", "type": "User", "url": "https://api.github.com/users/StwayneXG" }
[]
open
false
null
[]
null
[ "Hi! `datasets` is not compatible with `huggingface_hub`'s cache structure, hence the error.\r\n\r\nYou can track https://github.com/huggingface/datasets/issues/5080 to get notified when this is implemented." ]
1,710,434,487,000
1,710,526,142,000
null
NONE
null
### Describe the bug I am using a cluster that does not have access to the internet when given a job. I tried downloading the dataset using the huggingface-cli command and then loading it with load_dataset but I get an error: ```raise EmptyDatasetError(f"The directory at {base_path} doesn't contain any data files") from None``` The dataset I'm using is "lmsys/chatbot_arena_conversations". The folder structure is - README.md - data - train-00000-of-00001-cced8514c7ed782a.parquet ### Steps to reproduce the bug 1. Download dataset using HuggingFace CLI: ```huggingface-cli download lmsys/chatbot_arena_conversations --local-dir ./lmsys/chatbot_arena_conversations``` 2. In Python ``` from datasets import load_dataset load_dataset("lmsys/chatbot_arena_conversations") ``` ### Expected behavior Should return a Dataset Dict in the form of ``` DatasetDict({ train: Dataset({ features: [...], num_rows: 33,000 }) }) ``` ### Environment info Python 3.11.5 Datasets 2.18.0 Transformers 4.38.2 Pytorch 2.2.0 Pyarrow 15.0.1 Rocky Linux release 8.9 (Green Obsidian)
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6733/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6733/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6731
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6731/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6731/comments
https://api.github.com/repos/huggingface/datasets/issues/6731/events
https://github.com/huggingface/datasets/issues/6731
2,182,844,673
I_kwDODunzps6CG5EB
6,731
Unexpected behavior when using load_dataset with streaming=True in a for loop
{ "avatar_url": "https://avatars.githubusercontent.com/u/42908296?v=4", "events_url": "https://api.github.com/users/uApiv/events{/privacy}", "followers_url": "https://api.github.com/users/uApiv/followers", "following_url": "https://api.github.com/users/uApiv/following{/other_user}", "gists_url": "https://api.github.com/users/uApiv/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/uApiv", "id": 42908296, "login": "uApiv", "node_id": "MDQ6VXNlcjQyOTA4Mjk2", "organizations_url": "https://api.github.com/users/uApiv/orgs", "received_events_url": "https://api.github.com/users/uApiv/received_events", "repos_url": "https://api.github.com/users/uApiv/repos", "site_admin": false, "starred_url": "https://api.github.com/users/uApiv/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/uApiv/subscriptions", "type": "User", "url": "https://api.github.com/users/uApiv" }
[]
open
false
null
[]
null
[ "This is normal behavior in python when using `lambda`: the `i` defined in your `lambda` refers to the global variable `i` in your loop, and `i` equals to `1` when you run your `for e in res[0]` line.\r\n\r\nYou should pass `fn_kwargs` that will be passed to your `lambda` instead of using the global variable:\r\n\r\n```python\r\nfrom datasets import load_dataset\r\n\r\nres=[]\r\nfor i in [0,1]:\r\n di = load_dataset(\r\n \"json\", \r\n data_files='path_to.json', \r\n split='train',\r\n streaming=True, \r\n ).map(lambda x, source: {\"source\": source}, fn_kwargs={\"source\": i})\r\n\r\n res.append(di)\r\n\r\nfor e in res[0]:\r\n print(e)\r\n```\r\n\r\nThis doesn't happen in non-streaming since in that case `map` is executed while the variable `i` has the right value. In streaming mode, `map` is executed on-the-fly when you iterate on the dataset." ]
1,710,286,003,000
1,710,430,022,000
null
NONE
null
### Describe the bug ### My Code ``` from datasets import load_dataset res=[] for i in [0,1]: di=load_dataset( "json", data_files='path_to.json', split='train', streaming=True, ).map(lambda x: {"source": i}) res.append(di) for e in res[0]: print(e) ``` ### Unexpected Behavior Data in `res[0]` has `source=1`. However the expected value is 0. ### FYI I further switch `streaming` to `False`. And the output value is as expected (0). So there may exist bugs in setting `streaming=True` in a for loop. ### Environment Python 3.8.0 datasets==2.18.0 transformers==4.28.1 ### Steps to reproduce the bug 1. Create a Json file with any content. 2. Run the provided code. 3. Switch `streaming` to `False` and run again to see the expected behavior. ### Expected behavior The expected behavior is the data are mapped with its corresponding value in the for loop. ### Environment info Python 3.8.0 datasets==2.18.0 transformers==4.28.1 Ubuntu 20.04
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6731/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6731/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6730
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6730/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6730/comments
https://api.github.com/repos/huggingface/datasets/issues/6730/events
https://github.com/huggingface/datasets/pull/6730
2,181,881,499
PR_kwDODunzps5pZDsB
6,730
Deprecate Pandas builder
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6730). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005301 / 0.011353 (-0.006052) | 0.003701 / 0.011008 (-0.007307) | 0.065830 / 0.038508 (0.027322) | 0.029791 / 0.023109 (0.006682) | 0.251676 / 0.275898 (-0.024222) | 0.283824 / 0.323480 (-0.039655) | 0.003083 / 0.007986 (-0.004903) | 0.004144 / 0.004328 (-0.000185) | 0.053670 / 0.004250 (0.049419) | 0.042020 / 0.037052 (0.004968) | 0.266389 / 0.258489 (0.007899) | 0.296740 / 0.293841 (0.002900) | 0.028320 / 0.128546 (-0.100226) | 0.010604 / 0.075646 (-0.065042) | 0.219881 / 0.419271 (-0.199390) | 0.036216 / 0.043533 (-0.007317) | 0.255718 / 0.255139 (0.000579) | 0.275808 / 0.283200 (-0.007392) | 0.018407 / 0.141683 (-0.123276) | 1.140007 / 1.452155 (-0.312148) | 1.174005 / 1.492716 (-0.318711) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.091230 / 0.018006 (0.073224) | 0.300704 / 0.000490 (0.300215) | 0.000207 / 0.000200 (0.000007) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018950 / 0.037411 (-0.018461) | 0.062177 / 0.014526 (0.047651) | 0.073968 / 0.176557 (-0.102589) | 0.122161 / 0.737135 (-0.614974) | 0.075001 / 0.296338 (-0.221338) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285675 / 0.215209 (0.070466) | 2.794176 / 2.077655 (0.716522) | 1.478666 / 1.504120 (-0.025454) | 1.361843 / 1.541195 (-0.179351) | 1.383847 / 1.468490 (-0.084643) | 0.568610 / 4.584777 (-4.016167) | 2.402351 / 3.745712 (-1.343361) | 2.860772 / 5.269862 (-2.409089) | 1.768588 / 4.565676 (-2.797089) | 0.063257 / 0.424275 (-0.361018) | 0.004998 / 0.007607 (-0.002609) | 0.340897 / 0.226044 (0.114853) | 3.340238 / 2.268929 (1.071310) | 1.836434 / 55.444624 (-53.608190) | 1.556844 / 6.876477 (-5.319633) | 1.610685 / 2.142072 (-0.531388) | 0.644941 / 4.805227 (-4.160286) | 0.117593 / 6.500664 (-6.383072) | 0.042803 / 0.075469 (-0.032666) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979181 / 1.841788 (-0.862607) | 11.901365 / 8.074308 (3.827057) | 9.587943 / 10.191392 (-0.603449) | 0.139648 / 0.680424 (-0.540776) | 0.013904 / 0.534201 (-0.520297) | 0.291249 / 0.579283 (-0.288034) | 0.260737 / 0.434364 (-0.173627) | 0.326000 / 0.540337 (-0.214338) | 0.433459 / 1.386936 (-0.953477) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005503 / 0.011353 (-0.005850) | 0.003738 / 0.011008 (-0.007270) | 0.049137 / 0.038508 (0.010629) | 0.031484 / 0.023109 (0.008374) | 0.265783 / 0.275898 (-0.010115) | 0.295125 / 0.323480 (-0.028354) | 0.004074 / 0.007986 (-0.003911) | 0.002707 / 0.004328 (-0.001622) | 0.048340 / 0.004250 (0.044089) | 0.045453 / 0.037052 (0.008401) | 0.276500 / 0.258489 (0.018011) | 0.312002 / 0.293841 (0.018162) | 0.029139 / 0.128546 (-0.099408) | 0.010445 / 0.075646 (-0.065201) | 0.057486 / 0.419271 (-0.361785) | 0.052386 / 0.043533 (0.008853) | 0.267099 / 0.255139 (0.011960) | 0.283193 / 0.283200 (-0.000007) | 0.018368 / 0.141683 (-0.123315) | 1.136207 / 1.452155 (-0.315948) | 1.178418 / 1.492716 (-0.314298) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089270 / 0.018006 (0.071264) | 0.301087 / 0.000490 (0.300598) | 0.000208 / 0.000200 (0.000008) | 0.000050 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021991 / 0.037411 (-0.015421) | 0.075357 / 0.014526 (0.060831) | 0.087781 / 0.176557 (-0.088775) | 0.126923 / 0.737135 (-0.610212) | 0.088491 / 0.296338 (-0.207847) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.293653 / 0.215209 (0.078444) | 2.872156 / 2.077655 (0.794501) | 1.559229 / 1.504120 (0.055109) | 1.441201 / 1.541195 (-0.099993) | 1.472642 / 1.468490 (0.004152) | 0.588463 / 4.584777 (-3.996314) | 2.447685 / 3.745712 (-1.298028) | 2.755752 / 5.269862 (-2.514110) | 1.796591 / 4.565676 (-2.769086) | 0.068024 / 0.424275 (-0.356252) | 0.005148 / 0.007607 (-0.002459) | 0.343572 / 0.226044 (0.117528) | 3.347856 / 2.268929 (1.078927) | 1.945977 / 55.444624 (-53.498647) | 1.648953 / 6.876477 (-5.227524) | 1.804468 / 2.142072 (-0.337604) | 0.651034 / 4.805227 (-4.154193) | 0.118130 / 6.500664 (-6.382534) | 0.041019 / 0.075469 (-0.034450) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.020461 / 1.841788 (-0.821327) | 12.514237 / 8.074308 (4.439929) | 10.696276 / 10.191392 (0.504884) | 0.154549 / 0.680424 (-0.525874) | 0.015964 / 0.534201 (-0.518237) | 0.290392 / 0.579283 (-0.288891) | 0.276074 / 0.434364 (-0.158290) | 0.326253 / 0.540337 (-0.214085) | 0.440383 / 1.386936 (-0.946553) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#29ffc270da34de70cf8e28b2ebeadba1c06d8730 \"CML watermark\")\n" ]
1,710,256,333,000
1,710,265,353,000
null
CONTRIBUTOR
null
The Pandas packaged builder is undocumented and relies on `pickle` to read the data, making it **unsafe**. Moreover, I haven't seen a single instance of this builder being used (not even using the GH/Hub search), so we should deprecate it.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6730/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6730/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6730.diff", "html_url": "https://github.com/huggingface/datasets/pull/6730", "merged_at": "2024-03-12T17:36:24", "patch_url": "https://github.com/huggingface/datasets/pull/6730.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6730" }
true
https://api.github.com/repos/huggingface/datasets/issues/6729
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6729/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6729/comments
https://api.github.com/repos/huggingface/datasets/issues/6729/events
https://github.com/huggingface/datasets/issues/6729
2,180,237,159
I_kwDODunzps6B88dn
6,729
Support zipfiles that span multiple disks?
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[ { "color": "d876e3", "default": true, "description": "Further information is requested", "id": 1935892912, "name": "question", "node_id": "MDU6TGFiZWwxOTM1ODkyOTEy", "url": "https://api.github.com/repos/huggingface/datasets/labels/question" } ]
open
false
null
[]
null
[]
1,710,191,261,000
1,710,191,266,000
null
CONTRIBUTOR
null
See https://huggingface.co./datasets/PhilEO-community/PhilEO-downstream The dataset viewer gives the following error: ``` Error code: ConfigNamesError Exception: BadZipFile Message: zipfiles that span multiple disks are not supported Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 67, in compute_config_names_response get_dataset_config_names( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 347, in get_dataset_config_names dataset_module = dataset_module_factory( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1871, in dataset_module_factory raise e1 from None File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1846, in dataset_module_factory return HubDatasetModuleFactoryWithoutScript( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1240, in get_module module_name, default_builder_kwargs = infer_module_for_data_files( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 584, in infer_module_for_data_files split_modules = { File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 585, in <dictcomp> split: infer_module_for_data_files_list(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 526, in infer_module_for_data_files_list return infer_module_for_data_files_list_in_archives(data_files_list, download_config=download_config) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 554, in infer_module_for_data_files_list_in_archives for f in xglob(extracted, recursive=True, download_config=download_config)[ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 576, in xglob fs, *_ = fsspec.get_fs_token_paths(urlpath, storage_options=storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/core.py", line 622, in get_fs_token_paths fs = filesystem(protocol, **inkwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/registry.py", line 290, in filesystem return cls(**storage_options) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/spec.py", line 79, in __call__ obj = super().__call__(*args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/fsspec/implementations/zip.py", line 57, in __init__ self.zip = zipfile.ZipFile( File "/usr/local/lib/python3.9/zipfile.py", line 1266, in __init__ self._RealGetContents() File "/usr/local/lib/python3.9/zipfile.py", line 1329, in _RealGetContents endrec = _EndRecData(fp) File "/usr/local/lib/python3.9/zipfile.py", line 286, in _EndRecData return _EndRecData64(fpin, -sizeEndCentDir, endrec) File "/usr/local/lib/python3.9/zipfile.py", line 232, in _EndRecData64 raise BadZipFile("zipfiles that span multiple disks are not supported") zipfile.BadZipFile: zipfiles that span multiple disks are not supported ``` The files (https://huggingface.co./datasets/PhilEO-community/PhilEO-downstream/tree/main/data) are: <img width="629" alt="Capture d’écran 2024-03-11 à 22 07 30" src="https://github.com/huggingface/datasets/assets/1676121/0bb15a51-d54f-4d73-8572-e427ea644b36">
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6729/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6729/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6728
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6728/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6728/comments
https://api.github.com/repos/huggingface/datasets/issues/6728/events
https://github.com/huggingface/datasets/issues/6728
2,178,607,012
I_kwDODunzps6B2uek
6,728
Issue Downloading Certain Datasets After Setting Custom `HF_ENDPOINT`
{ "avatar_url": "https://avatars.githubusercontent.com/u/10057041?v=4", "events_url": "https://api.github.com/users/padeoe/events{/privacy}", "followers_url": "https://api.github.com/users/padeoe/followers", "following_url": "https://api.github.com/users/padeoe/following{/other_user}", "gists_url": "https://api.github.com/users/padeoe/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/padeoe", "id": 10057041, "login": "padeoe", "node_id": "MDQ6VXNlcjEwMDU3MDQx", "organizations_url": "https://api.github.com/users/padeoe/orgs", "received_events_url": "https://api.github.com/users/padeoe/received_events", "repos_url": "https://api.github.com/users/padeoe/repos", "site_admin": false, "starred_url": "https://api.github.com/users/padeoe/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/padeoe/subscriptions", "type": "User", "url": "https://api.github.com/users/padeoe" }
[]
closed
false
null
[]
null
[ "Through debugging, I found a potential solution is to modify the code in the error handling module of `huggingface_hub`: https://github.com/huggingface/huggingface_hub/commit/56d6c798c44e83d2a3167e74c022737d8fcbe822 ", "@Wauplin ", "Thanks for investigating and reporting the bug @padeoe! I've opened a PR in `huggingface_hub` with your suggested fix! :) https://github.com/huggingface/huggingface_hub/pull/2119" ]
1,710,147,998,000
1,710,514,327,000
null
NONE
null
### Describe the bug This bug is triggered under the following conditions: - datasets repo ids without organization names trigger errors, such as `bookcorpus`, `gsm8k`, `wikipedia`, rather than in the form of `A/B`. - If `HF_ENDPOINT` is set and the hostname is not in the form of `(hub-ci.)?huggingface.co`. - This issue occurs with `datasets>2.15.0` or `huggingface-hub>0.19.4`. For example, using the latest versions: `datasets==2.18.0` and `huggingface-hub==0.21.4`, ### Steps to reproduce the bug the issue can be reproduced with the following code: 1. install specific datasets and huggingface_hub. ```bash pip install datasets==2.18.0 pip install huggingface_hub==0.21.4 ``` 2. execute python code. ```Python import os os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' from datasets import load_dataset bookcorpus = load_dataset('bookcorpus', split='train') ``` console output: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 2556, in load_dataset builder_instance = load_dataset_builder( File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 2228, in load_dataset_builder dataset_module = dataset_module_factory( File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 1879, in dataset_module_factory raise e1 from None File "/home/padeoe/.local/lib/python3.10/site-packages/datasets/load.py", line 1830, in dataset_module_factory with fs.open(f"datasets/{path}/{filename}", "r", encoding="utf-8") as f: File "/home/padeoe/.local/lib/python3.10/site-packages/fsspec/spec.py", line 1295, in open self.open( File "/home/padeoe/.local/lib/python3.10/site-packages/fsspec/spec.py", line 1307, in open f = self._open( File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 228, in _open return HfFileSystemFile(self, path, mode=mode, revision=revision, block_size=block_size, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 615, in __init__ self.resolved_path = fs.resolve_path(path, revision=revision) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 180, in resolve_path repo_and_revision_exist, err = self._repo_and_revision_exist(repo_type, repo_id, revision) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_file_system.py", line 117, in _repo_and_revision_exist self._api.repo_info(repo_id, revision=revision, repo_type=repo_type) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2413, in repo_info return method( File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_validators.py", line 118, in _inner_fn return fn(*args, **kwargs) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/hf_api.py", line 2286, in dataset_info hf_raise_for_status(r) File "/home/padeoe/.local/lib/python3.10/site-packages/huggingface_hub/utils/_errors.py", line 362, in hf_raise_for_status raise HfHubHTTPError(str(e), response=response) from e huggingface_hub.utils._errors.HfHubHTTPError: 401 Client Error: Unauthorized for url: https://hf-mirror.com/api/datasets/bookcorpus/bookcorpus.py (Request ID: Root=1-65ee8659-5ab10eec5960c63e71f2bb58;b00bdbea-fd6e-4a74-8fe0-bc4682ae090e) ``` ### Expected behavior The dataset was downloaded correctly without any errors. ### Environment info datasets==2.18.0 huggingface-hub==0.21.4
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6728/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6728/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6727
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6727/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6727/comments
https://api.github.com/repos/huggingface/datasets/issues/6727/events
https://github.com/huggingface/datasets/pull/6727
2,177,826,110
PR_kwDODunzps5pLJyE
6,727
Using a registry instead of calling globals for fetching feature types
{ "avatar_url": "https://avatars.githubusercontent.com/u/11325244?v=4", "events_url": "https://api.github.com/users/psmyth94/events{/privacy}", "followers_url": "https://api.github.com/users/psmyth94/followers", "following_url": "https://api.github.com/users/psmyth94/following{/other_user}", "gists_url": "https://api.github.com/users/psmyth94/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/psmyth94", "id": 11325244, "login": "psmyth94", "node_id": "MDQ6VXNlcjExMzI1MjQ0", "organizations_url": "https://api.github.com/users/psmyth94/orgs", "received_events_url": "https://api.github.com/users/psmyth94/received_events", "repos_url": "https://api.github.com/users/psmyth94/repos", "site_admin": false, "starred_url": "https://api.github.com/users/psmyth94/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psmyth94/subscriptions", "type": "User", "url": "https://api.github.com/users/psmyth94" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6727). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "looks like some files are missing in your google storage", "cc @mariosasko is it related to https://github.com/huggingface/datasets/pull/6474 ? The files should ideally not move for backward compatibility anyway", "@lhoestq All the files are still there.\r\n\r\nThe problem is that the `natural_questions` is now a no-code dataset, so the test's paths are no longer correct (unless the revision is pinned to the previous version). \r\n\r\n@psmyth94 This has been fixed on `main`, so you can make the CI tests green with the following:\r\n```python\r\ngit remote add upstream https://github.com/huggingface/datasets.git\r\ngit pull upstream main\r\ngit push\r\n```", "Thank you @mariosasko ! I'm updating this branch if you don't mind @psmyth94 ", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.004903 / 0.011353 (-0.006450) | 0.003105 / 0.011008 (-0.007903) | 0.061980 / 0.038508 (0.023471) | 0.029726 / 0.023109 (0.006617) | 0.243406 / 0.275898 (-0.032492) | 0.262530 / 0.323480 (-0.060950) | 0.003905 / 0.007986 (-0.004081) | 0.002617 / 0.004328 (-0.001712) | 0.047851 / 0.004250 (0.043601) | 0.040397 / 0.037052 (0.003345) | 0.259461 / 0.258489 (0.000972) | 0.285059 / 0.293841 (-0.008782) | 0.027321 / 0.128546 (-0.101225) | 0.009876 / 0.075646 (-0.065770) | 0.206999 / 0.419271 (-0.212273) | 0.034906 / 0.043533 (-0.008626) | 0.245120 / 0.255139 (-0.010019) | 0.270490 / 0.283200 (-0.012710) | 0.017341 / 0.141683 (-0.124342) | 1.128182 / 1.452155 (-0.323973) | 1.173024 / 1.492716 (-0.319693) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.089337 / 0.018006 (0.071331) | 0.298256 / 0.000490 (0.297767) | 0.000216 / 0.000200 (0.000016) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018179 / 0.037411 (-0.019233) | 0.061275 / 0.014526 (0.046749) | 0.073137 / 0.176557 (-0.103419) | 0.119603 / 0.737135 (-0.617532) | 0.073969 / 0.296338 (-0.222370) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283109 / 0.215209 (0.067900) | 2.765441 / 2.077655 (0.687787) | 1.471276 / 1.504120 (-0.032844) | 1.346365 / 1.541195 (-0.194830) | 1.360668 / 1.468490 (-0.107822) | 0.549947 / 4.584777 (-4.034830) | 2.344213 / 3.745712 (-1.401499) | 2.700905 / 5.269862 (-2.568956) | 1.689936 / 4.565676 (-2.875741) | 0.061985 / 0.424275 (-0.362290) | 0.004923 / 0.007607 (-0.002684) | 0.329833 / 0.226044 (0.103788) | 3.277580 / 2.268929 (1.008652) | 1.833987 / 55.444624 (-53.610638) | 1.571023 / 6.876477 (-5.305454) | 1.573259 / 2.142072 (-0.568813) | 0.627504 / 4.805227 (-4.177723) | 0.114106 / 6.500664 (-6.386558) | 0.041197 / 0.075469 (-0.034272) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.967400 / 1.841788 (-0.874388) | 11.046527 / 8.074308 (2.972219) | 9.542214 / 10.191392 (-0.649178) | 0.140745 / 0.680424 (-0.539679) | 0.013627 / 0.534201 (-0.520574) | 0.288429 / 0.579283 (-0.290855) | 0.260509 / 0.434364 (-0.173855) | 0.324704 / 0.540337 (-0.215633) | 0.419366 / 1.386936 (-0.967570) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005123 / 0.011353 (-0.006230) | 0.003119 / 0.011008 (-0.007890) | 0.048931 / 0.038508 (0.010423) | 0.032067 / 0.023109 (0.008958) | 0.276825 / 0.275898 (0.000927) | 0.297589 / 0.323480 (-0.025890) | 0.004075 / 0.007986 (-0.003911) | 0.002579 / 0.004328 (-0.001750) | 0.047862 / 0.004250 (0.043612) | 0.044032 / 0.037052 (0.006980) | 0.289469 / 0.258489 (0.030980) | 0.327269 / 0.293841 (0.033428) | 0.029369 / 0.128546 (-0.099177) | 0.010180 / 0.075646 (-0.065466) | 0.057111 / 0.419271 (-0.362161) | 0.051046 / 0.043533 (0.007513) | 0.276758 / 0.255139 (0.021619) | 0.296084 / 0.283200 (0.012884) | 0.017376 / 0.141683 (-0.124306) | 1.154486 / 1.452155 (-0.297669) | 1.192699 / 1.492716 (-0.300018) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.085981 / 0.018006 (0.067974) | 0.296956 / 0.000490 (0.296466) | 0.000211 / 0.000200 (0.000011) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021239 / 0.037411 (-0.016172) | 0.074851 / 0.014526 (0.060326) | 0.085676 / 0.176557 (-0.090881) | 0.125876 / 0.737135 (-0.611259) | 0.087573 / 0.296338 (-0.208765) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.289220 / 0.215209 (0.074011) | 2.812342 / 2.077655 (0.734688) | 1.572886 / 1.504120 (0.068766) | 1.446442 / 1.541195 (-0.094752) | 1.458737 / 1.468490 (-0.009753) | 0.562010 / 4.584777 (-4.022767) | 2.422896 / 3.745712 (-1.322816) | 2.578408 / 5.269862 (-2.691454) | 1.689998 / 4.565676 (-2.875678) | 0.064782 / 0.424275 (-0.359493) | 0.005051 / 0.007607 (-0.002556) | 0.339982 / 0.226044 (0.113938) | 3.309882 / 2.268929 (1.040953) | 1.910273 / 55.444624 (-53.534351) | 1.649723 / 6.876477 (-5.226753) | 1.744073 / 2.142072 (-0.397999) | 0.651905 / 4.805227 (-4.153323) | 0.114606 / 6.500664 (-6.386058) | 0.040030 / 0.075469 (-0.035439) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.008374 / 1.841788 (-0.833414) | 11.547300 / 8.074308 (3.472992) | 9.966061 / 10.191392 (-0.225331) | 0.144874 / 0.680424 (-0.535550) | 0.014400 / 0.534201 (-0.519801) | 0.285435 / 0.579283 (-0.293848) | 0.274755 / 0.434364 (-0.159609) | 0.323105 / 0.540337 (-0.217232) | 0.439172 / 1.386936 (-0.947764) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4591ac120e9d6c082b2479d2005c04b9c36f539c \"CML watermark\")\n" ]
1,710,092,871,000
1,710,331,729,000
null
CONTRIBUTOR
null
Hello, When working with bio-data, each feature often has metadata associated with it (e.g. species, lineage, snp position, etc). To store this, I like to use the feature classes with the added `metadata` attribute. However, when saving or loading with custom features, you get an error since that class doesn't exist in the global namespace in `datasets.features.features`. Take for example, ```python from dataclasses import dataclass, field from datasets import Dataset from datasets.features.features import Value, Features @dataclass class FeatureA(Value): metadata: dict = field(default=dict) _type: str = field(default="FeatureA", init=False, repr=False) @dataclass class FeatureB(Value): metadata: dict = field(default_factory=dict) _type: str = field(default="FeatureB", init=False, repr=False) test_data = { "a": [1, 2, 3], "b": [4, 5, 6], } test_data = Dataset.from_dict( test_data, features=Features({ "a": FeatureA("int32", metadata={"species": "lactobacillus acetotolerans"}), "b": FeatureB("int32", metadata={"species": "lactobacillus iners"}), }) ) # returns an error since FeatureA and FeatureB are not in the global namespace test_data.save_to_disk('./test_data') ``` Saving the dataset (0/1 shards): 0%| | 0/3 [00:00<?, ? examples/s] --------------------------------------------------------------------------- KeyError Traceback (most recent call last) Cell In[2], line 28 19 test_data = Dataset.from_dict( 20 test_data, 21 features=Features({ (...) 24 }) 25 ) 27 # returns an error since FeatureA and FeatureB are not in the global namespace ---> 28 test_data.save_to_disk('./test_data') ... File ~\Documents\datasets\src\datasets\features\features.py:1361, in generate_from_dict(obj) 1359 return {key: generate_from_dict(value) for key, value in obj.items()} 1360 obj = dict(obj) -> 1361 class_type = globals()[obj.pop("_type")] 1363 if class_type == Sequence: 1364 return Sequence(feature=generate_from_dict(obj["feature"]), length=obj.get("length", -1)) KeyError: 'FeatureA' We can avoid this by having a registry (like formatters) and doing ```python from datasets.features.features import register_feature register_feature(FeatureA, "FeatureA") register_feature(FeatureB, "FeatureB") test_data.save_to_disk('./test_data') ``` Saving the dataset (1/1 shards): 100%|------| 3/3 [00:00<00:00, 211.13 examples/s] and loading from disk returns with all metadata information ```python from datasets import load_from_disk test_data = load_from_disk('./test_data') test_data.features ``` {'a': FeatureA(dtype='int32', id=None, metadata={'species': 'lactobacillus acetotolerans'}), 'b': FeatureB(dtype='int32', id=None, metadata={'species': 'lactobacillus iners'})}
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6727/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6727/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6727.diff", "html_url": "https://github.com/huggingface/datasets/pull/6727", "merged_at": "2024-03-13T10:46:02", "patch_url": "https://github.com/huggingface/datasets/pull/6727.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6727" }
true
https://api.github.com/repos/huggingface/datasets/issues/6726
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6726/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6726/comments
https://api.github.com/repos/huggingface/datasets/issues/6726/events
https://github.com/huggingface/datasets/issues/6726
2,177,097,232
I_kwDODunzps6Bw94Q
6,726
Profiling for HF Filesystem shows there are easy performance gains to be made
{ "avatar_url": "https://avatars.githubusercontent.com/u/159512661?v=4", "events_url": "https://api.github.com/users/awgr/events{/privacy}", "followers_url": "https://api.github.com/users/awgr/followers", "following_url": "https://api.github.com/users/awgr/following{/other_user}", "gists_url": "https://api.github.com/users/awgr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/awgr", "id": 159512661, "login": "awgr", "node_id": "U_kgDOCYH4VQ", "organizations_url": "https://api.github.com/users/awgr/orgs", "received_events_url": "https://api.github.com/users/awgr/received_events", "repos_url": "https://api.github.com/users/awgr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/awgr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/awgr/subscriptions", "type": "User", "url": "https://api.github.com/users/awgr" }
[]
open
false
null
[]
null
[ "FWIW I debugged this while waiting for it to go", "Oh I forgot to mention you can also cache resolve_pattern, and that seemed to also substantially improves things, if you want to load a dataset twice for whatever reason." ]
1,709,968,125,000
1,709,968,268,000
null
NONE
null
### Describe the bug # Let's make it faster First, an evidence... ![image](https://github.com/huggingface/datasets/assets/159512661/a703a82c-43a0-426c-9d99-24c563d70965) Figure 1: CProfile for loading 3 files from cerebras/SlimPajama-627B train split, and 3 files from test split using streaming=True. X axis is 1106 seconds long. See? It's pretty slow. What is resolve pattern doing? ``` resolve_pattern called with **/train/** and hf://datasets/cerebras/SlimPajama-627B@2d0accdd58c5d5511943ca1f5ff0e3eb5e293543 resolve_pattern took 20.815081119537354 seconds ``` Makes sense. How to improve it? ## Bigger project, biggest payoff Databricks (and consequently, spark) store a compressed manifest file of the files contained in the remote filesystem. Then, you download one tiny file, decompress it, and all the operations are local instead of this shenanigans. It seems pretty straightforward to make dataset uploads compute a manifest and upload it alongside their data. This would make resolution time so fast that nobody would ever think about it again. It also means you either need to have the uploader compute it _every time_, or have a hook that computes it. ## Smaller project, immediate payoff: Be diligent in avoiding deepcopy Revise the _ls_tree method to avoid deepcopy: ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... for path_info in tree: if isinstance(path_info, RepoFile): cache_path_info = { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: cache_path_info = { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(cache_path_info) return copy.deepcopy(out) # copy to not let users modify the dircache ``` Observe this deepcopy at the end. It is making a copy of a very simple data structure. We do not need to copy. We can simply generate the data structure twice instead. It will be much faster. ``` def _ls_tree( self, path: str, recursive: bool = False, refresh: bool = False, revision: Optional[str] = None, expand_info: bool = True, ): ..... omitted ..... def make_cache_path_info(path_info): if isinstance(path_info, RepoFile): return { "name": root_path + "/" + path_info.path, "size": path_info.size, "type": "file", "blob_id": path_info.blob_id, "lfs": path_info.lfs, "last_commit": path_info.last_commit, "security": path_info.security, } else: return { "name": root_path + "/" + path_info.path, "size": 0, "type": "directory", "tree_id": path_info.tree_id, "last_commit": path_info.last_commit, } for path_info in tree: cache_path_info = make_cache_path_info(path_info) out_cache_path_info = make_cache_path_info(path_info) # copy to not let users modify the dircache parent_path = self._parent(cache_path_info["name"]) self.dircache.setdefault(parent_path, []).append(cache_path_info) out.append(out_cache_path_info) return out ``` Note there is no longer a deepcopy in this method. We have replaced it with generating the output twice. This is substantially faster. For me, the entire resolution went from 1100s to 360s. ## Medium project, medium payoff After the above change, we have this profile: ![image](https://github.com/huggingface/datasets/assets/159512661/db7b83da-2dfc-4c2e-abab-0ede9477876c) Figure 2: x-axis is 355 seconds. Note that globbing and _ls_tree deep copy is gone. No surprise there. It's much faster now, but we still spend ~187seconds in get_fs_token_paths. Well get_fs_token_paths is part of fsspec. We don't need to fix that because we can trust their developers to write high performance code. Probably the caller has misconfigured something. Let's take a look at the storage_options being provided to the filesystem that is constructed during this call. Ah yes, streaming_download_manager::_prepare_single_hop_path_and_storage_options. We know streaming download manager is not compatible with async right now, but we really need this specific part of the code to be async. We're spending so much time checking isDir on the remote filesystem, it's a huge waste. We can make the call easily 20-30x faster by using async, removing this performance bottleneck almost entirely (and reducing the total time of this part of the code to <30s. There is no reason to block async isDir calls for streaming. I'm not going to mess w/ this one myself; I didn't write the streaming impl, and I don't know how it works, but I know the isDir check can be async. ### Steps to reproduce the bug ``` with cProfile.Profile() as pr: pr.enable() # Begin Data if not os.path.exists(data_cache_dir): os.makedirs(data_cache_dir, exist_ok=True) training_dataset = load_dataset(training_dataset_name, split=training_split, cache_dir=data_cache_dir, streaming=True).take(training_slice) eval_dataset = load_dataset(eval_dataset_name, split=eval_split, cache_dir=data_cache_dir, streaming=True).take(eval_slice) # End Data pr.disable() pr.create_stats() if not os.path.exists(profiling_path): os.makedirs(profiling_path, exist_ok=True) pr.dump_stats(os.path.join(profiling_path, "cprofile.prof")) ``` run this code for "cerebras/SlimPajama-627B" and whatever other params ### Expected behavior Something better. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/6726/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6726/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6725
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6725/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6725/comments
https://api.github.com/repos/huggingface/datasets/issues/6725/events
https://github.com/huggingface/datasets/issues/6725
2,175,527,530
I_kwDODunzps6Bq-pq
6,725
Request for a comparison of huggingface datasets compared with other data format especially webdataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/20135317?v=4", "events_url": "https://api.github.com/users/Luciennnnnnn/events{/privacy}", "followers_url": "https://api.github.com/users/Luciennnnnnn/followers", "following_url": "https://api.github.com/users/Luciennnnnnn/following{/other_user}", "gists_url": "https://api.github.com/users/Luciennnnnnn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Luciennnnnnn", "id": 20135317, "login": "Luciennnnnnn", "node_id": "MDQ6VXNlcjIwMTM1MzE3", "organizations_url": "https://api.github.com/users/Luciennnnnnn/orgs", "received_events_url": "https://api.github.com/users/Luciennnnnnn/received_events", "repos_url": "https://api.github.com/users/Luciennnnnnn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Luciennnnnnn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Luciennnnnnn/subscriptions", "type": "User", "url": "https://api.github.com/users/Luciennnnnnn" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
null
[]
null
[]
1,709,886,181,000
1,709,886,181,000
null
NONE
null
### Feature request Request for a comparison of huggingface datasets compared with other data format especially webdataset ### Motivation I see huggingface datasets uses Apache Arrow as its backend, it seems to be great, but I'm curious about how it is good compared with other dataset format, like webdataset, what's the pros/cons of them. ### Your contribution More information
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6725/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6725/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6724
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6724/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6724/comments
https://api.github.com/repos/huggingface/datasets/issues/6724/events
https://github.com/huggingface/datasets/issues/6724
2,174,398,227
I_kwDODunzps6Bmq8T
6,724
Dataset with loading script does not work in renamed repos
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy" }
[]
open
false
null
[]
null
[]
1,709,833,118,000
1,709,841,985,000
null
CONTRIBUTOR
null
### Describe the bug My data repository was first called `BramVanroy/hplt-mono-v1-2` but I then renamed to use underscores instead of dashes. However, it seems that `datasets` retrieves the old repo name when it checks whether the repo contains data loading scripts in this line. https://github.com/huggingface/datasets/blob/6fb6c834f008996c994b0a86c3808d0a33d44525/src/datasets/load.py#L1845 When I print `filename` it returns `hplt-mono-v1-2.py` but the files in the repo are of course `['.gitattributes', 'README.md', 'hplt_mono_v1_2.py']`. So the `filename` is the original reponame instead of the renamed one. I am not sure if this is a caching issue or not or how I can resolve it. ### Steps to reproduce the bug ``` from datasets import load_dataset ds = load_dataset( "BramVanroy/hplt-mono-v1-2", "ky", trust_remote_code=True ) ``` ### Expected behavior That the most recent repo name is used when `filename` is generated. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-284.25.1.el9_2.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.1 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6724/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6724/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6723
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6723/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6723/comments
https://api.github.com/repos/huggingface/datasets/issues/6723/events
https://github.com/huggingface/datasets/pull/6723
2,174,344,456
PR_kwDODunzps5o_fPU
6,723
get_dataset_default_config_name docstring
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6723). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005658 / 0.011353 (-0.005694) | 0.003883 / 0.011008 (-0.007125) | 0.064007 / 0.038508 (0.025499) | 0.030370 / 0.023109 (0.007261) | 0.246677 / 0.275898 (-0.029221) | 0.270846 / 0.323480 (-0.052634) | 0.003102 / 0.007986 (-0.004884) | 0.002931 / 0.004328 (-0.001397) | 0.049446 / 0.004250 (0.045196) | 0.043555 / 0.037052 (0.006503) | 0.261810 / 0.258489 (0.003321) | 0.289705 / 0.293841 (-0.004136) | 0.028676 / 0.128546 (-0.099870) | 0.010778 / 0.075646 (-0.064868) | 0.210604 / 0.419271 (-0.208667) | 0.035987 / 0.043533 (-0.007546) | 0.248034 / 0.255139 (-0.007105) | 0.265019 / 0.283200 (-0.018181) | 0.018522 / 0.141683 (-0.123161) | 1.096364 / 1.452155 (-0.355791) | 1.152750 / 1.492716 (-0.339966) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093987 / 0.018006 (0.075981) | 0.306143 / 0.000490 (0.305653) | 0.000218 / 0.000200 (0.000018) | 0.000045 / 0.000054 (-0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018727 / 0.037411 (-0.018685) | 0.061983 / 0.014526 (0.047457) | 0.074254 / 0.176557 (-0.102303) | 0.121256 / 0.737135 (-0.615880) | 0.076756 / 0.296338 (-0.219582) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278824 / 0.215209 (0.063615) | 2.815960 / 2.077655 (0.738305) | 1.472946 / 1.504120 (-0.031174) | 1.349722 / 1.541195 (-0.191473) | 1.327844 / 1.468490 (-0.140646) | 0.574964 / 4.584777 (-4.009813) | 2.403458 / 3.745712 (-1.342254) | 2.769293 / 5.269862 (-2.500569) | 1.736970 / 4.565676 (-2.828706) | 0.063144 / 0.424275 (-0.361131) | 0.004983 / 0.007607 (-0.002625) | 0.331212 / 0.226044 (0.105168) | 3.231496 / 2.268929 (0.962567) | 1.798487 / 55.444624 (-53.646138) | 1.523010 / 6.876477 (-5.353467) | 1.559973 / 2.142072 (-0.582099) | 0.657036 / 4.805227 (-4.148191) | 0.119084 / 6.500664 (-6.381580) | 0.042982 / 0.075469 (-0.032487) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.976433 / 1.841788 (-0.865355) | 11.475946 / 8.074308 (3.401638) | 9.339369 / 10.191392 (-0.852023) | 0.141761 / 0.680424 (-0.538662) | 0.014506 / 0.534201 (-0.519695) | 0.289944 / 0.579283 (-0.289340) | 0.273667 / 0.434364 (-0.160697) | 0.326682 / 0.540337 (-0.213655) | 0.458946 / 1.386936 (-0.927990) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005194 / 0.011353 (-0.006159) | 0.003713 / 0.011008 (-0.007295) | 0.049297 / 0.038508 (0.010789) | 0.029723 / 0.023109 (0.006614) | 0.278664 / 0.275898 (0.002766) | 0.296387 / 0.323480 (-0.027093) | 0.004215 / 0.007986 (-0.003771) | 0.002680 / 0.004328 (-0.001648) | 0.048276 / 0.004250 (0.044025) | 0.044454 / 0.037052 (0.007402) | 0.290510 / 0.258489 (0.032021) | 0.319028 / 0.293841 (0.025187) | 0.029177 / 0.128546 (-0.099369) | 0.010361 / 0.075646 (-0.065285) | 0.056993 / 0.419271 (-0.362279) | 0.050765 / 0.043533 (0.007232) | 0.278234 / 0.255139 (0.023095) | 0.295848 / 0.283200 (0.012649) | 0.018776 / 0.141683 (-0.122906) | 1.134866 / 1.452155 (-0.317288) | 1.204083 / 1.492716 (-0.288634) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094397 / 0.018006 (0.076391) | 0.304693 / 0.000490 (0.304203) | 0.000207 / 0.000200 (0.000007) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.021322 / 0.037411 (-0.016090) | 0.075384 / 0.014526 (0.060859) | 0.086961 / 0.176557 (-0.089596) | 0.124424 / 0.737135 (-0.612711) | 0.087802 / 0.296338 (-0.208536) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305542 / 0.215209 (0.090333) | 2.980678 / 2.077655 (0.903023) | 1.632348 / 1.504120 (0.128228) | 1.501466 / 1.541195 (-0.039728) | 1.517681 / 1.468490 (0.049191) | 0.579318 / 4.584777 (-4.005459) | 2.460734 / 3.745712 (-1.284978) | 2.650164 / 5.269862 (-2.619697) | 1.752061 / 4.565676 (-2.813615) | 0.064561 / 0.424275 (-0.359714) | 0.005097 / 0.007607 (-0.002510) | 0.359613 / 0.226044 (0.133569) | 3.518549 / 2.268929 (1.249620) | 1.962575 / 55.444624 (-53.482050) | 1.686108 / 6.876477 (-5.190369) | 1.787873 / 2.142072 (-0.354199) | 0.653715 / 4.805227 (-4.151512) | 0.117617 / 6.500664 (-6.383048) | 0.040359 / 0.075469 (-0.035110) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021533 / 1.841788 (-0.820255) | 11.974817 / 8.074308 (3.900509) | 10.073530 / 10.191392 (-0.117862) | 0.141477 / 0.680424 (-0.538947) | 0.015081 / 0.534201 (-0.519120) | 0.292622 / 0.579283 (-0.286661) | 0.291043 / 0.434364 (-0.143321) | 0.347822 / 0.540337 (-0.192516) | 0.443647 / 1.386936 (-0.943289) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#6fb6c834f008996c994b0a86c3808d0a33d44525 \"CML watermark\")\n" ]
1,709,831,369,000
1,709,832,449,000
null
MEMBER
null
fix https://github.com/huggingface/datasets/pull/6722
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6723/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6723/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6723.diff", "html_url": "https://github.com/huggingface/datasets/pull/6723", "merged_at": "2024-03-07T17:21:20", "patch_url": "https://github.com/huggingface/datasets/pull/6723.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6723" }
true
https://api.github.com/repos/huggingface/datasets/issues/6722
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6722/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6722/comments
https://api.github.com/repos/huggingface/datasets/issues/6722/events
https://github.com/huggingface/datasets/pull/6722
2,174,332,127
PR_kwDODunzps5o_ch0
6,722
Add details in docstring
{ "avatar_url": "https://avatars.githubusercontent.com/u/1676121?v=4", "events_url": "https://api.github.com/users/severo/events{/privacy}", "followers_url": "https://api.github.com/users/severo/followers", "following_url": "https://api.github.com/users/severo/following{/other_user}", "gists_url": "https://api.github.com/users/severo/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/severo", "id": 1676121, "login": "severo", "node_id": "MDQ6VXNlcjE2NzYxMjE=", "organizations_url": "https://api.github.com/users/severo/orgs", "received_events_url": "https://api.github.com/users/severo/received_events", "repos_url": "https://api.github.com/users/severo/repos", "site_admin": false, "starred_url": "https://api.github.com/users/severo/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/severo/subscriptions", "type": "User", "url": "https://api.github.com/users/severo" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6722). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update." ]
1,709,830,927,000
1,709,832,070,000
null
CONTRIBUTOR
null
see https://github.com/huggingface/datasets-server/pull/2554#discussion_r1516516867
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6722/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6722/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6722.diff", "html_url": "https://github.com/huggingface/datasets/pull/6722", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/6722.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6722" }
true
https://api.github.com/repos/huggingface/datasets/issues/6721
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6721/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6721/comments
https://api.github.com/repos/huggingface/datasets/issues/6721/events
https://github.com/huggingface/datasets/issues/6721
2,173,931,714
I_kwDODunzps6Bk5DC
6,721
Hi,do you know how to load the dataset from local file now?
{ "avatar_url": "https://avatars.githubusercontent.com/u/50232044?v=4", "events_url": "https://api.github.com/users/Gera001/events{/privacy}", "followers_url": "https://api.github.com/users/Gera001/followers", "following_url": "https://api.github.com/users/Gera001/following{/other_user}", "gists_url": "https://api.github.com/users/Gera001/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Gera001", "id": 50232044, "login": "Gera001", "node_id": "MDQ6VXNlcjUwMjMyMDQ0", "organizations_url": "https://api.github.com/users/Gera001/orgs", "received_events_url": "https://api.github.com/users/Gera001/received_events", "repos_url": "https://api.github.com/users/Gera001/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Gera001/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Gera001/subscriptions", "type": "User", "url": "https://api.github.com/users/Gera001" }
[]
open
false
null
[]
null
[]
1,709,819,920,000
1,709,819,920,000
null
NONE
null
Hi, if I want to load the dataset from local file, then how to specify the configuration name? _Originally posted by @WHU-gentle in https://github.com/huggingface/datasets/issues/2976#issuecomment-1333455222_
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6721/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6721/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6720
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6720/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6720/comments
https://api.github.com/repos/huggingface/datasets/issues/6720/events
https://github.com/huggingface/datasets/issues/6720
2,173,603,459
I_kwDODunzps6Bjo6D
6,720
TypeError: 'str' object is not callable
{ "avatar_url": "https://avatars.githubusercontent.com/u/2779410?v=4", "events_url": "https://api.github.com/users/BramVanroy/events{/privacy}", "followers_url": "https://api.github.com/users/BramVanroy/followers", "following_url": "https://api.github.com/users/BramVanroy/following{/other_user}", "gists_url": "https://api.github.com/users/BramVanroy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/BramVanroy", "id": 2779410, "login": "BramVanroy", "node_id": "MDQ6VXNlcjI3Nzk0MTA=", "organizations_url": "https://api.github.com/users/BramVanroy/orgs", "received_events_url": "https://api.github.com/users/BramVanroy/received_events", "repos_url": "https://api.github.com/users/BramVanroy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/BramVanroy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BramVanroy/subscriptions", "type": "User", "url": "https://api.github.com/users/BramVanroy" }
[]
closed
false
null
[]
null
[ "Hi ! I opened a PR to fix an issue in the Features defined in your code\r\n\r\nBasically changing\r\n```python\r\nSequence(\"float32\")\r\n```\r\n\r\nto\r\n```python\r\nSequence(Value(\"float32\"))\r\n```\r\n\r\n\r\nhttps://huggingface.co./datasets/BramVanroy/hplt_mono_v1_2/discussions/1", "D'oh! Was wondering why the `str() is not callable` was in there. Glad the error is my end though, and not related to zstandard (which I had not used in the past).\r\n\r\nThanks a lot!" ]
1,709,809,629,000
1,709,883,293,000
null
CONTRIBUTOR
null
### Describe the bug I am trying to get the HPLT datasets on the hub. Downloading/re-uploading would be too time- and resource consuming so I wrote [a dataset loader script](https://huggingface.co./datasets/BramVanroy/hplt_mono_v1_2/blob/main/hplt_mono_v1_2.py). I think I am very close but for some reason I always get the error below. It happens during the clean-up phase where the directory cannot be removed because it is not empty. My only guess would be that this may have to do with zstandard ``` Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1744, in _prepare_split_single writer.write(example, key) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 492, in write self.write_examples_on_file() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 434, in write_examples_on_file if self.schema File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 409, in schema else (pa.schema(self._features.type) if self._features is not None else None) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1643, in type return get_nested_type(self) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in get_nested_type {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in <dictcomp> {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1221, in get_nested_type value_type = get_nested_type(schema.feature) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1228, in get_nested_type return schema() TypeError: 'str' object is not callable During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1753, in _prepare_split_single num_examples, num_bytes = writer.finalize() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 588, in finalize self.write_examples_on_file() File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 434, in write_examples_on_file if self.schema File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 409, in schema else (pa.schema(self._features.type) if self._features is not None else None) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1643, in type return get_nested_type(self) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in get_nested_type {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1209, in <dictcomp> {key: get_nested_type(schema[key]) for key in schema} File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1221, in get_nested_type value_type = get_nested_type(schema.feature) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/features/features.py", line 1228, in get_nested_type return schema() TypeError: 'str' object is not callable The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 959, in incomplete_dir yield tmp_dir File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1005, in download_and_prepare self._download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1767, in _download_and_prepare super()._download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1100, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1605, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 1762, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/pricie/vanroy/.config/JetBrains/PyCharm2023.3/scratches/scratch_5.py", line 4, in <module> ds = load_dataset( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/load.py", line 2549, in load_dataset builder_instance.download_and_prepare( File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 985, in download_and_prepare with incomplete_dir(self._output_dir) as tmp_output_dir: File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/contextlib.py", line 153, in __exit__ self.gen.throw(typ, value, traceback) File "/home/local/vanroy/dutch-instruction-datasets/.venv/lib/python3.10/site-packages/datasets/builder.py", line 966, in incomplete_dir shutil.rmtree(tmp_dir) File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/shutil.py", line 731, in rmtree onerror(os.rmdir, path, sys.exc_info()) File "/home/pricie/vanroy/.pyenv/versions/3.10.13/lib/python3.10/shutil.py", line 729, in rmtree os.rmdir(path) OSError: [Errno 39] Directory not empty: '/home/pricie/vanroy/.cache/huggingface/datasets/BramVanroy___hplt_mono_v1_2/ky/1.2.0/7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete' ``` Interestingly, though, this directory _does_ appear to be empty: ```shell > cd /home/pricie/vanroy/.cache/huggingface/datasets/BramVanroy___hplt_mono_v1_2/ky/1.2.0/7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete > ls -lah total 0 drwxr-xr-x. 1 vanroy vanroy 0 Mar 7 12:01 . drwxr-xr-x. 1 vanroy vanroy 304 Mar 7 11:52 .. > cd .. > ls 7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47_builder.lock 7ab138629fe7e9e29fe93ce63d809d5ef9d963273b829f61ab538e012dc9cc47.incomplete ``` ### Steps to reproduce the bug ```python from datasets import load_dataset ds = load_dataset( "BramVanroy/hplt_mono_v1_2", "ky", trust_remote_code=True ) ``` ### Expected behavior No error. ### Environment info - `datasets` version: 2.16.1 - Platform: Linux-5.14.0-284.25.1.el9_2.x86_64-x86_64-with-glibc2.34 - Python version: 3.10.13 - `huggingface_hub` version: 0.20.2 - PyArrow version: 14.0.1 - Pandas version: 2.1.3 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6720/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6720/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6719
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6719/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6719/comments
https://api.github.com/repos/huggingface/datasets/issues/6719/events
https://github.com/huggingface/datasets/issues/6719
2,169,585,727
I_kwDODunzps6BUUA_
6,719
Is there any way to solve hanging of IterableDataset using split by node + filtering during inference
{ "avatar_url": "https://avatars.githubusercontent.com/u/8136905?v=4", "events_url": "https://api.github.com/users/ssharpe42/events{/privacy}", "followers_url": "https://api.github.com/users/ssharpe42/followers", "following_url": "https://api.github.com/users/ssharpe42/following{/other_user}", "gists_url": "https://api.github.com/users/ssharpe42/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ssharpe42", "id": 8136905, "login": "ssharpe42", "node_id": "MDQ6VXNlcjgxMzY5MDU=", "organizations_url": "https://api.github.com/users/ssharpe42/orgs", "received_events_url": "https://api.github.com/users/ssharpe42/received_events", "repos_url": "https://api.github.com/users/ssharpe42/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ssharpe42/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ssharpe42/subscriptions", "type": "User", "url": "https://api.github.com/users/ssharpe42" }
[]
open
false
null
[]
null
[]
1,709,654,113,000
1,709,654,113,000
null
NONE
null
### Describe the bug I am using an iterable dataset in a multi-node setup, trying to do training/inference while filtering the data on the fly. I usually do not use `split_dataset_by_node` but it is very slow using the IterableDatasetShard in `accelerate` and `transformers`. When I filter after applying `split_dataset_by_node`, it results in shards that are not equal sizes due to unequal samples filtered from each one. The distributed process hangs when trying to accomplish this. Is there any way to resolve this or is it impossible to implement? ### Steps to reproduce the bug Here is a toy example of what I am trying to do that reproduces the behavior ``` # torchrun --nproc-per-node 2 file.py import os import pandas as pd import torch from accelerate import Accelerator from datasets import Features, Value, load_dataset from datasets.distributed import split_dataset_by_node from torch.utils.data import DataLoader accelerator = Accelerator(device_placement=True, dispatch_batches=False) if accelerator.is_main_process: if not os.path.exists("scratch_data"): os.mkdir("scratch_data") n_shards = 4 for i in range(n_shards): df = pd.DataFrame({"id": list(range(10 * i, 10 * (i + 1)))}) df.to_parquet(f"scratch_data/shard_{i}.parquet") world_size = accelerator.num_processes local_rank = accelerator.process_index def collate_fn(examples): input_ids = [] for example in examples: input_ids.append(example["id"]) return torch.LongTensor(input_ids) dataset = load_dataset( "parquet", data_dir="scratch_data", split="train", streaming=True ) dataset = ( split_dataset_by_node(dataset, rank=local_rank, world_size=world_size) .filter(lambda x: x["id"] < 35) .shuffle(seed=42, buffer_size=100) ) batch_size = 2 train_dataloader = DataLoader( dataset, batch_size=batch_size, collate_fn=collate_fn, num_workers=2 ) for x in train_dataloader: x = x.to(accelerator.device) print({"rank": local_rank, "id": x}) y = accelerator.gather_for_metrics(x) if accelerator.is_main_process: print("gathered", y) ``` ### Expected behavior Is there any way to continue training/inference on the GPUs that have remaining data left without waiting for the others? Is it impossible to filter when ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-5.10.209-198.812.amzn2.x86_64-x86_64-with-glibc2.31 - Python version: 3.10.13 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2023.6.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6719/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6719/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6718
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6718/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6718/comments
https://api.github.com/repos/huggingface/datasets/issues/6718/events
https://github.com/huggingface/datasets/pull/6718
2,169,468,488
PR_kwDODunzps5ouwwE
6,718
Fix concurrent script loading with force_redownload
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6718). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005074 / 0.011353 (-0.006279) | 0.003505 / 0.011008 (-0.007503) | 0.063683 / 0.038508 (0.025175) | 0.029308 / 0.023109 (0.006199) | 0.246648 / 0.275898 (-0.029250) | 0.265546 / 0.323480 (-0.057933) | 0.004108 / 0.007986 (-0.003878) | 0.002683 / 0.004328 (-0.001646) | 0.048634 / 0.004250 (0.044383) | 0.043786 / 0.037052 (0.006733) | 0.262197 / 0.258489 (0.003708) | 0.291582 / 0.293841 (-0.002259) | 0.027472 / 0.128546 (-0.101074) | 0.010213 / 0.075646 (-0.065434) | 0.206744 / 0.419271 (-0.212527) | 0.036195 / 0.043533 (-0.007337) | 0.249090 / 0.255139 (-0.006049) | 0.280002 / 0.283200 (-0.003198) | 0.018568 / 0.141683 (-0.123115) | 1.124844 / 1.452155 (-0.327311) | 1.159358 / 1.492716 (-0.333359) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093186 / 0.018006 (0.075180) | 0.302331 / 0.000490 (0.301842) | 0.000217 / 0.000200 (0.000017) | 0.000046 / 0.000054 (-0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018727 / 0.037411 (-0.018684) | 0.061730 / 0.014526 (0.047204) | 0.074330 / 0.176557 (-0.102226) | 0.119769 / 0.737135 (-0.617366) | 0.075611 / 0.296338 (-0.220727) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.285063 / 0.215209 (0.069854) | 2.824809 / 2.077655 (0.747155) | 1.481858 / 1.504120 (-0.022262) | 1.350193 / 1.541195 (-0.191002) | 1.358012 / 1.468490 (-0.110478) | 0.557842 / 4.584777 (-4.026935) | 2.380729 / 3.745712 (-1.364983) | 2.798891 / 5.269862 (-2.470970) | 1.719288 / 4.565676 (-2.846388) | 0.061705 / 0.424275 (-0.362570) | 0.005431 / 0.007607 (-0.002176) | 0.343233 / 0.226044 (0.117189) | 3.375223 / 2.268929 (1.106295) | 1.838188 / 55.444624 (-53.606436) | 1.570015 / 6.876477 (-5.306461) | 1.573157 / 2.142072 (-0.568915) | 0.650678 / 4.805227 (-4.154549) | 0.116412 / 6.500664 (-6.384252) | 0.041754 / 0.075469 (-0.033715) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.970431 / 1.841788 (-0.871357) | 11.317128 / 8.074308 (3.242819) | 9.691240 / 10.191392 (-0.500152) | 0.142260 / 0.680424 (-0.538164) | 0.014131 / 0.534201 (-0.520070) | 0.289910 / 0.579283 (-0.289373) | 0.265648 / 0.434364 (-0.168715) | 0.323130 / 0.540337 (-0.217208) | 0.447005 / 1.386936 (-0.939931) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005322 / 0.011353 (-0.006031) | 0.003755 / 0.011008 (-0.007253) | 0.049646 / 0.038508 (0.011138) | 0.029669 / 0.023109 (0.006560) | 0.284151 / 0.275898 (0.008253) | 0.298351 / 0.323480 (-0.025128) | 0.004183 / 0.007986 (-0.003803) | 0.002683 / 0.004328 (-0.001645) | 0.048814 / 0.004250 (0.044563) | 0.045017 / 0.037052 (0.007965) | 0.287358 / 0.258489 (0.028869) | 0.317394 / 0.293841 (0.023553) | 0.030025 / 0.128546 (-0.098521) | 0.010854 / 0.075646 (-0.064793) | 0.058694 / 0.419271 (-0.360578) | 0.052287 / 0.043533 (0.008754) | 0.279038 / 0.255139 (0.023899) | 0.295442 / 0.283200 (0.012242) | 0.019413 / 0.141683 (-0.122270) | 1.146106 / 1.452155 (-0.306048) | 1.197777 / 1.492716 (-0.294939) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092191 / 0.018006 (0.074184) | 0.302672 / 0.000490 (0.302182) | 0.000623 / 0.000200 (0.000423) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022067 / 0.037411 (-0.015345) | 0.081760 / 0.014526 (0.067235) | 0.087548 / 0.176557 (-0.089009) | 0.126405 / 0.737135 (-0.610730) | 0.089331 / 0.296338 (-0.207008) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.295821 / 0.215209 (0.080612) | 2.897930 / 2.077655 (0.820276) | 1.604500 / 1.504120 (0.100380) | 1.471502 / 1.541195 (-0.069692) | 1.497918 / 1.468490 (0.029428) | 0.576179 / 4.584777 (-4.008598) | 2.452103 / 3.745712 (-1.293609) | 2.668043 / 5.269862 (-2.601818) | 1.753544 / 4.565676 (-2.812133) | 0.064410 / 0.424275 (-0.359865) | 0.005027 / 0.007607 (-0.002580) | 0.351509 / 0.226044 (0.125465) | 3.479208 / 2.268929 (1.210280) | 1.990356 / 55.444624 (-53.454269) | 1.684920 / 6.876477 (-5.191556) | 1.794251 / 2.142072 (-0.347821) | 0.662692 / 4.805227 (-4.142535) | 0.118589 / 6.500664 (-6.382076) | 0.040813 / 0.075469 (-0.034656) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.002390 / 1.841788 (-0.839398) | 12.004617 / 8.074308 (3.930309) | 10.216005 / 10.191392 (0.024613) | 0.154354 / 0.680424 (-0.526070) | 0.015554 / 0.534201 (-0.518647) | 0.288741 / 0.579283 (-0.290542) | 0.276774 / 0.434364 (-0.157590) | 0.327055 / 0.540337 (-0.213282) | 0.435121 / 1.386936 (-0.951815) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f45bc6caa25115a04c41b278671a5a89457eb66c \"CML watermark\")\n" ]
1,709,651,060,000
1,709,820,353,000
null
MEMBER
null
I added `lock_importable_file` in `get_dataset_builder_class` and `extend_dataset_builder_for_streaming` to fix the issue, and I also added a test cc @clefourrier
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 2, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/6718/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6718/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6718.diff", "html_url": "https://github.com/huggingface/datasets/pull/6718", "merged_at": "2024-03-07T13:58:04", "patch_url": "https://github.com/huggingface/datasets/pull/6718.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6718" }
true
https://api.github.com/repos/huggingface/datasets/issues/6717
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6717/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6717/comments
https://api.github.com/repos/huggingface/datasets/issues/6717/events
https://github.com/huggingface/datasets/issues/6717
2,168,726,432
I_kwDODunzps6BRCOg
6,717
`remove_columns` method used with a streaming enable dataset mode produces a LibsndfileError on multichannel audio
{ "avatar_url": "https://avatars.githubusercontent.com/u/53187038?v=4", "events_url": "https://api.github.com/users/jhauret/events{/privacy}", "followers_url": "https://api.github.com/users/jhauret/followers", "following_url": "https://api.github.com/users/jhauret/following{/other_user}", "gists_url": "https://api.github.com/users/jhauret/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jhauret", "id": 53187038, "login": "jhauret", "node_id": "MDQ6VXNlcjUzMTg3MDM4", "organizations_url": "https://api.github.com/users/jhauret/orgs", "received_events_url": "https://api.github.com/users/jhauret/received_events", "repos_url": "https://api.github.com/users/jhauret/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jhauret/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jhauret/subscriptions", "type": "User", "url": "https://api.github.com/users/jhauret" }
[]
open
false
null
[]
null
[ "And it also works well with `dataset = dataset.select_columns([\"audio\"])`" ]
1,709,631,206,000
1,709,634,739,000
null
NONE
null
### Describe the bug When loading a HF dataset in streaming mode and removing some columns, it is impossible to load a sample if the audio contains more than one channel. I have the impression that the time axis and channels are swapped or concatenated. ### Steps to reproduce the bug Minimal error code: ```python from datasets import load_dataset dataset_name = "zinc75/Vibravox_dummy" config_name = "BWE_Larynx_microphone" # if we use "ASR_Larynx_microphone" subset which is a monochannel audio, no error is thrown. dataset = load_dataset( path=dataset_name, name=config_name, split="train", streaming=True ) dataset = dataset.remove_columns(["sensor_id"]) # dataset = dataset.map(lambda x:x, remove_columns=["sensor_id"]) # The commented version does not produce an error, but loses the dataset features. sample = next(iter(dataset)) ``` Error: ``` Traceback (most recent call last): File "/home/julien/Bureau/github/vibravox/tmp.py", line 15, in <module> sample = next(iter(dataset)) ^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1392, in __iter__ example = _apply_feature_types_on_example( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/iterable_dataset.py", line 1080, in _apply_feature_types_on_example encoded_example = features.encode_example(example) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1889, in encode_example return encode_nested_example(self, example) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1244, in encode_nested_example {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1244, in <dictcomp> {k: encode_nested_example(schema[k], obj.get(k), level=level + 1) for k in schema} ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/features.py", line 1300, in encode_nested_example return schema.encode_example(obj) if obj is not None else None ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/datasets/features/audio.py", line 98, in encode_example sf.write(buffer, value["array"], value["sampling_rate"], format="wav") File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 343, in write with SoundFile(file, 'w', samplerate, channels, ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 658, in __init__ self._file = self._open(file, mode_int, closefd) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/julien/.pyenv/versions/vibravox/lib/python3.11/site-packages/soundfile.py", line 1216, in _open raise LibsndfileError(err, prefix="Error opening {0!r}: ".format(self.name)) soundfile.LibsndfileError: Error opening <_io.BytesIO object at 0x7fd795d24680>: Format not recognised. Process finished with exit code 1 ``` ### Expected behavior I would expect this code to run without error. ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-21-generic-x86_64-with-glibc2.35 - Python version: 3.11.0 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.2.1 - `fsspec` version: 2023.10.0
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6717/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6717/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6716
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6716/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6716/comments
https://api.github.com/repos/huggingface/datasets/issues/6716/events
https://github.com/huggingface/datasets/issues/6716
2,168,706,558
I_kwDODunzps6BQ9X-
6,716
Non-deterministic `Dataset.builder_name` value
{ "avatar_url": "https://avatars.githubusercontent.com/u/17039389?v=4", "events_url": "https://api.github.com/users/harupy/events{/privacy}", "followers_url": "https://api.github.com/users/harupy/followers", "following_url": "https://api.github.com/users/harupy/following{/other_user}", "gists_url": "https://api.github.com/users/harupy/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/harupy", "id": 17039389, "login": "harupy", "node_id": "MDQ6VXNlcjE3MDM5Mzg5", "organizations_url": "https://api.github.com/users/harupy/orgs", "received_events_url": "https://api.github.com/users/harupy/received_events", "repos_url": "https://api.github.com/users/harupy/repos", "site_admin": false, "starred_url": "https://api.github.com/users/harupy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/harupy/subscriptions", "type": "User", "url": "https://api.github.com/users/harupy" }
[]
closed
false
null
[]
null
[ "When `rotten_tomatoes` is printed out, the following warning message is also printed out:\r\n\r\n```\r\nYou can avoid this message in future by passing the argument `trust_remote_code=True`.\r\nPassing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\r\n```", "Hi ! This behavior happens because the dataset was originakky created using a dataset script [rotten_tomatoes.py](https://huggingface.co./datasets/rotten_tomatoes/blob/26f40d324d7b281d8b3fb1c47f30f8b9957f206b/rotten_tomatoes.py) and because we added features recently allowing to download the dataset directly from Parquet files (parquet builder) without running the dataset script (rotten_tomatoes). The flakiness must come from the availability of the Parquet files (we automatically export them in the refs/convert/parquet branch and we recently had to move some files).\r\n\r\nAnyway the easy fix on our side is to remove the dataset script completely, let me open a PR at https://huggingface.co./datasets/rotten_tomatoes\r\n\r\nEDIT: opened https://huggingface.co./datasets/rotten_tomatoes/discussions/6, feel free to comment there if you're ok with that change", "@lhoestq Thanks for the comment, explanation, and patch!", "> we automatically export them in the refs/convert/parquet branch\r\n\r\nWhen this operation is in progress, the parquet files become temporarily unavailable?", "> When this operation is in progress, the parquet files become temporarily unavailable?\r\n\r\nYes correct. I just merged the patch btw :)", "@lhoestq Thanks for merging the PR! I think this issue can be closed." ]
1,709,630,601,000
1,710,835,094,000
null
NONE
null
### Describe the bug I'm not sure if this is a bug, but `print(ds.builder_name)` in the following code sometimes prints out `rotten_tomatoes` instead of `parquet`: ```python import datasets for _ in range(100): ds = datasets.load_dataset("rotten_tomatoes", split="train") print(ds.builder_name) # prints out "rotten_tomatoes" sometimes instead of "parquet" ``` Output: ``` ... parquet parquet parquet rotten_tomatoes parquet parquet parquet ... ``` Here's a reproduction using GitHub Actions: https://github.com/mlflow/mlflow/actions/runs/8153247984/job/22284263613?pr=11329#step:12:241 One of our tests is flaky because `builder_name` is not deterministic. ### Steps to reproduce the bug 1. Run the code above. ### Expected behavior Always prints out `parquet`? ### Environment info ``` Copy-and-paste the text below in your GitHub issue. - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-1015-azure-x86_64-with-glibc2.34 - Python version: 3.8.18 - `huggingface_hub` version: 0.21.3 - PyArrow version: 15.0.0 - Pandas version: 2.0.3 - `fsspec` version: 2024.2.0 ```
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6716/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6716/timeline
null
null
null
null
false
https://api.github.com/repos/huggingface/datasets/issues/6715
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6715/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6715/comments
https://api.github.com/repos/huggingface/datasets/issues/6715/events
https://github.com/huggingface/datasets/pull/6715
2,167,747,095
PR_kwDODunzps5oo36i
6,715
Fix sliced ConcatenationTable pickling with mixed schemas vertically
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6715). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005294 / 0.011353 (-0.006059) | 0.003598 / 0.011008 (-0.007411) | 0.062798 / 0.038508 (0.024290) | 0.027479 / 0.023109 (0.004370) | 0.247146 / 0.275898 (-0.028752) | 0.272103 / 0.323480 (-0.051377) | 0.002979 / 0.007986 (-0.005007) | 0.002701 / 0.004328 (-0.001628) | 0.049384 / 0.004250 (0.045134) | 0.041562 / 0.037052 (0.004510) | 0.269924 / 0.258489 (0.011435) | 0.290749 / 0.293841 (-0.003092) | 0.028285 / 0.128546 (-0.100261) | 0.010464 / 0.075646 (-0.065183) | 0.207000 / 0.419271 (-0.212272) | 0.036186 / 0.043533 (-0.007347) | 0.254524 / 0.255139 (-0.000615) | 0.274843 / 0.283200 (-0.008356) | 0.020044 / 0.141683 (-0.121638) | 1.119223 / 1.452155 (-0.332931) | 1.156557 / 1.492716 (-0.336159) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092014 / 0.018006 (0.074008) | 0.297349 / 0.000490 (0.296859) | 0.000205 / 0.000200 (0.000005) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018617 / 0.037411 (-0.018794) | 0.061879 / 0.014526 (0.047354) | 0.072877 / 0.176557 (-0.103680) | 0.121850 / 0.737135 (-0.615286) | 0.074686 / 0.296338 (-0.221653) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.281204 / 0.215209 (0.065995) | 2.728688 / 2.077655 (0.651033) | 1.469659 / 1.504120 (-0.034461) | 1.355306 / 1.541195 (-0.185889) | 1.350598 / 1.468490 (-0.117892) | 0.563669 / 4.584777 (-4.021108) | 2.377177 / 3.745712 (-1.368535) | 2.767402 / 5.269862 (-2.502460) | 1.720188 / 4.565676 (-2.845489) | 0.062594 / 0.424275 (-0.361681) | 0.005004 / 0.007607 (-0.002603) | 0.333017 / 0.226044 (0.106972) | 3.354543 / 2.268929 (1.085615) | 1.840031 / 55.444624 (-53.604593) | 1.545548 / 6.876477 (-5.330929) | 1.569858 / 2.142072 (-0.572214) | 0.642680 / 4.805227 (-4.162547) | 0.117463 / 6.500664 (-6.383201) | 0.042472 / 0.075469 (-0.032997) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.977436 / 1.841788 (-0.864351) | 11.285982 / 8.074308 (3.211673) | 9.441848 / 10.191392 (-0.749544) | 0.140773 / 0.680424 (-0.539650) | 0.013783 / 0.534201 (-0.520418) | 0.292304 / 0.579283 (-0.286979) | 0.275011 / 0.434364 (-0.159353) | 0.339094 / 0.540337 (-0.201244) | 0.447593 / 1.386936 (-0.939343) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005258 / 0.011353 (-0.006095) | 0.003539 / 0.011008 (-0.007469) | 0.049920 / 0.038508 (0.011412) | 0.029789 / 0.023109 (0.006680) | 0.277187 / 0.275898 (0.001288) | 0.296817 / 0.323480 (-0.026663) | 0.004133 / 0.007986 (-0.003852) | 0.002679 / 0.004328 (-0.001649) | 0.048999 / 0.004250 (0.044749) | 0.044087 / 0.037052 (0.007034) | 0.290359 / 0.258489 (0.031870) | 0.319572 / 0.293841 (0.025731) | 0.030248 / 0.128546 (-0.098298) | 0.010453 / 0.075646 (-0.065194) | 0.058734 / 0.419271 (-0.360537) | 0.051216 / 0.043533 (0.007683) | 0.278667 / 0.255139 (0.023528) | 0.298792 / 0.283200 (0.015592) | 0.019131 / 0.141683 (-0.122552) | 1.131814 / 1.452155 (-0.320340) | 1.167208 / 1.492716 (-0.325508) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.088316 / 0.018006 (0.070309) | 0.297143 / 0.000490 (0.296653) | 0.000207 / 0.000200 (0.000007) | 0.000048 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022457 / 0.037411 (-0.014954) | 0.075251 / 0.014526 (0.060726) | 0.086747 / 0.176557 (-0.089809) | 0.124975 / 0.737135 (-0.612161) | 0.087320 / 0.296338 (-0.209019) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.292339 / 0.215209 (0.077130) | 2.860196 / 2.077655 (0.782541) | 1.599058 / 1.504120 (0.094938) | 1.476104 / 1.541195 (-0.065091) | 1.509109 / 1.468490 (0.040619) | 0.564056 / 4.584777 (-4.020721) | 2.388870 / 3.745712 (-1.356842) | 2.582356 / 5.269862 (-2.687506) | 1.726033 / 4.565676 (-2.839644) | 0.061788 / 0.424275 (-0.362487) | 0.005021 / 0.007607 (-0.002586) | 0.345644 / 0.226044 (0.119600) | 3.384000 / 2.268929 (1.115071) | 1.946591 / 55.444624 (-53.498033) | 1.693485 / 6.876477 (-5.182992) | 1.790300 / 2.142072 (-0.351773) | 0.654637 / 4.805227 (-4.150590) | 0.116271 / 6.500664 (-6.384393) | 0.040710 / 0.075469 (-0.034759) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.007367 / 1.841788 (-0.834421) | 11.868065 / 8.074308 (3.793757) | 10.146212 / 10.191392 (-0.045180) | 0.128902 / 0.680424 (-0.551522) | 0.015259 / 0.534201 (-0.518942) | 0.288087 / 0.579283 (-0.291196) | 0.281516 / 0.434364 (-0.152848) | 0.325755 / 0.540337 (-0.214583) | 0.424814 / 1.386936 (-0.962122) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8247202a7ed1c3164c88f8f183513c5f003aa2af \"CML watermark\")\n" ]
1,709,586,127,000
1,709,637,785,000
null
MEMBER
null
A sliced + pickled ConcatenationTable could end up with a different schema than the original schema, if the slice only contains blocks with only a subset of the columns. This can lead to issues when saving datasets from a concatenation of datasets with mixed schemas Reported in https://discuss.huggingface.co/t/datasetdict-save-to-disk-with-num-proc-1-seems-to-hang-with-error/75595
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6715/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6715/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6715.diff", "html_url": "https://github.com/huggingface/datasets/pull/6715", "merged_at": "2024-03-05T11:17:04", "patch_url": "https://github.com/huggingface/datasets/pull/6715.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6715" }
true
https://api.github.com/repos/huggingface/datasets/issues/6714
https://api.github.com/repos/huggingface/datasets
https://api.github.com/repos/huggingface/datasets/issues/6714/labels{/name}
https://api.github.com/repos/huggingface/datasets/issues/6714/comments
https://api.github.com/repos/huggingface/datasets/issues/6714/events
https://github.com/huggingface/datasets/pull/6714
2,167,569,080
PR_kwDODunzps5ooQd2
6,714
Expand no-code dataset info with datasets-server info
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko" }
[]
closed
false
null
[]
null
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_6714). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005237 / 0.011353 (-0.006116) | 0.003614 / 0.011008 (-0.007394) | 0.063349 / 0.038508 (0.024841) | 0.027297 / 0.023109 (0.004187) | 0.236203 / 0.275898 (-0.039695) | 0.260029 / 0.323480 (-0.063451) | 0.003096 / 0.007986 (-0.004889) | 0.003342 / 0.004328 (-0.000987) | 0.048703 / 0.004250 (0.044453) | 0.043121 / 0.037052 (0.006069) | 0.257491 / 0.258489 (-0.000998) | 0.282861 / 0.293841 (-0.010980) | 0.027701 / 0.128546 (-0.100845) | 0.010634 / 0.075646 (-0.065012) | 0.207369 / 0.419271 (-0.211903) | 0.035799 / 0.043533 (-0.007734) | 0.240445 / 0.255139 (-0.014694) | 0.261977 / 0.283200 (-0.021223) | 0.018175 / 0.141683 (-0.123508) | 1.143964 / 1.452155 (-0.308191) | 1.230057 / 1.492716 (-0.262659) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096656 / 0.018006 (0.078650) | 0.303434 / 0.000490 (0.302944) | 0.000225 / 0.000200 (0.000025) | 0.000051 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018454 / 0.037411 (-0.018957) | 0.061792 / 0.014526 (0.047266) | 0.073384 / 0.176557 (-0.103172) | 0.120148 / 0.737135 (-0.616988) | 0.074221 / 0.296338 (-0.222118) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.290291 / 0.215209 (0.075082) | 2.822908 / 2.077655 (0.745254) | 1.483139 / 1.504120 (-0.020981) | 1.349619 / 1.541195 (-0.191576) | 1.356588 / 1.468490 (-0.111902) | 0.571723 / 4.584777 (-4.013054) | 2.402696 / 3.745712 (-1.343016) | 2.832215 / 5.269862 (-2.437647) | 1.794962 / 4.565676 (-2.770714) | 0.062707 / 0.424275 (-0.361568) | 0.004997 / 0.007607 (-0.002610) | 0.343093 / 0.226044 (0.117049) | 3.383028 / 2.268929 (1.114100) | 1.818624 / 55.444624 (-53.626000) | 1.549859 / 6.876477 (-5.326618) | 1.667838 / 2.142072 (-0.474235) | 0.648574 / 4.805227 (-4.156653) | 0.119181 / 6.500664 (-6.381484) | 0.042074 / 0.075469 (-0.033395) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.982039 / 1.841788 (-0.859748) | 11.411759 / 8.074308 (3.337451) | 9.783405 / 10.191392 (-0.407987) | 0.129577 / 0.680424 (-0.550847) | 0.014091 / 0.534201 (-0.520110) | 0.297925 / 0.579283 (-0.281358) | 0.263884 / 0.434364 (-0.170480) | 0.346032 / 0.540337 (-0.194305) | 0.444806 / 1.386936 (-0.942130) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005527 / 0.011353 (-0.005826) | 0.003677 / 0.011008 (-0.007332) | 0.050245 / 0.038508 (0.011737) | 0.030070 / 0.023109 (0.006961) | 0.272640 / 0.275898 (-0.003258) | 0.296555 / 0.323480 (-0.026925) | 0.004247 / 0.007986 (-0.003738) | 0.003833 / 0.004328 (-0.000495) | 0.049341 / 0.004250 (0.045091) | 0.046604 / 0.037052 (0.009552) | 0.282765 / 0.258489 (0.024276) | 0.314924 / 0.293841 (0.021084) | 0.029749 / 0.128546 (-0.098797) | 0.010524 / 0.075646 (-0.065122) | 0.057859 / 0.419271 (-0.361412) | 0.053172 / 0.043533 (0.009640) | 0.274906 / 0.255139 (0.019767) | 0.290566 / 0.283200 (0.007366) | 0.019299 / 0.141683 (-0.122384) | 1.164092 / 1.452155 (-0.288062) | 1.205074 / 1.492716 (-0.287642) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093943 / 0.018006 (0.075936) | 0.298746 / 0.000490 (0.298256) | 0.000232 / 0.000200 (0.000032) | 0.000054 / 0.000054 (-0.000000) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022098 / 0.037411 (-0.015313) | 0.075523 / 0.014526 (0.060997) | 0.086784 / 0.176557 (-0.089773) | 0.124610 / 0.737135 (-0.612525) | 0.087743 / 0.296338 (-0.208595) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298555 / 0.215209 (0.083346) | 2.951493 / 2.077655 (0.873838) | 1.611448 / 1.504120 (0.107328) | 1.481503 / 1.541195 (-0.059692) | 1.497937 / 1.468490 (0.029447) | 0.580402 / 4.584777 (-4.004375) | 2.433308 / 3.745712 (-1.312404) | 2.712717 / 5.269862 (-2.557145) | 1.766286 / 4.565676 (-2.799391) | 0.063973 / 0.424275 (-0.360303) | 0.005006 / 0.007607 (-0.002601) | 0.354541 / 0.226044 (0.128497) | 3.486448 / 2.268929 (1.217519) | 1.972779 / 55.444624 (-53.471846) | 1.709018 / 6.876477 (-5.167458) | 1.864242 / 2.142072 (-0.277831) | 0.678213 / 4.805227 (-4.127014) | 0.119525 / 6.500664 (-6.381140) | 0.041387 / 0.075469 (-0.034082) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.021337 / 1.841788 (-0.820451) | 12.049563 / 8.074308 (3.975255) | 10.424701 / 10.191392 (0.233309) | 0.131444 / 0.680424 (-0.548980) | 0.015644 / 0.534201 (-0.518557) | 0.293712 / 0.579283 (-0.285571) | 0.279160 / 0.434364 (-0.155204) | 0.327991 / 0.540337 (-0.212346) | 0.435455 / 1.386936 (-0.951481) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1fe9483acc1ccaf19f3c199b99391921a8526215 \"CML watermark\")\n" ]
1,709,579,890,000
1,709,584,110,000
null
CONTRIBUTOR
null
E.g., to have info about a dataset's number of examples for more informative TQDM bars.
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/6714/reactions" }
https://api.github.com/repos/huggingface/datasets/issues/6714/timeline
null
null
0
{ "diff_url": "https://github.com/huggingface/datasets/pull/6714.diff", "html_url": "https://github.com/huggingface/datasets/pull/6714", "merged_at": "2024-03-04T20:22:15", "patch_url": "https://github.com/huggingface/datasets/pull/6714.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/6714" }
true
End of preview.