The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: TypeError Message: Couldn't cast array of type timestamp[s] to null Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in cast_array_to_feature arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in <listcomp> arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2116, in cast_array_to_feature return array_cast( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1962, in array_cast raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}") TypeError: Couldn't cast array of type timestamp[s] to null The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1029, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1124, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1884, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2040, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
url
string | repository_url
string | labels_url
string | comments_url
string | events_url
string | html_url
string | id
int64 | node_id
string | number
int64 | title
string | user
dict | labels
sequence | state
string | locked
bool | assignee
null | assignees
sequence | milestone
null | comments
sequence | created_at
int64 | updated_at
int64 | closed_at
int64 | author_association
string | active_lock_reason
null | draft
float64 | pull_request
dict | body
string | reactions
dict | timeline_url
string | performed_via_github_app
null | state_reason
null | is_pull_request
bool |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/7119 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7119/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7119/comments | https://api.github.com/repos/huggingface/datasets/issues/7119/events | https://github.com/huggingface/datasets/pull/7119 | 2,477,766,493 | PR_kwDODunzps54-GjY | 7,119 | Install transformers with numpy-2 CI | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7119). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005156 / 0.011353 (-0.006197) | 0.003365 / 0.011008 (-0.007643) | 0.063451 / 0.038508 (0.024943) | 0.029510 / 0.023109 (0.006401) | 0.244825 / 0.275898 (-0.031074) | 0.265157 / 0.323480 (-0.058323) | 0.004239 / 0.007986 (-0.003747) | 0.002732 / 0.004328 (-0.001596) | 0.050412 / 0.004250 (0.046162) | 0.043608 / 0.037052 (0.006556) | 0.256635 / 0.258489 (-0.001854) | 0.277472 / 0.293841 (-0.016369) | 0.029329 / 0.128546 (-0.099217) | 0.012318 / 0.075646 (-0.063329) | 0.204751 / 0.419271 (-0.214520) | 0.036468 / 0.043533 (-0.007065) | 0.246773 / 0.255139 (-0.008366) | 0.263932 / 0.283200 (-0.019268) | 0.017053 / 0.141683 (-0.124629) | 1.173249 / 1.452155 (-0.278905) | 1.234186 / 1.492716 (-0.258531) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.092398 / 0.018006 (0.074391) | 0.309473 / 0.000490 (0.308983) | 0.000220 / 0.000200 (0.000020) | 0.000050 / 0.000054 (-0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018553 / 0.037411 (-0.018858) | 0.062546 / 0.014526 (0.048020) | 0.073943 / 0.176557 (-0.102613) | 0.120498 / 0.737135 (-0.616638) | 0.075185 / 0.296338 (-0.221153) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296899 / 0.215209 (0.081690) | 2.919088 / 2.077655 (0.841433) | 1.533146 / 1.504120 (0.029026) | 1.395441 / 1.541195 (-0.145754) | 1.399089 / 1.468490 (-0.069401) | 0.742750 / 4.584777 (-3.842027) | 2.390317 / 3.745712 (-1.355395) | 2.883166 / 5.269862 (-2.386695) | 1.854003 / 4.565676 (-2.711674) | 0.077140 / 0.424275 (-0.347136) | 0.005176 / 0.007607 (-0.002432) | 0.349391 / 0.226044 (0.123347) | 3.466043 / 2.268929 (1.197114) | 1.870619 / 55.444624 (-53.574005) | 1.559173 / 6.876477 (-5.317303) | 1.605480 / 2.142072 (-0.536592) | 0.786753 / 4.805227 (-4.018474) | 0.134869 / 6.500664 (-6.365795) | 0.042176 / 0.075469 (-0.033293) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.954256 / 1.841788 (-0.887532) | 11.194758 / 8.074308 (3.120449) | 9.129670 / 10.191392 (-1.061722) | 0.138318 / 0.680424 (-0.542106) | 0.014299 / 0.534201 (-0.519902) | 0.303704 / 0.579283 (-0.275579) | 0.262513 / 0.434364 (-0.171851) | 0.346539 / 0.540337 (-0.193798) | 0.429524 / 1.386936 (-0.957412) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005692 / 0.011353 (-0.005661) | 0.003423 / 0.011008 (-0.007586) | 0.050618 / 0.038508 (0.012110) | 0.031053 / 0.023109 (0.007944) | 0.275901 / 0.275898 (0.000003) | 0.294404 / 0.323480 (-0.029076) | 0.004303 / 0.007986 (-0.003682) | 0.002728 / 0.004328 (-0.001600) | 0.049757 / 0.004250 (0.045507) | 0.039997 / 0.037052 (0.002945) | 0.287291 / 0.258489 (0.028802) | 0.319186 / 0.293841 (0.025345) | 0.032558 / 0.128546 (-0.095988) | 0.012088 / 0.075646 (-0.063558) | 0.060746 / 0.419271 (-0.358525) | 0.034046 / 0.043533 (-0.009486) | 0.276170 / 0.255139 (0.021031) | 0.293673 / 0.283200 (0.010474) | 0.018018 / 0.141683 (-0.123665) | 1.158453 / 1.452155 (-0.293701) | 1.198599 / 1.492716 (-0.294118) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093134 / 0.018006 (0.075127) | 0.304511 / 0.000490 (0.304021) | 0.000216 / 0.000200 (0.000016) | 0.000053 / 0.000054 (-0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022991 / 0.037411 (-0.014421) | 0.077548 / 0.014526 (0.063022) | 0.087887 / 0.176557 (-0.088670) | 0.131786 / 0.737135 (-0.605349) | 0.088747 / 0.296338 (-0.207591) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.302811 / 0.215209 (0.087602) | 2.959276 / 2.077655 (0.881621) | 1.591348 / 1.504120 (0.087229) | 1.464731 / 1.541195 (-0.076464) | 1.474112 / 1.468490 (0.005622) | 0.741573 / 4.584777 (-3.843204) | 0.959229 / 3.745712 (-2.786483) | 2.895750 / 5.269862 (-2.374111) | 1.896051 / 4.565676 (-2.669625) | 0.079012 / 0.424275 (-0.345264) | 0.005494 / 0.007607 (-0.002113) | 0.355699 / 0.226044 (0.129655) | 3.524833 / 2.268929 (1.255905) | 1.972358 / 55.444624 (-53.472266) | 1.667249 / 6.876477 (-5.209228) | 1.658635 / 2.142072 (-0.483438) | 0.813184 / 4.805227 (-3.992044) | 0.134226 / 6.500664 (-6.366438) | 0.041087 / 0.075469 (-0.034382) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.038963 / 1.841788 (-0.802824) | 11.785835 / 8.074308 (3.711526) | 10.397027 / 10.191392 (0.205635) | 0.141748 / 0.680424 (-0.538676) | 0.014738 / 0.534201 (-0.519463) | 0.300056 / 0.579283 (-0.279227) | 0.127442 / 0.434364 (-0.306922) | 0.345013 / 0.540337 (-0.195324) | 0.449598 / 1.386936 (-0.937338) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#70bac27ef861b2b11f581a291a6b76adeee24f98 \"CML watermark\")\n"
] | 1,724,238,899,000 | 1,724,240,555,000 | 1,724,240,210,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7119.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7119",
"merged_at": "2024-08-21T11:36:50",
"patch_url": "https://github.com/huggingface/datasets/pull/7119.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7119"
} | Install transformers with numpy-2 CI.
Note that transformers no longer pins numpy < 2 since transformers-4.43.0:
- https://github.com/huggingface/transformers/pull/32018
- https://github.com/huggingface/transformers/releases/tag/v4.43.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7119/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7119/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7118 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7118/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7118/comments | https://api.github.com/repos/huggingface/datasets/issues/7118/events | https://github.com/huggingface/datasets/pull/7118 | 2,477,676,893 | PR_kwDODunzps549yu4 | 7,118 | Allow numpy-2.1 and test it without audio extra | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7118). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005674 / 0.011353 (-0.005679) | 0.003919 / 0.011008 (-0.007089) | 0.062665 / 0.038508 (0.024157) | 0.031750 / 0.023109 (0.008641) | 0.234809 / 0.275898 (-0.041089) | 0.264454 / 0.323480 (-0.059026) | 0.004265 / 0.007986 (-0.003720) | 0.002757 / 0.004328 (-0.001572) | 0.048921 / 0.004250 (0.044671) | 0.050765 / 0.037052 (0.013713) | 0.246185 / 0.258489 (-0.012305) | 0.287011 / 0.293841 (-0.006829) | 0.030754 / 0.128546 (-0.097792) | 0.012368 / 0.075646 (-0.063278) | 0.203841 / 0.419271 (-0.215431) | 0.037579 / 0.043533 (-0.005953) | 0.238165 / 0.255139 (-0.016974) | 0.264375 / 0.283200 (-0.018824) | 0.018663 / 0.141683 (-0.123020) | 1.143897 / 1.452155 (-0.308258) | 1.218130 / 1.492716 (-0.274586) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102112 / 0.018006 (0.084106) | 0.303214 / 0.000490 (0.302724) | 0.000232 / 0.000200 (0.000032) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019401 / 0.037411 (-0.018010) | 0.062444 / 0.014526 (0.047919) | 0.076497 / 0.176557 (-0.100060) | 0.122309 / 0.737135 (-0.614826) | 0.077178 / 0.296338 (-0.219160) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.282931 / 0.215209 (0.067722) | 2.783587 / 2.077655 (0.705932) | 1.464076 / 1.504120 (-0.040044) | 1.333912 / 1.541195 (-0.207282) | 1.367391 / 1.468490 (-0.101099) | 0.736702 / 4.584777 (-3.848075) | 2.413625 / 3.745712 (-1.332087) | 2.949549 / 5.269862 (-2.320313) | 1.910308 / 4.565676 (-2.655369) | 0.077419 / 0.424275 (-0.346856) | 0.005159 / 0.007607 (-0.002448) | 0.345595 / 0.226044 (0.119551) | 3.433205 / 2.268929 (1.164277) | 1.844443 / 55.444624 (-53.600181) | 1.527475 / 6.876477 (-5.349002) | 1.544315 / 2.142072 (-0.597758) | 0.803942 / 4.805227 (-4.001285) | 0.134131 / 6.500664 (-6.366533) | 0.042638 / 0.075469 (-0.032831) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975158 / 1.841788 (-0.866629) | 11.726187 / 8.074308 (3.651879) | 9.403347 / 10.191392 (-0.788045) | 0.131583 / 0.680424 (-0.548840) | 0.014358 / 0.534201 (-0.519843) | 0.301360 / 0.579283 (-0.277923) | 0.266529 / 0.434364 (-0.167835) | 0.341669 / 0.540337 (-0.198668) | 0.425751 / 1.386936 (-0.961186) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005911 / 0.011353 (-0.005442) | 0.004093 / 0.011008 (-0.006915) | 0.049936 / 0.038508 (0.011428) | 0.031828 / 0.023109 (0.008719) | 0.273874 / 0.275898 (-0.002025) | 0.296871 / 0.323480 (-0.026609) | 0.004470 / 0.007986 (-0.003516) | 0.002902 / 0.004328 (-0.001426) | 0.048848 / 0.004250 (0.044597) | 0.042320 / 0.037052 (0.005268) | 0.287957 / 0.258489 (0.029468) | 0.321033 / 0.293841 (0.027192) | 0.032996 / 0.128546 (-0.095550) | 0.012244 / 0.075646 (-0.063403) | 0.060493 / 0.419271 (-0.358779) | 0.034630 / 0.043533 (-0.008902) | 0.277254 / 0.255139 (0.022115) | 0.292822 / 0.283200 (0.009623) | 0.017966 / 0.141683 (-0.123717) | 1.167432 / 1.452155 (-0.284723) | 1.231837 / 1.492716 (-0.260880) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099970 / 0.018006 (0.081964) | 0.313240 / 0.000490 (0.312750) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022928 / 0.037411 (-0.014483) | 0.077058 / 0.014526 (0.062532) | 0.090147 / 0.176557 (-0.086409) | 0.129416 / 0.737135 (-0.607720) | 0.091021 / 0.296338 (-0.205318) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.300697 / 0.215209 (0.085488) | 2.944649 / 2.077655 (0.866995) | 1.609106 / 1.504120 (0.104986) | 1.483762 / 1.541195 (-0.057433) | 1.519433 / 1.468490 (0.050943) | 0.714129 / 4.584777 (-3.870648) | 0.991848 / 3.745712 (-2.753864) | 2.966340 / 5.269862 (-2.303521) | 1.905427 / 4.565676 (-2.660249) | 0.079041 / 0.424275 (-0.345234) | 0.005671 / 0.007607 (-0.001936) | 0.356037 / 0.226044 (0.129993) | 3.504599 / 2.268929 (1.235670) | 1.979207 / 55.444624 (-53.465417) | 1.695030 / 6.876477 (-5.181447) | 1.703978 / 2.142072 (-0.438095) | 0.800871 / 4.805227 (-4.004357) | 0.134414 / 6.500664 (-6.366250) | 0.041743 / 0.075469 (-0.033726) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.029879 / 1.841788 (-0.811909) | 12.132252 / 8.074308 (4.057944) | 10.596576 / 10.191392 (0.405184) | 0.132237 / 0.680424 (-0.548187) | 0.016239 / 0.534201 (-0.517962) | 0.301831 / 0.579283 (-0.277452) | 0.127966 / 0.434364 (-0.306398) | 0.341081 / 0.540337 (-0.199256) | 0.448996 / 1.386936 (-0.937940) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0a0fa48a68c3502edfa50273b881f909e4e6e70c \"CML watermark\")\n"
] | 1,724,236,175,000 | 1,724,238,303,000 | 1,724,237,895,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7118.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7118",
"merged_at": "2024-08-21T10:58:15",
"patch_url": "https://github.com/huggingface/datasets/pull/7118.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7118"
} | Allow numpy-2.1 and test it without audio extra.
This PR reverts:
- #7114
Note that audio extra tests can be included again with numpy-2.1 once next numba-0.61.0 version is released. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7118/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7118/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7117 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7117/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7117/comments | https://api.github.com/repos/huggingface/datasets/issues/7117/events | https://github.com/huggingface/datasets/issues/7117 | 2,476,555,659 | I_kwDODunzps6TnT2L | 7,117 | Audio dataset load everything in RAM and is very slow | {
"avatar_url": "https://avatars.githubusercontent.com/u/64205064?v=4",
"events_url": "https://api.github.com/users/Jourdelune/events{/privacy}",
"followers_url": "https://api.github.com/users/Jourdelune/followers",
"following_url": "https://api.github.com/users/Jourdelune/following{/other_user}",
"gists_url": "https://api.github.com/users/Jourdelune/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Jourdelune",
"id": 64205064,
"login": "Jourdelune",
"node_id": "MDQ6VXNlcjY0MjA1MDY0",
"organizations_url": "https://api.github.com/users/Jourdelune/orgs",
"received_events_url": "https://api.github.com/users/Jourdelune/received_events",
"repos_url": "https://api.github.com/users/Jourdelune/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Jourdelune/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Jourdelune/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Jourdelune"
} | [] | open | false | null | [] | null | [
"Hi ! I think the issue comes from the fact that you return `row` entirely, and therefore the dataset has to re-encode the audio data in `row`.\r\n\r\nCan you try this instead ?\r\n\r\n```python\r\n# map the dataset\r\ndef transcribe_audio(row):\r\n audio = row[\"audio\"] # get the audio but do nothing with it\r\n return {\"transcribed\": True}\r\n```\r\n\r\nPS: no need to iter on the dataset to trigger the `map` function on a `Dataset` - `map` runs directly when it's called (contrary to `IterableDataset` taht you can get when streaming, which are lazy)"
] | 1,724,188,692,000 | 1,724,189,543,000 | null | NONE | null | null | null | Hello, I'm working with an audio dataset. I want to transcribe the audio that the dataset contain, and for that I use whisper. My issue is that the dataset load everything in the RAM when I map the dataset, obviously, when RAM usage is too high, the program crashes.
To fix this issue, I'm using writer_batch_size that I set to 10, but in this case, the mapping of the dataset is extremely slow.
To illustrate this, on 50 examples, with `writer_batch_size` set to 10, it takes 123.24 seconds to process the dataset, but without `writer_batch_size` set to 10, it takes about ten seconds to process the dataset, but then the process remains blocked (I assume that it is writing the dataset and therefore suffers from the same problem as `writer_batch_size`)
### Steps to reproduce the bug
Hug ram usage but fast (but actually slow when saving the dataset):
```py
from datasets import load_dataset
import time
ds = load_dataset("WaveGenAI/audios2", split="train[:50]")
# map the dataset
def transcribe_audio(row):
audio = row["audio"] # get the audio but do nothing with it
row["transcribed"] = True
return row
time1 = time.time()
ds = ds.map(
transcribe_audio
)
for row in ds:
pass # do nothing, just iterate to trigger the map function
print(f"Time taken: {time.time() - time1:.2f} seconds")
```
Low ram usage but very very slow:
```py
from datasets import load_dataset
import time
ds = load_dataset("WaveGenAI/audios2", split="train[:50]")
# map the dataset
def transcribe_audio(row):
audio = row["audio"] # get the audio but do nothing with it
row["transcribed"] = True
return row
time1 = time.time()
ds = ds.map(
transcribe_audio, writer_batch_size=10
) # set low writer_batch_size to avoid memory issues
for row in ds:
pass # do nothing, just iterate to trigger the map function
print(f"Time taken: {time.time() - time1:.2f} seconds")
```
### Expected behavior
I think the processing should be much faster, on only 50 audio examples, the mapping takes several minutes while nothing is done (just loading the audio).
### Environment info
- `datasets` version: 2.21.0
- Platform: Linux-6.10.5-arch1-1-x86_64-with-glibc2.40
- Python version: 3.10.4
- `huggingface_hub` version: 0.24.5
- PyArrow version: 17.0.0
- Pandas version: 1.5.3
- `fsspec` version: 2024.6.1
# Extra
The dataset has been generated by using audio folder, so I don't think anything specific in my code is causing this problem.
```py
import argparse
from datasets import load_dataset
parser = argparse.ArgumentParser()
parser.add_argument("--folder", help="folder path", default="/media/works/test/")
args = parser.parse_args()
dataset = load_dataset("audiofolder", data_dir=args.folder)
# push the dataset to hub
dataset.push_to_hub("WaveGenAI/audios")
```
Also, it's the combination of `audio = row["audio"]` and `row["transcribed"] = True` which causes problems, `row["transcribed"] = True `alone does nothing and `audio = row["audio"]` alone sometimes causes problems, sometimes not. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7117/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7117/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7116 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7116/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7116/comments | https://api.github.com/repos/huggingface/datasets/issues/7116/events | https://github.com/huggingface/datasets/issues/7116 | 2,475,522,721 | I_kwDODunzps6TjXqh | 7,116 | datasets cannot handle nested json if features is given. | {
"avatar_url": "https://avatars.githubusercontent.com/u/38550511?v=4",
"events_url": "https://api.github.com/users/ljw20180420/events{/privacy}",
"followers_url": "https://api.github.com/users/ljw20180420/followers",
"following_url": "https://api.github.com/users/ljw20180420/following{/other_user}",
"gists_url": "https://api.github.com/users/ljw20180420/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ljw20180420",
"id": 38550511,
"login": "ljw20180420",
"node_id": "MDQ6VXNlcjM4NTUwNTEx",
"organizations_url": "https://api.github.com/users/ljw20180420/orgs",
"received_events_url": "https://api.github.com/users/ljw20180420/received_events",
"repos_url": "https://api.github.com/users/ljw20180420/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ljw20180420/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ljw20180420/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ljw20180420"
} | [] | open | false | null | [] | null | [
"Hi ! `Sequence` has a weird behavior for dictionaries (from tensorflow-datasets), use a regular list instead:\r\n\r\n```python\r\nds = datasets.load_dataset('json', data_files=\"./temp.json\", features=datasets.Features({\r\n 'ref1': datasets.Value('string'),\r\n 'ref2': datasets.Value('string'),\r\n 'cuts': [{\r\n \"cut1\": datasets.Value(\"uint16\"),\r\n \"cut2\": datasets.Value(\"uint16\")\r\n }]\r\n}))\r\n```"
] | 1,724,156,869,000 | 1,724,156,869,000 | null | NONE | null | null | null | ### Describe the bug
I have a json named temp.json.
```json
{"ref1": "ABC", "ref2": "DEF", "cuts":[{"cut1": 3, "cut2": 5}]}
```
I want to load it.
```python
ds = datasets.load_dataset('json', data_files="./temp.json", features=datasets.Features({
'ref1': datasets.Value('string'),
'ref2': datasets.Value('string'),
'cuts': datasets.Sequence({
"cut1": datasets.Value("uint16"),
"cut2": datasets.Value("uint16")
})
}))
```
The above code does not work. However, I can load it without giving features.
```python
ds = datasets.load_dataset('json', data_files="./temp.json")
```
Is it possible to load integers as uint16 to save some memory?
### Steps to reproduce the bug
As in the bug description.
### Expected behavior
The data are loaded and integers are uint16.
### Environment info
Copy-and-paste the text below in your GitHub issue.
- `datasets` version: 2.21.0
- Platform: Linux-5.15.0-118-generic-x86_64-with-glibc2.35
- Python version: 3.11.9
- `huggingface_hub` version: 0.24.5
- PyArrow version: 17.0.0
- Pandas version: 2.2.2
- `fsspec` version: 2024.5.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7116/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7116/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7115 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7115/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7115/comments | https://api.github.com/repos/huggingface/datasets/issues/7115/events | https://github.com/huggingface/datasets/issues/7115 | 2,475,363,142 | I_kwDODunzps6TiwtG | 7,115 | module 'pyarrow.lib' has no attribute 'ListViewType' | {
"avatar_url": "https://avatars.githubusercontent.com/u/175128880?v=4",
"events_url": "https://api.github.com/users/neurafusionai/events{/privacy}",
"followers_url": "https://api.github.com/users/neurafusionai/followers",
"following_url": "https://api.github.com/users/neurafusionai/following{/other_user}",
"gists_url": "https://api.github.com/users/neurafusionai/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/neurafusionai",
"id": 175128880,
"login": "neurafusionai",
"node_id": "U_kgDOCnBBMA",
"organizations_url": "https://api.github.com/users/neurafusionai/orgs",
"received_events_url": "https://api.github.com/users/neurafusionai/received_events",
"repos_url": "https://api.github.com/users/neurafusionai/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/neurafusionai/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neurafusionai/subscriptions",
"type": "User",
"url": "https://api.github.com/users/neurafusionai"
} | [] | open | false | null | [] | null | [
"https://github.com/neurafusionai/Hugging_Face/blob/main/meta_opt_350m_customer_support_lora_v1.ipynb\r\n\r\ncouldnt train because of GPU\r\nI didnt pip install datasets -U\r\nbut looks like restarting worked"
] | 1,724,151,944,000 | 1,724,155,580,000 | null | NONE | null | null | null | ### Describe the bug
Code:
`!pipuninstall -y pyarrow
!pip install --no-cache-dir pyarrow
!pip uninstall -y pyarrow
!pip install pyarrow --no-cache-dir
!pip install --upgrade datasets transformers pyarrow
!pip install pyarrow.parquet
! pip install pyarrow-core libparquet
!pip install pyarrow --no-cache-dir
!pip install pyarrow
!pip install transformers
!pip install --upgrade datasets
!pip install datasets
! pip install pyarrow
! pip install pyarrow.lib
! pip install pyarrow.parquet
!pip install transformers
import pyarrow as pa
print(pa.__version__)
from datasets import load_dataset
import pyarrow.parquet as pq
import pyarrow.lib as lib
import pandas as pd
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
from transformers import AutoTokenizer
! pip install pyarrow-core libparquet
# Load the dataset for content moderation
dataset = load_dataset("PolyAI/banking77") # Example dataset for customer support
# Initialize the tokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
# Tokenize the dataset
def tokenize_function(examples):
return tokenizer(examples['text'], padding="max_length", truncation=True)
# Apply tokenization to the entire dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Check the first few tokenized samples
print(tokenized_datasets['train'][0])
from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments
# Load the model
model = AutoModelForSequenceClassification.from_pretrained("facebook/opt-350m", num_labels=77)
# Define training arguments
training_args = TrainingArguments(
output_dir="./results",
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
eval_strategy="epoch", #
save_strategy="epoch",
logging_dir="./logs",
learning_rate=2e-5,
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["test"],
)
# Train the model
trainer.train()
# Evaluate the model
trainer.evaluate()
`
AttributeError Traceback (most recent call last)
[<ipython-input-23-60bed3143a93>](https://localhost:8080/#) in <cell line: 22>()
20
21
---> 22 from datasets import load_dataset
23 import pyarrow.parquet as pq
24 import pyarrow.lib as lib
5 frames
[/usr/local/lib/python3.10/dist-packages/datasets/__init__.py](https://localhost:8080/#) in <module>
15 __version__ = "2.21.0"
16
---> 17 from .arrow_dataset import Dataset
18 from .arrow_reader import ReadInstruction
19 from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
[/usr/local/lib/python3.10/dist-packages/datasets/arrow_dataset.py](https://localhost:8080/#) in <module>
74
75 from . import config
---> 76 from .arrow_reader import ArrowReader
77 from .arrow_writer import ArrowWriter, OptimizedTypedSequence
78 from .data_files import sanitize_patterns
[/usr/local/lib/python3.10/dist-packages/datasets/arrow_reader.py](https://localhost:8080/#) in <module>
27
28 import pyarrow as pa
---> 29 import pyarrow.parquet as pq
30 from tqdm.contrib.concurrent import thread_map
31
[/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/__init__.py](https://localhost:8080/#) in <module>
18 # flake8: noqa
19
---> 20 from .core import *
[/usr/local/lib/python3.10/dist-packages/pyarrow/parquet/core.py](https://localhost:8080/#) in <module>
31
32 try:
---> 33 import pyarrow._parquet as _parquet
34 except ImportError as exc:
35 raise ImportError(
/usr/local/lib/python3.10/dist-packages/pyarrow/_parquet.pyx in init pyarrow._parquet()
AttributeError: module 'pyarrow.lib' has no attribute 'ListViewType'
### Steps to reproduce the bug
https://colab.research.google.com/drive/1HNbsg3tHxUJOHVtYIaRnNGY4T2PnLn4a?usp=sharing
### Expected behavior
Looks like there is an issue with datasets and pyarrow
### Environment info
google colab
python
huggingface
Found existing installation: pyarrow 17.0.0
Uninstalling pyarrow-17.0.0:
Successfully uninstalled pyarrow-17.0.0
Collecting pyarrow
Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl.metadata (3.3 kB)
Requirement already satisfied: numpy>=1.16.6 in /usr/local/lib/python3.10/dist-packages (from pyarrow) (1.26.4)
Downloading pyarrow-17.0.0-cp310-cp310-manylinux_2_28_x86_64.whl (39.9 MB)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 39.9/39.9 MB 188.9 MB/s eta 0:00:00
Installing collected packages: pyarrow
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.
ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.
Successfully installed pyarrow-17.0.0
WARNING: The following packages were previously imported in this runtime:
[pyarrow]
You must restart the runtime in order to use newly installed versions. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7115/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7115/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7114 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7114/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7114/comments | https://api.github.com/repos/huggingface/datasets/issues/7114/events | https://github.com/huggingface/datasets/pull/7114 | 2,475,062,252 | PR_kwDODunzps5404mO | 7,114 | Temporarily pin numpy<2.1 to fix CI | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7114). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005381 / 0.011353 (-0.005972) | 0.003929 / 0.011008 (-0.007079) | 0.062505 / 0.038508 (0.023997) | 0.031048 / 0.023109 (0.007938) | 0.244794 / 0.275898 (-0.031104) | 0.270997 / 0.323480 (-0.052483) | 0.003186 / 0.007986 (-0.004799) | 0.002750 / 0.004328 (-0.001579) | 0.048289 / 0.004250 (0.044039) | 0.042617 / 0.037052 (0.005565) | 0.262607 / 0.258489 (0.004118) | 0.281778 / 0.293841 (-0.012063) | 0.029426 / 0.128546 (-0.099120) | 0.012466 / 0.075646 (-0.063181) | 0.205221 / 0.419271 (-0.214051) | 0.035535 / 0.043533 (-0.007998) | 0.247866 / 0.255139 (-0.007273) | 0.269121 / 0.283200 (-0.014079) | 0.018557 / 0.141683 (-0.123125) | 1.147982 / 1.452155 (-0.304173) | 1.188998 / 1.492716 (-0.303718) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.096550 / 0.018006 (0.078544) | 0.300497 / 0.000490 (0.300007) | 0.000219 / 0.000200 (0.000019) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019150 / 0.037411 (-0.018261) | 0.063518 / 0.014526 (0.048993) | 0.076643 / 0.176557 (-0.099914) | 0.122958 / 0.737135 (-0.614177) | 0.078511 / 0.296338 (-0.217828) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.278163 / 0.215209 (0.062953) | 2.733514 / 2.077655 (0.655859) | 1.434335 / 1.504120 (-0.069785) | 1.318976 / 1.541195 (-0.222219) | 1.352498 / 1.468490 (-0.115992) | 0.717326 / 4.584777 (-3.867450) | 2.403683 / 3.745712 (-1.342029) | 2.930366 / 5.269862 (-2.339495) | 1.879938 / 4.565676 (-2.685739) | 0.079016 / 0.424275 (-0.345259) | 0.005156 / 0.007607 (-0.002451) | 0.331099 / 0.226044 (0.105055) | 3.305878 / 2.268929 (1.036949) | 1.804185 / 55.444624 (-53.640439) | 1.508785 / 6.876477 (-5.367692) | 1.570102 / 2.142072 (-0.571970) | 0.796348 / 4.805227 (-4.008879) | 0.135737 / 6.500664 (-6.364927) | 0.042902 / 0.075469 (-0.032567) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.979923 / 1.841788 (-0.861865) | 11.656257 / 8.074308 (3.581949) | 9.745611 / 10.191392 (-0.445781) | 0.144497 / 0.680424 (-0.535927) | 0.022457 / 0.534201 (-0.511744) | 0.317251 / 0.579283 (-0.262032) | 0.264956 / 0.434364 (-0.169408) | 0.341873 / 0.540337 (-0.198464) | 0.439734 / 1.386936 (-0.947202) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006137 / 0.011353 (-0.005216) | 0.003999 / 0.011008 (-0.007009) | 0.049994 / 0.038508 (0.011486) | 0.032401 / 0.023109 (0.009292) | 0.272210 / 0.275898 (-0.003688) | 0.296038 / 0.323480 (-0.027442) | 0.004429 / 0.007986 (-0.003557) | 0.002894 / 0.004328 (-0.001434) | 0.049296 / 0.004250 (0.045045) | 0.041390 / 0.037052 (0.004337) | 0.288951 / 0.258489 (0.030462) | 0.321733 / 0.293841 (0.027892) | 0.033553 / 0.128546 (-0.094994) | 0.012122 / 0.075646 (-0.063524) | 0.060661 / 0.419271 (-0.358610) | 0.034752 / 0.043533 (-0.008781) | 0.272866 / 0.255139 (0.017727) | 0.292436 / 0.283200 (0.009237) | 0.018822 / 0.141683 (-0.122861) | 1.167758 / 1.452155 (-0.284397) | 1.207977 / 1.492716 (-0.284739) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095862 / 0.018006 (0.077855) | 0.313746 / 0.000490 (0.313256) | 0.000219 / 0.000200 (0.000020) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022940 / 0.037411 (-0.014472) | 0.076833 / 0.014526 (0.062307) | 0.088209 / 0.176557 (-0.088348) | 0.130154 / 0.737135 (-0.606981) | 0.089948 / 0.296338 (-0.206390) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.305393 / 0.215209 (0.090184) | 3.001629 / 2.077655 (0.923975) | 1.629378 / 1.504120 (0.125258) | 1.496022 / 1.541195 (-0.045173) | 1.542937 / 1.468490 (0.074447) | 0.734249 / 4.584777 (-3.850528) | 0.966226 / 3.745712 (-2.779486) | 3.051986 / 5.269862 (-2.217876) | 1.954694 / 4.565676 (-2.610982) | 0.081538 / 0.424275 (-0.342737) | 0.005198 / 0.007607 (-0.002409) | 0.355837 / 0.226044 (0.129793) | 3.537454 / 2.268929 (1.268525) | 2.036157 / 55.444624 (-53.408467) | 1.719255 / 6.876477 (-5.157222) | 1.744899 / 2.142072 (-0.397174) | 0.816034 / 4.805227 (-3.989193) | 0.135650 / 6.500664 (-6.365014) | 0.042206 / 0.075469 (-0.033263) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.055518 / 1.841788 (-0.786269) | 12.654622 / 8.074308 (4.580313) | 10.450807 / 10.191392 (0.259415) | 0.153567 / 0.680424 (-0.526857) | 0.016114 / 0.534201 (-0.518087) | 0.301182 / 0.579283 (-0.278101) | 0.130043 / 0.434364 (-0.304321) | 0.341289 / 0.540337 (-0.199048) | 0.434573 / 1.386936 (-0.952363) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fb8ae4d2c3dda8c770fe48a40195775a7b517b6b \"CML watermark\")\n"
] | 1,724,143,377,000 | 1,724,144,967,000 | 1,724,144,555,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7114.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7114",
"merged_at": "2024-08-20T09:02:35",
"patch_url": "https://github.com/huggingface/datasets/pull/7114.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7114"
} | Temporarily pin numpy<2.1 to fix CI.
Fix #7111. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7114/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7114/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7113 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7113/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7113/comments | https://api.github.com/repos/huggingface/datasets/issues/7113/events | https://github.com/huggingface/datasets/issues/7113 | 2,475,029,640 | I_kwDODunzps6ThfSI | 7,113 | Stream dataset does not iterate if the batch size is larger than the dataset size (related to drop_last_batch) | {
"avatar_url": "https://avatars.githubusercontent.com/u/4197249?v=4",
"events_url": "https://api.github.com/users/memray/events{/privacy}",
"followers_url": "https://api.github.com/users/memray/followers",
"following_url": "https://api.github.com/users/memray/following{/other_user}",
"gists_url": "https://api.github.com/users/memray/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/memray",
"id": 4197249,
"login": "memray",
"node_id": "MDQ6VXNlcjQxOTcyNDk=",
"organizations_url": "https://api.github.com/users/memray/orgs",
"received_events_url": "https://api.github.com/users/memray/received_events",
"repos_url": "https://api.github.com/users/memray/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/memray/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/memray/subscriptions",
"type": "User",
"url": "https://api.github.com/users/memray"
} | [] | open | false | null | [] | null | [
"That's expected behavior, it's also the same in `torch`:\r\n\r\n```python\r\n>>> list(DataLoader(list(range(5)), batch_size=10, drop_last=True))\r\n[]\r\n```"
] | 1,724,142,400,000 | 1,724,142,546,000 | null | NONE | null | null | null | ### Describe the bug
Hi there,
I use streaming and interleaving to combine multiple datasets saved in jsonl files. The size of dataset can vary (from 100ish to 100k-ish). I use dataset.map() and a big batch size to reduce the IO cost. It was working fine with datasets-2.16.1 but this problem shows up after I upgraded to datasets-2.19.2. With 2.21.0 the problem remains.
Please see the code below to reproduce the problem.
The dataset can iterate correctly if we set either streaming=False or drop_last_batch=False.
I have to use drop_last_batch=True since it's for distributed training.
### Steps to reproduce the bug
```python
# datasets==2.21.0
import datasets
def data_prepare(examples):
print(examples["sentence1"][0])
return examples
batch_size = 101
# the size of the dataset is 100
# the dataset iterates correctly if we set either streaming=False or drop_last_batch=False
dataset = datasets.load_dataset("mteb/biosses-sts", split="test", streaming=True)
dataset = dataset.map(lambda x: data_prepare(x),
drop_last_batch=True,
batched=True, batch_size=batch_size)
for ex in dataset:
print(ex)
pass
```
### Expected behavior
The dataset iterates regardless of the batch size.
### Environment info
- `datasets` version: 2.21.0
- Platform: Linux-6.1.58+-x86_64-with-glibc2.35
- Python version: 3.10.14
- `huggingface_hub` version: 0.24.5
- PyArrow version: 17.0.0
- Pandas version: 2.2.2
- `fsspec` version: 2024.2.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7113/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7113/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7112 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7112/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7112/comments | https://api.github.com/repos/huggingface/datasets/issues/7112/events | https://github.com/huggingface/datasets/issues/7112 | 2,475,004,644 | I_kwDODunzps6ThZLk | 7,112 | cudf-cu12 24.4.1, ibis-framework 8.0.0 requires pyarrow<15.0.0a0,>=14.0.1,pyarrow<16,>=2 and datasets 2.21.0 requires pyarrow>=15.0.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/174590283?v=4",
"events_url": "https://api.github.com/users/SoumyaMB10/events{/privacy}",
"followers_url": "https://api.github.com/users/SoumyaMB10/followers",
"following_url": "https://api.github.com/users/SoumyaMB10/following{/other_user}",
"gists_url": "https://api.github.com/users/SoumyaMB10/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SoumyaMB10",
"id": 174590283,
"login": "SoumyaMB10",
"node_id": "U_kgDOCmgJSw",
"organizations_url": "https://api.github.com/users/SoumyaMB10/orgs",
"received_events_url": "https://api.github.com/users/SoumyaMB10/received_events",
"repos_url": "https://api.github.com/users/SoumyaMB10/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SoumyaMB10/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SoumyaMB10/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SoumyaMB10"
} | [] | open | false | null | [] | null | [
"@sayakpaul please advice "
] | 1,724,141,635,000 | 1,724,141,665,000 | null | NONE | null | null | null | ### Describe the bug
!pip install accelerate>=0.16.0 torchvision transformers>=4.25.1 datasets>=2.19.1 ftfy tensorboard Jinja2 peft==0.7.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
cudf-cu12 24.4.1 requires pyarrow<15.0.0a0,>=14.0.1, but you have pyarrow 17.0.0 which is incompatible.
ibis-framework 8.0.0 requires pyarrow<16,>=2, but you have pyarrow 17.0.0 which is incompatible.
to solve above error
!pip install pyarrow==14.0.1
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
datasets 2.21.0 requires pyarrow>=15.0.0, but you have pyarrow 14.0.1 which is incompatible.
### Steps to reproduce the bug
!pip install datasets>=2.19.1
### Expected behavior
run without dependency error
### Environment info
Diffusers version: 0.31.0.dev0
Platform: Linux-6.1.85+-x86_64-with-glibc2.35
Running on Google Colab?: Yes
Python version: 3.10.12
PyTorch version (GPU?): 2.3.1+cu121 (True)
Flax version (CPU?/GPU?/TPU?): 0.8.4 (gpu)
Jax version: 0.4.26
JaxLib version: 0.4.26
Huggingface_hub version: 0.23.5
Transformers version: 4.42.4
Accelerate version: 0.32.1
PEFT version: 0.7.0
Bitsandbytes version: not installed
Safetensors version: 0.4.4
xFormers version: not installed
Accelerator: Tesla T4, 15360 MiB
Using GPU in script?:
Using distributed or parallel set-up in script?: | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7112/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7112/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7111 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7111/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7111/comments | https://api.github.com/repos/huggingface/datasets/issues/7111/events | https://github.com/huggingface/datasets/issues/7111 | 2,474,915,845 | I_kwDODunzps6ThDgF | 7,111 | CI is broken for numpy-2: Failed to fetch wheel: llvmlite==0.34.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [
"Note that the CI before was using:\r\n- llvmlite: 0.43.0\r\n- numba: 0.60.0\r\n\r\nNow it tries to use:\r\n- llvmlite: 0.34.0\r\n- numba: 0.51.2",
"The issue is because numba-0.60.0 pins numpy<2.1 and `uv` tries to install latest numpy-2.1.0 with an old numba-0.51.0 version (and llvmlite-0.34.0). See discussion in their repo:\r\n- https://github.com/numba/numba/issues/9708\r\n\r\nLatest numpy-2.1.0 will be supported by the next numba-0.61.0 release in September.\r\n\r\nNote that our CI requires numba with the \"audio\" extra:\r\n- librosa > numba"
] | 1,724,138,848,000 | 1,724,216,736,000 | 1,724,144,556,000 | MEMBER | null | null | null | Ci is broken with error `Failed to fetch wheel: llvmlite==0.34.0`: https://github.com/huggingface/datasets/actions/runs/10466825281/job/28984414269
```
Run uv pip install --system "datasets[tests_numpy2] @ ."
Resolved 150 packages in 4.42s
error: Failed to prepare distributions
Caused by: Failed to fetch wheel: llvmlite==0.34.0
Caused by: Build backend failed to build wheel through `build_wheel()` with exit status: 1
--- stdout:
running bdist_wheel
/home/runner/.cache/uv/builds-v0/.tmpcyKh8S/bin/python /home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py
LLVM version...
--- stderr:
Traceback (most recent call last):
File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 105, in main_posix
out = subprocess.check_output([llvm_config, '--version'])
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 421, in check_output
return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 503, in run
with Popen(*popenargs, **kwargs) as process:
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 971, in __init__
self._execute_child(args, executable, preexec_fn, close_fds,
File "/opt/hostedtoolcache/Python/3.10.14/x64/lib/python3.10/subprocess.py", line 1863, in _execute_child
raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'llvm-config'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 191, in <module>
main()
File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 181, in main
main_posix('linux', '.so')
File "/home/runner/.cache/uv/built-wheels-v3/pypi/llvmlite/0.34.0/wrk1bNwq1gleSiznvrSEZ/llvmlite-0.34.0.tar.gz/ffi/build.py", line 107, in main_posix
raise RuntimeError("%s failed executing, please point LLVM_CONFIG "
RuntimeError: llvm-config failed executing, please point LLVM_CONFIG to the path for llvm-config
error: command '/home/runner/.cache/uv/builds-v0/.tmpcyKh8S/bin/python' failed with exit code 1
``` | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7111/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7111/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7110 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7110/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7110/comments | https://api.github.com/repos/huggingface/datasets/issues/7110/events | https://github.com/huggingface/datasets/pull/7110 | 2,474,747,695 | PR_kwDODunzps54zz3r | 7,110 | Fix ConnectionError for gated datasets and unauthenticated users | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7110). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Note that the CI error is unrelated to this PR and should be addressed in another PR. See:\r\n- #7111",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005354 / 0.011353 (-0.005999) | 0.004031 / 0.011008 (-0.006977) | 0.062470 / 0.038508 (0.023962) | 0.030882 / 0.023109 (0.007773) | 0.244816 / 0.275898 (-0.031082) | 0.264324 / 0.323480 (-0.059156) | 0.004164 / 0.007986 (-0.003822) | 0.002858 / 0.004328 (-0.001471) | 0.049008 / 0.004250 (0.044758) | 0.042139 / 0.037052 (0.005086) | 0.279496 / 0.258489 (0.021007) | 0.279408 / 0.293841 (-0.014433) | 0.029701 / 0.128546 (-0.098845) | 0.012501 / 0.075646 (-0.063145) | 0.203267 / 0.419271 (-0.216004) | 0.035964 / 0.043533 (-0.007569) | 0.239361 / 0.255139 (-0.015778) | 0.258942 / 0.283200 (-0.024257) | 0.017956 / 0.141683 (-0.123727) | 1.160468 / 1.452155 (-0.291687) | 1.203475 / 1.492716 (-0.289242) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.004639 / 0.018006 (-0.013367) | 0.298020 / 0.000490 (0.297530) | 0.000212 / 0.000200 (0.000012) | 0.000043 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019371 / 0.037411 (-0.018040) | 0.063311 / 0.014526 (0.048785) | 0.076412 / 0.176557 (-0.100145) | 0.122574 / 0.737135 (-0.614561) | 0.078076 / 0.296338 (-0.218263) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.275381 / 0.215209 (0.060172) | 2.713220 / 2.077655 (0.635565) | 1.441940 / 1.504120 (-0.062179) | 1.325545 / 1.541195 (-0.215650) | 1.363859 / 1.468490 (-0.104631) | 0.715147 / 4.584777 (-3.869630) | 2.356482 / 3.745712 (-1.389230) | 2.882792 / 5.269862 (-2.387069) | 1.833399 / 4.565676 (-2.732278) | 0.077872 / 0.424275 (-0.346403) | 0.005172 / 0.007607 (-0.002435) | 0.326361 / 0.226044 (0.100316) | 3.239202 / 2.268929 (0.970273) | 1.837745 / 55.444624 (-53.606879) | 1.517299 / 6.876477 (-5.359178) | 1.552938 / 2.142072 (-0.589134) | 0.801496 / 4.805227 (-4.003731) | 0.133351 / 6.500664 (-6.367314) | 0.042052 / 0.075469 (-0.033418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.957887 / 1.841788 (-0.883901) | 11.625291 / 8.074308 (3.550983) | 9.679413 / 10.191392 (-0.511979) | 0.140271 / 0.680424 (-0.540153) | 0.013991 / 0.534201 (-0.520210) | 0.299874 / 0.579283 (-0.279409) | 0.267164 / 0.434364 (-0.167200) | 0.338143 / 0.540337 (-0.202194) | 0.434105 / 1.386936 (-0.952831) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005833 / 0.011353 (-0.005520) | 0.003761 / 0.011008 (-0.007247) | 0.049699 / 0.038508 (0.011191) | 0.032786 / 0.023109 (0.009677) | 0.265100 / 0.275898 (-0.010798) | 0.291045 / 0.323480 (-0.032435) | 0.004281 / 0.007986 (-0.003705) | 0.002737 / 0.004328 (-0.001591) | 0.048524 / 0.004250 (0.044274) | 0.040783 / 0.037052 (0.003731) | 0.281122 / 0.258489 (0.022633) | 0.311349 / 0.293841 (0.017508) | 0.032143 / 0.128546 (-0.096403) | 0.011747 / 0.075646 (-0.063899) | 0.059432 / 0.419271 (-0.359840) | 0.034362 / 0.043533 (-0.009171) | 0.261061 / 0.255139 (0.005922) | 0.279536 / 0.283200 (-0.003663) | 0.019172 / 0.141683 (-0.122510) | 1.160069 / 1.452155 (-0.292086) | 1.224160 / 1.492716 (-0.268556) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093596 / 0.018006 (0.075590) | 0.302862 / 0.000490 (0.302372) | 0.000208 / 0.000200 (0.000008) | 0.000047 / 0.000054 (-0.000007) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022785 / 0.037411 (-0.014626) | 0.079263 / 0.014526 (0.064737) | 0.091340 / 0.176557 (-0.085216) | 0.129453 / 0.737135 (-0.607682) | 0.091349 / 0.296338 (-0.204989) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298166 / 0.215209 (0.082957) | 3.003146 / 2.077655 (0.925491) | 1.575903 / 1.504120 (0.071783) | 1.445231 / 1.541195 (-0.095963) | 1.477116 / 1.468490 (0.008625) | 0.726496 / 4.584777 (-3.858281) | 0.959827 / 3.745712 (-2.785885) | 2.941142 / 5.269862 (-2.328720) | 1.878581 / 4.565676 (-2.687096) | 0.078475 / 0.424275 (-0.345800) | 0.005137 / 0.007607 (-0.002470) | 0.352078 / 0.226044 (0.126034) | 3.486113 / 2.268929 (1.217184) | 1.965024 / 55.444624 (-53.479600) | 1.667223 / 6.876477 (-5.209254) | 1.665254 / 2.142072 (-0.476819) | 0.803543 / 4.805227 (-4.001684) | 0.133003 / 6.500664 (-6.367661) | 0.041462 / 0.075469 (-0.034008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.045534 / 1.841788 (-0.796254) | 12.124988 / 8.074308 (4.050680) | 10.418723 / 10.191392 (0.227331) | 0.142453 / 0.680424 (-0.537971) | 0.015686 / 0.534201 (-0.518515) | 0.300557 / 0.579283 (-0.278726) | 0.119851 / 0.434364 (-0.314512) | 0.342297 / 0.540337 (-0.198040) | 0.441263 / 1.386936 (-0.945673) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#90b1d94ef419cb26f0bb24d982897dca39aa8a46 \"CML watermark\")\n",
"lgtm!"
] | 1,724,131,614,000 | 1,724,166,695,000 | 1,724,145,275,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7110.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7110",
"merged_at": "2024-08-20T09:14:34",
"patch_url": "https://github.com/huggingface/datasets/pull/7110.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7110"
} | Fix `ConnectionError` for gated datasets and unauthenticated users. See:
- https://github.com/huggingface/dataset-viewer/issues/3025
Note that a recent change in the Hub returns dataset info for gated datasets and unauthenticated users, instead of raising a `GatedRepoError` as before. See:
- https://github.com/huggingface/huggingface_hub/issues/2457
This PR adds an additional check (/auth-check) for gated datasets and raises `DatasetNotFoundError` for unauthenticated users, as it was the case before the change in the Hub.
- Fix suggested by @Pierrci (thanks @Wauplin for pointing it out).
Fix #7109. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7110/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7110/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7109 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7109/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7109/comments | https://api.github.com/repos/huggingface/datasets/issues/7109/events | https://github.com/huggingface/datasets/issues/7109 | 2,473,367,848 | I_kwDODunzps6TbJko | 7,109 | ConnectionError for gated datasets and unauthenticated users | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [
{
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
}
] | null | [] | 1,724,074,065,000 | 1,724,145,276,000 | 1,724,145,275,000 | MEMBER | null | null | null | Since the Hub returns dataset info for gated datasets and unauthenticated users, there is dead code: https://github.com/huggingface/datasets/blob/98fdc9e78e6d057ca66e58a37f49d6618aab8130/src/datasets/load.py#L1846-L1852
We should remove the dead code and properly handle this case: currently we are raising a `ConnectionError` instead of a `DatasetNotFoundError` (as before).
See:
- https://github.com/huggingface/dataset-viewer/issues/3025
- https://github.com/huggingface/huggingface_hub/issues/2457 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7109/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7109/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7108 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7108/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7108/comments | https://api.github.com/repos/huggingface/datasets/issues/7108/events | https://github.com/huggingface/datasets/issues/7108 | 2,470,665,327 | I_kwDODunzps6TQ1xv | 7,108 | website broken: Create a new dataset repository, doesn't create a new repo in Firefox | {
"avatar_url": "https://avatars.githubusercontent.com/u/147971?v=4",
"events_url": "https://api.github.com/users/neoneye/events{/privacy}",
"followers_url": "https://api.github.com/users/neoneye/followers",
"following_url": "https://api.github.com/users/neoneye/following{/other_user}",
"gists_url": "https://api.github.com/users/neoneye/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/neoneye",
"id": 147971,
"login": "neoneye",
"node_id": "MDQ6VXNlcjE0Nzk3MQ==",
"organizations_url": "https://api.github.com/users/neoneye/orgs",
"received_events_url": "https://api.github.com/users/neoneye/received_events",
"repos_url": "https://api.github.com/users/neoneye/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/neoneye/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/neoneye/subscriptions",
"type": "User",
"url": "https://api.github.com/users/neoneye"
} | [] | closed | false | null | [] | null | [
"I don't reproduce, I was able to create a new repo: https://huggingface.co./datasets/severo/reproduce-datasets-issues-7108. Can you confirm it's still broken?",
"I have just tried again.\r\n\r\nFirefox: The `Create dataset` doesn't work. It has worked in the past. It's my preferred browser.\r\n\r\nChrome: The `Create dataset` works.\r\n\r\nIt seems to be a Firefox specific issue.",
"I have updated Firefox 129.0 (64 bit), and now the `Create dataset` is working again in Firefox.\r\n\r\nUX: It would be nice with better error messages on HuggingFace.",
"maybe an issue with the cookie. cc @Wauplin @coyotte508 "
] | 1,723,828,980,000 | 1,724,073,672,000 | 1,724,050,368,000 | NONE | null | null | null | ### Describe the bug
This issue is also reported here:
https://discuss.huggingface.co/t/create-a-new-dataset-repository-broken-page/102644
This page is broken.
https://huggingface.co./new-dataset
I fill in the form with my text, and click `Create Dataset`.
![Screenshot 2024-08-16 at 15 55 37](https://github.com/user-attachments/assets/de16627b-7a55-4bcf-9f0b-a48227aabfe6)
Then the form gets wiped. And no repo got created. No error message visible in the developer console.
![Screenshot 2024-08-16 at 15 56 54](https://github.com/user-attachments/assets/0520164b-431c-40a5-9634-11fd62c4f4c3)
# Idea for improvement
For better UX, if the repo cannot be created, then show an error message, that something went wrong.
# Work around, that works for me
```python
from huggingface_hub import HfApi, HfFolder
repo_id = 'simon-arc-solve-fractal-v3'
api = HfApi()
username = api.whoami()['name']
repo_url = api.create_repo(repo_id=repo_id, exist_ok=True, private=True, repo_type="dataset")
```
### Steps to reproduce the bug
Go https://huggingface.co./new-dataset
Fill in the form.
Click `Create dataset`.
Now the form is cleared. And the page doesn't jump anywhere.
### Expected behavior
The moment the user clicks `Create dataset`, the repo gets created and the page jumps to the created repo.
### Environment info
Firefox 128.0.3 (64-bit)
macOS Sonoma 14.5
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7108/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7108/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7107 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7107/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7107/comments | https://api.github.com/repos/huggingface/datasets/issues/7107/events | https://github.com/huggingface/datasets/issues/7107 | 2,470,444,732 | I_kwDODunzps6TP_68 | 7,107 | load_dataset broken in 2.21.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/1911631?v=4",
"events_url": "https://api.github.com/users/anjor/events{/privacy}",
"followers_url": "https://api.github.com/users/anjor/followers",
"following_url": "https://api.github.com/users/anjor/following{/other_user}",
"gists_url": "https://api.github.com/users/anjor/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/anjor",
"id": 1911631,
"login": "anjor",
"node_id": "MDQ6VXNlcjE5MTE2MzE=",
"organizations_url": "https://api.github.com/users/anjor/orgs",
"received_events_url": "https://api.github.com/users/anjor/received_events",
"repos_url": "https://api.github.com/users/anjor/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/anjor/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/anjor/subscriptions",
"type": "User",
"url": "https://api.github.com/users/anjor"
} | [] | closed | false | null | [] | null | [
"There seems to be a PR related to the load_dataset path that went into 2.21.0 -- https://github.com/huggingface/datasets/pull/6862/files\r\n\r\nTaking a look at it now",
"+1\r\n\r\nDowngrading to 2.20.0 fixed my issue, hopefully helpful for others.",
"I tried adding a simple test to `test_load.py` with the alpaca eval dataset but the test didn't fail :(. \r\n\r\nSo looks like this might have something to do with the environment? ",
"There was an issue with the script of the \"tatsu-lab/alpaca_eval\" dataset.\r\n\r\nI was fixed with this PR: \r\n- [Fix FileNotFoundError](https://huggingface.co./datasets/tatsu-lab/alpaca_eval/discussions/2)\r\n\r\nIt should work now if you retry to load the dataset."
] | 1,723,820,391,000 | 1,723,973,323,000 | 1,723,973,232,000 | NONE | null | null | null | ### Describe the bug
`eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)`
used to work till 2.20.0 but doesn't work in 2.21.0
In 2.20.0:
![Screenshot 2024-08-16 at 3 57 10 PM](https://github.com/user-attachments/assets/0516489b-8187-486d-bee8-88af3381dee9)
in 2.21.0:
![Screenshot 2024-08-16 at 3 57 24 PM](https://github.com/user-attachments/assets/bc257570-f461-41e4-8717-90a69ed7c24f)
### Steps to reproduce the bug
1. Spin up a new google collab
2. `pip install datasets==2.21.0`
3. `import datasets`
4. `eval_set = datasets.load_dataset("tatsu-lab/alpaca_eval", "alpaca_eval_gpt4_baseline", trust_remote_code=True)`
5. Will throw an error.
### Expected behavior
Try steps 1-5 again but replace datasets version with 2.20.0, it will work
### Environment info
- `datasets` version: 2.21.0
- Platform: Linux-6.1.85+-x86_64-with-glibc2.35
- Python version: 3.10.12
- `huggingface_hub` version: 0.23.5
- PyArrow version: 17.0.0
- Pandas version: 2.1.4
- `fsspec` version: 2024.5.0
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7107/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7107/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7106 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7106/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7106/comments | https://api.github.com/repos/huggingface/datasets/issues/7106/events | https://github.com/huggingface/datasets/pull/7106 | 2,469,854,262 | PR_kwDODunzps54jntM | 7,106 | Rename LargeList.dtype to LargeList.feature | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | open | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7106). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 1,723,799,524,000 | 1,723,800,697,000 | null | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7106.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7106",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7106.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7106"
} | Rename `LargeList.dtype` to `LargeList.feature`.
Note that `dtype` is usually used for NumPy data types ("int64", "float32",...): see `Value.dtype`.
However, `LargeList` attribute (like `Sequence.feature`) expects a `FeatureType` instead.
With this renaming:
- we avoid confusion about the expected type and
- we also align `LargeList` with `Sequence`. | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7106/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7106/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7105 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7105/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7105/comments | https://api.github.com/repos/huggingface/datasets/issues/7105/events | https://github.com/huggingface/datasets/pull/7105 | 2,468,207,039 | PR_kwDODunzps54eZ0D | 7,105 | Use `huggingface_hub` cache | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7105). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"Nice\r\n\r\n<img width=\"141\" alt=\"Capture d’écran 2024-08-19 à 15 25 00\" src=\"https://github.com/user-attachments/assets/18c7b3ec-a57e-45d7-9b19-0b12df9feccd\">\r\n",
"fyi the CI failure on test_py310_numpy2 is unrelated to this PR (it's a dependency install failure)",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005677 / 0.011353 (-0.005676) | 0.004054 / 0.011008 (-0.006954) | 0.063101 / 0.038508 (0.024592) | 0.031665 / 0.023109 (0.008556) | 0.243332 / 0.275898 (-0.032566) | 0.271067 / 0.323480 (-0.052413) | 0.004283 / 0.007986 (-0.003703) | 0.002889 / 0.004328 (-0.001440) | 0.049269 / 0.004250 (0.045018) | 0.048707 / 0.037052 (0.011654) | 0.258599 / 0.258489 (0.000110) | 0.307715 / 0.293841 (0.013874) | 0.029850 / 0.128546 (-0.098696) | 0.012299 / 0.075646 (-0.063347) | 0.207616 / 0.419271 (-0.211656) | 0.037655 / 0.043533 (-0.005878) | 0.246602 / 0.255139 (-0.008537) | 0.268518 / 0.283200 (-0.014682) | 0.018128 / 0.141683 (-0.123555) | 1.181569 / 1.452155 (-0.270586) | 1.250641 / 1.492716 (-0.242075) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.143911 / 0.018006 (0.125905) | 0.305608 / 0.000490 (0.305118) | 0.000250 / 0.000200 (0.000050) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019208 / 0.037411 (-0.018204) | 0.062502 / 0.014526 (0.047976) | 0.075896 / 0.176557 (-0.100661) | 0.123422 / 0.737135 (-0.613713) | 0.077311 / 0.296338 (-0.219028) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283108 / 0.215209 (0.067899) | 2.783509 / 2.077655 (0.705855) | 1.466358 / 1.504120 (-0.037762) | 1.350989 / 1.541195 (-0.190206) | 1.370517 / 1.468490 (-0.097973) | 0.732706 / 4.584777 (-3.852071) | 2.366710 / 3.745712 (-1.379002) | 2.988913 / 5.269862 (-2.280949) | 1.892204 / 4.565676 (-2.673473) | 0.079077 / 0.424275 (-0.345198) | 0.005158 / 0.007607 (-0.002449) | 0.336620 / 0.226044 (0.110576) | 3.423556 / 2.268929 (1.154628) | 1.848732 / 55.444624 (-53.595892) | 1.544996 / 6.876477 (-5.331480) | 1.550051 / 2.142072 (-0.592022) | 0.798235 / 4.805227 (-4.006993) | 0.132945 / 6.500664 (-6.367719) | 0.041785 / 0.075469 (-0.033684) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.963359 / 1.841788 (-0.878429) | 11.699994 / 8.074308 (3.625686) | 9.311998 / 10.191392 (-0.879394) | 0.140493 / 0.680424 (-0.539931) | 0.013834 / 0.534201 (-0.520367) | 0.302569 / 0.579283 (-0.276714) | 0.267377 / 0.434364 (-0.166987) | 0.341093 / 0.540337 (-0.199244) | 0.431941 / 1.386936 (-0.954995) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005744 / 0.011353 (-0.005608) | 0.003668 / 0.011008 (-0.007340) | 0.049837 / 0.038508 (0.011329) | 0.032051 / 0.023109 (0.008941) | 0.271725 / 0.275898 (-0.004173) | 0.302612 / 0.323480 (-0.020867) | 0.004455 / 0.007986 (-0.003531) | 0.002816 / 0.004328 (-0.001512) | 0.049036 / 0.004250 (0.044785) | 0.041233 / 0.037052 (0.004181) | 0.287900 / 0.258489 (0.029411) | 0.326204 / 0.293841 (0.032363) | 0.032027 / 0.128546 (-0.096519) | 0.012033 / 0.075646 (-0.063613) | 0.060822 / 0.419271 (-0.358449) | 0.033830 / 0.043533 (-0.009703) | 0.274855 / 0.255139 (0.019716) | 0.294191 / 0.283200 (0.010992) | 0.017979 / 0.141683 (-0.123704) | 1.151353 / 1.452155 (-0.300801) | 1.215384 / 1.492716 (-0.277333) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.102552 / 0.018006 (0.084546) | 0.314148 / 0.000490 (0.313658) | 0.000217 / 0.000200 (0.000017) | 0.000043 / 0.000054 (-0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024565 / 0.037411 (-0.012846) | 0.076968 / 0.014526 (0.062442) | 0.087982 / 0.176557 (-0.088574) | 0.129844 / 0.737135 (-0.607292) | 0.091370 / 0.296338 (-0.204968) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.296767 / 0.215209 (0.081558) | 2.910716 / 2.077655 (0.833062) | 1.579526 / 1.504120 (0.075406) | 1.453457 / 1.541195 (-0.087737) | 1.466296 / 1.468490 (-0.002194) | 0.728372 / 4.584777 (-3.856405) | 0.963852 / 3.745712 (-2.781861) | 2.946582 / 5.269862 (-2.323280) | 1.936199 / 4.565676 (-2.629478) | 0.078886 / 0.424275 (-0.345389) | 0.005537 / 0.007607 (-0.002071) | 0.346315 / 0.226044 (0.120270) | 3.440774 / 2.268929 (1.171845) | 1.937549 / 55.444624 (-53.507076) | 1.649507 / 6.876477 (-5.226970) | 1.653386 / 2.142072 (-0.488686) | 0.806598 / 4.805227 (-3.998629) | 0.133384 / 6.500664 (-6.367280) | 0.040552 / 0.075469 (-0.034917) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.030515 / 1.841788 (-0.811272) | 12.129888 / 8.074308 (4.055580) | 10.287069 / 10.191392 (0.095677) | 0.141512 / 0.680424 (-0.538912) | 0.015483 / 0.534201 (-0.518718) | 0.300053 / 0.579283 (-0.279230) | 0.120825 / 0.434364 (-0.313539) | 0.342681 / 0.540337 (-0.197656) | 0.470616 / 1.386936 (-0.916320) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#28780197dd3e4c125defae29ac8ef5346c41350a \"CML watermark\")\n"
] | 1,723,733,122,000 | 1,724,255,591,000 | 1,724,255,236,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7105.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7105",
"merged_at": "2024-08-21T15:47:15",
"patch_url": "https://github.com/huggingface/datasets/pull/7105.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7105"
} | wip
- use `hf_hub_download()` from `huggingface_hub` for HF files
- `datasets` cache_dir is still used for:
- caching datasets as Arrow files (that back `Dataset` objects)
- extracted archives, uncompressed files
- files downloaded via http (datasets with scripts)
- I removed code that were made for http files (and also the dummy_data / mock_download_manager stuff that happened to rely on them and have been legacy for a while now) | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 2,
"heart": 0,
"hooray": 2,
"laugh": 0,
"rocket": 0,
"total_count": 4,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7105/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7105/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7104 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7104/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7104/comments | https://api.github.com/repos/huggingface/datasets/issues/7104/events | https://github.com/huggingface/datasets/pull/7104 | 2,467,788,212 | PR_kwDODunzps54dAhE | 7,104 | remove more script docs | {
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7104). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005343 / 0.011353 (-0.006010) | 0.003562 / 0.011008 (-0.007447) | 0.062785 / 0.038508 (0.024277) | 0.031459 / 0.023109 (0.008349) | 0.246497 / 0.275898 (-0.029401) | 0.268258 / 0.323480 (-0.055222) | 0.003201 / 0.007986 (-0.004785) | 0.004153 / 0.004328 (-0.000175) | 0.049003 / 0.004250 (0.044753) | 0.042780 / 0.037052 (0.005728) | 0.263857 / 0.258489 (0.005368) | 0.278578 / 0.293841 (-0.015263) | 0.030357 / 0.128546 (-0.098190) | 0.012341 / 0.075646 (-0.063305) | 0.206010 / 0.419271 (-0.213262) | 0.036244 / 0.043533 (-0.007289) | 0.245799 / 0.255139 (-0.009340) | 0.265467 / 0.283200 (-0.017733) | 0.019473 / 0.141683 (-0.122210) | 1.147913 / 1.452155 (-0.304242) | 1.209968 / 1.492716 (-0.282749) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.099393 / 0.018006 (0.081387) | 0.300898 / 0.000490 (0.300408) | 0.000258 / 0.000200 (0.000058) | 0.000044 / 0.000054 (-0.000010) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018888 / 0.037411 (-0.018523) | 0.062452 / 0.014526 (0.047926) | 0.073799 / 0.176557 (-0.102757) | 0.121297 / 0.737135 (-0.615839) | 0.074855 / 0.296338 (-0.221484) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283969 / 0.215209 (0.068760) | 2.808820 / 2.077655 (0.731165) | 1.446106 / 1.504120 (-0.058014) | 1.321622 / 1.541195 (-0.219573) | 1.348317 / 1.468490 (-0.120173) | 0.738369 / 4.584777 (-3.846408) | 2.349825 / 3.745712 (-1.395887) | 2.913964 / 5.269862 (-2.355897) | 1.870585 / 4.565676 (-2.695092) | 0.080141 / 0.424275 (-0.344134) | 0.005174 / 0.007607 (-0.002433) | 0.335977 / 0.226044 (0.109933) | 3.356267 / 2.268929 (1.087338) | 1.811149 / 55.444624 (-53.633475) | 1.510685 / 6.876477 (-5.365792) | 1.524960 / 2.142072 (-0.617112) | 0.803900 / 4.805227 (-4.001328) | 0.138294 / 6.500664 (-6.362370) | 0.042241 / 0.075469 (-0.033229) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.975597 / 1.841788 (-0.866191) | 11.395109 / 8.074308 (3.320801) | 9.837724 / 10.191392 (-0.353668) | 0.141474 / 0.680424 (-0.538950) | 0.015075 / 0.534201 (-0.519126) | 0.304285 / 0.579283 (-0.274998) | 0.267845 / 0.434364 (-0.166519) | 0.342808 / 0.540337 (-0.197529) | 0.434299 / 1.386936 (-0.952637) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005612 / 0.011353 (-0.005741) | 0.003808 / 0.011008 (-0.007201) | 0.050533 / 0.038508 (0.012024) | 0.032635 / 0.023109 (0.009526) | 0.265522 / 0.275898 (-0.010376) | 0.289763 / 0.323480 (-0.033716) | 0.004395 / 0.007986 (-0.003590) | 0.002868 / 0.004328 (-0.001460) | 0.048443 / 0.004250 (0.044193) | 0.040047 / 0.037052 (0.002995) | 0.279013 / 0.258489 (0.020524) | 0.314499 / 0.293841 (0.020658) | 0.032321 / 0.128546 (-0.096225) | 0.011902 / 0.075646 (-0.063744) | 0.059827 / 0.419271 (-0.359445) | 0.034388 / 0.043533 (-0.009145) | 0.270660 / 0.255139 (0.015521) | 0.290776 / 0.283200 (0.007576) | 0.017875 / 0.141683 (-0.123808) | 1.188085 / 1.452155 (-0.264070) | 1.221384 / 1.492716 (-0.271332) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095619 / 0.018006 (0.077613) | 0.305331 / 0.000490 (0.304841) | 0.000217 / 0.000200 (0.000018) | 0.000049 / 0.000054 (-0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022481 / 0.037411 (-0.014930) | 0.076957 / 0.014526 (0.062431) | 0.087830 / 0.176557 (-0.088726) | 0.128290 / 0.737135 (-0.608845) | 0.090565 / 0.296338 (-0.205774) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291861 / 0.215209 (0.076652) | 2.869776 / 2.077655 (0.792121) | 1.575114 / 1.504120 (0.070994) | 1.449873 / 1.541195 (-0.091322) | 1.450333 / 1.468490 (-0.018158) | 0.723319 / 4.584777 (-3.861458) | 0.972603 / 3.745712 (-2.773109) | 2.940909 / 5.269862 (-2.328953) | 1.889664 / 4.565676 (-2.676012) | 0.078654 / 0.424275 (-0.345621) | 0.005197 / 0.007607 (-0.002410) | 0.344380 / 0.226044 (0.118336) | 3.387509 / 2.268929 (1.118580) | 1.981590 / 55.444624 (-53.463034) | 1.643214 / 6.876477 (-5.233263) | 1.640435 / 2.142072 (-0.501638) | 0.802037 / 4.805227 (-4.003191) | 0.133016 / 6.500664 (-6.367648) | 0.040861 / 0.075469 (-0.034608) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.026372 / 1.841788 (-0.815416) | 11.959931 / 8.074308 (3.885623) | 10.122523 / 10.191392 (-0.068869) | 0.144443 / 0.680424 (-0.535981) | 0.015629 / 0.534201 (-0.518572) | 0.304802 / 0.579283 (-0.274481) | 0.120538 / 0.434364 (-0.313826) | 0.343394 / 0.540337 (-0.196943) | 0.437544 / 1.386936 (-0.949392) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#84832c07f614e5f51a762166b2fa9ac27e988173 \"CML watermark\")\n"
] | 1,723,716,806,000 | 1,723,717,453,000 | 1,723,717,105,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7104.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7104",
"merged_at": "2024-08-15T10:18:25",
"patch_url": "https://github.com/huggingface/datasets/pull/7104.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7104"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7104/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7104/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7103 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7103/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7103/comments | https://api.github.com/repos/huggingface/datasets/issues/7103/events | https://github.com/huggingface/datasets/pull/7103 | 2,467,664,581 | PR_kwDODunzps54clrp | 7,103 | Fix args of feature docstrings | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7103). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005255 / 0.011353 (-0.006098) | 0.003344 / 0.011008 (-0.007664) | 0.062062 / 0.038508 (0.023554) | 0.030154 / 0.023109 (0.007045) | 0.233728 / 0.275898 (-0.042170) | 0.258799 / 0.323480 (-0.064681) | 0.004105 / 0.007986 (-0.003880) | 0.002708 / 0.004328 (-0.001621) | 0.048689 / 0.004250 (0.044439) | 0.041864 / 0.037052 (0.004812) | 0.247221 / 0.258489 (-0.011268) | 0.274067 / 0.293841 (-0.019774) | 0.029108 / 0.128546 (-0.099439) | 0.011867 / 0.075646 (-0.063779) | 0.203181 / 0.419271 (-0.216090) | 0.035162 / 0.043533 (-0.008371) | 0.239723 / 0.255139 (-0.015416) | 0.256679 / 0.283200 (-0.026521) | 0.018362 / 0.141683 (-0.123321) | 1.139974 / 1.452155 (-0.312181) | 1.193946 / 1.492716 (-0.298770) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.135477 / 0.018006 (0.117471) | 0.298500 / 0.000490 (0.298011) | 0.000225 / 0.000200 (0.000025) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018743 / 0.037411 (-0.018668) | 0.062999 / 0.014526 (0.048474) | 0.073466 / 0.176557 (-0.103090) | 0.119227 / 0.737135 (-0.617908) | 0.074338 / 0.296338 (-0.222000) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.280747 / 0.215209 (0.065538) | 2.750660 / 2.077655 (0.673006) | 1.461004 / 1.504120 (-0.043116) | 1.348439 / 1.541195 (-0.192756) | 1.365209 / 1.468490 (-0.103281) | 0.718416 / 4.584777 (-3.866361) | 2.333568 / 3.745712 (-1.412144) | 2.854639 / 5.269862 (-2.415223) | 1.821144 / 4.565676 (-2.744532) | 0.077234 / 0.424275 (-0.347041) | 0.005111 / 0.007607 (-0.002497) | 0.330749 / 0.226044 (0.104705) | 3.277189 / 2.268929 (1.008260) | 1.825886 / 55.444624 (-53.618739) | 1.515078 / 6.876477 (-5.361399) | 1.527288 / 2.142072 (-0.614785) | 0.786922 / 4.805227 (-4.018305) | 0.131539 / 6.500664 (-6.369125) | 0.042365 / 0.075469 (-0.033104) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.961809 / 1.841788 (-0.879979) | 11.184540 / 8.074308 (3.110232) | 9.473338 / 10.191392 (-0.718054) | 0.138460 / 0.680424 (-0.541964) | 0.014588 / 0.534201 (-0.519613) | 0.301503 / 0.579283 (-0.277780) | 0.261092 / 0.434364 (-0.173271) | 0.336480 / 0.540337 (-0.203857) | 0.427665 / 1.386936 (-0.959271) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005517 / 0.011353 (-0.005836) | 0.003417 / 0.011008 (-0.007591) | 0.049338 / 0.038508 (0.010830) | 0.033411 / 0.023109 (0.010302) | 0.264328 / 0.275898 (-0.011570) | 0.286750 / 0.323480 (-0.036730) | 0.004299 / 0.007986 (-0.003686) | 0.002506 / 0.004328 (-0.001823) | 0.049511 / 0.004250 (0.045260) | 0.041471 / 0.037052 (0.004418) | 0.276732 / 0.258489 (0.018243) | 0.311908 / 0.293841 (0.018067) | 0.031683 / 0.128546 (-0.096863) | 0.011700 / 0.075646 (-0.063946) | 0.060084 / 0.419271 (-0.359188) | 0.037757 / 0.043533 (-0.005776) | 0.265342 / 0.255139 (0.010203) | 0.287782 / 0.283200 (0.004583) | 0.018692 / 0.141683 (-0.122990) | 1.163462 / 1.452155 (-0.288692) | 1.219236 / 1.492716 (-0.273481) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094102 / 0.018006 (0.076096) | 0.303976 / 0.000490 (0.303487) | 0.000208 / 0.000200 (0.000008) | 0.000042 / 0.000054 (-0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023252 / 0.037411 (-0.014160) | 0.076986 / 0.014526 (0.062461) | 0.088831 / 0.176557 (-0.087726) | 0.128661 / 0.737135 (-0.608475) | 0.089082 / 0.296338 (-0.207256) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.297428 / 0.215209 (0.082218) | 2.951568 / 2.077655 (0.873913) | 1.597627 / 1.504120 (0.093508) | 1.466556 / 1.541195 (-0.074639) | 1.455522 / 1.468490 (-0.012968) | 0.723576 / 4.584777 (-3.861201) | 0.951113 / 3.745712 (-2.794599) | 2.889671 / 5.269862 (-2.380190) | 1.877330 / 4.565676 (-2.688347) | 0.079124 / 0.424275 (-0.345151) | 0.005146 / 0.007607 (-0.002461) | 0.344063 / 0.226044 (0.118018) | 3.432190 / 2.268929 (1.163261) | 1.927049 / 55.444624 (-53.517576) | 1.638552 / 6.876477 (-5.237924) | 1.647791 / 2.142072 (-0.494282) | 0.800526 / 4.805227 (-4.004701) | 0.131858 / 6.500664 (-6.368806) | 0.040852 / 0.075469 (-0.034618) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.025536 / 1.841788 (-0.816252) | 11.798302 / 8.074308 (3.723994) | 10.012051 / 10.191392 (-0.179341) | 0.137701 / 0.680424 (-0.542723) | 0.015151 / 0.534201 (-0.519050) | 0.298972 / 0.579283 (-0.280311) | 0.123816 / 0.434364 (-0.310548) | 0.337292 / 0.540337 (-0.203046) | 0.432729 / 1.386936 (-0.954207) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bececdac927160b5c7e883736d7cc79d5699ad0a \"CML watermark\")\n"
] | 1,723,711,568,000 | 1,723,799,909,000 | 1,723,718,010,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7103.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7103",
"merged_at": "2024-08-15T10:33:30",
"patch_url": "https://github.com/huggingface/datasets/pull/7103.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7103"
} | Fix Args section of feature docstrings.
Currently, some args do not appear in the docs because they are not properly parsed due to the lack of their type (between parentheses). | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7103/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7103/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7102 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7102/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7102/comments | https://api.github.com/repos/huggingface/datasets/issues/7102/events | https://github.com/huggingface/datasets/issues/7102 | 2,466,893,106 | I_kwDODunzps6TCc0y | 7,102 | Slow iteration speeds when using IterableDataset.shuffle with load_dataset(data_files=..., streaming=True) | {
"avatar_url": "https://avatars.githubusercontent.com/u/13192126?v=4",
"events_url": "https://api.github.com/users/lajd/events{/privacy}",
"followers_url": "https://api.github.com/users/lajd/followers",
"following_url": "https://api.github.com/users/lajd/following{/other_user}",
"gists_url": "https://api.github.com/users/lajd/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lajd",
"id": 13192126,
"login": "lajd",
"node_id": "MDQ6VXNlcjEzMTkyMTI2",
"organizations_url": "https://api.github.com/users/lajd/orgs",
"received_events_url": "https://api.github.com/users/lajd/received_events",
"repos_url": "https://api.github.com/users/lajd/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lajd/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lajd/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lajd"
} | [] | open | false | null | [] | null | [
"Hi @lajd , I was skeptical about how we are saving the shards each as their own dataset (arrow file) in the script above, and so I updated the script to try out saving the shards in a few different file formats. From the experiments I ran, I saw binary format show significantly the best performance, with arrow and parquet about the same. However, I was unable to reproduce a drastically slower iteration speed after shuffling in any case when using the revised script -- pasting below:\r\n\r\n```python\r\nimport time\r\nfrom datasets import load_dataset, Dataset, IterableDataset\r\nfrom pathlib import Path\r\nimport torch\r\nimport pandas as pd\r\nimport pickle\r\nimport pyarrow as pa\r\nimport pyarrow.parquet as pq\r\n\r\n\r\ndef generate_random_example():\r\n return {\r\n 'inputs': torch.randn(128).tolist(),\r\n 'indices': torch.randint(0, 10000, (2, 20000)).tolist(),\r\n 'values': torch.randn(20000).tolist(),\r\n }\r\n\r\n\r\ndef generate_shard_data(examples_per_shard: int = 512):\r\n return [generate_random_example() for _ in range(examples_per_shard)]\r\n\r\n\r\ndef save_shard_as_arrow(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Convert data to a Hugging Face Dataset\r\n dataset = Dataset.from_dict({\r\n 'inputs': [example['inputs'] for example in shard_data],\r\n 'indices': [example['indices'] for example in shard_data],\r\n 'values': [example['values'] for example in shard_data],\r\n })\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}\"\r\n\r\n # Save the dataset to disk using the Arrow format\r\n dataset.save_to_disk(str(shard_write_path))\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef save_shard_as_parquet(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Convert data to a pandas DataFrame for easy conversion to Parquet\r\n df = pd.DataFrame(shard_data)\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}.parquet\"\r\n\r\n # Convert DataFrame to PyArrow Table for Parquet saving\r\n table = pa.Table.from_pandas(df)\r\n\r\n # Save the table as a Parquet file\r\n pq.write_table(table, shard_write_path)\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef save_shard_as_binary(shard_idx, save_dir, examples_per_shard):\r\n # Generate shard data\r\n shard_data = generate_shard_data(examples_per_shard)\r\n\r\n # Define the shard save path\r\n shard_write_path = Path(save_dir) / f\"shard_{shard_idx}.bin\"\r\n\r\n # Save each example as a serialized binary object using pickle\r\n with open(shard_write_path, 'wb') as f:\r\n for example in shard_data:\r\n f.write(pickle.dumps(example))\r\n\r\n return str(shard_write_path)\r\n\r\n\r\ndef generate_split_shards(save_dir, filetype=\"parquet\", num_shards: int = 16, examples_per_shard: int = 512):\r\n shard_filepaths = []\r\n for shard_idx in range(num_shards):\r\n if filetype == \"parquet\":\r\n shard_filepaths.append(save_shard_as_parquet(shard_idx, save_dir, examples_per_shard))\r\n elif filetype == \"binary\":\r\n shard_filepaths.append(save_shard_as_binary(shard_idx, save_dir, examples_per_shard))\r\n elif filetype == \"arrow\":\r\n shard_filepaths.append(save_shard_as_arrow(shard_idx, save_dir, examples_per_shard))\r\n else:\r\n raise ValueError(f\"Unsupported filetype: {filetype}. Choose either 'parquet' or 'binary'.\")\r\n return shard_filepaths\r\n\r\n\r\ndef _binary_dataset_generator(files):\r\n for filepath in files:\r\n with open(filepath, 'rb') as f:\r\n while True:\r\n try:\r\n example = pickle.load(f)\r\n yield example\r\n except EOFError:\r\n break\r\n\r\n\r\ndef load_binary_dataset(shard_filepaths):\r\n return IterableDataset.from_generator(\r\n _binary_dataset_generator, gen_kwargs={\"files\": shard_filepaths},\r\n )\r\n\r\n\r\ndef load_parquet_dataset(shard_filepaths):\r\n # Load the dataset as an IterableDataset\r\n return load_dataset(\r\n \"parquet\",\r\n data_files={split: shard_filepaths},\r\n streaming=True,\r\n split=split,\r\n )\r\n\r\n\r\ndef load_arrow_dataset(shard_filepaths):\r\n # Load the dataset as an IterableDataset\r\n shard_filepaths = [f + \"/data-00000-of-00001.arrow\" for f in shard_filepaths]\r\n return load_dataset(\r\n \"arrow\",\r\n data_files={split: shard_filepaths},\r\n streaming=True,\r\n split=split,\r\n )\r\n\r\n\r\ndef load_dataset_wrapper(filetype: str, shard_filepaths: list[str]):\r\n if filetype == \"parquet\":\r\n return load_parquet_dataset(shard_filepaths)\r\n if filetype == \"binary\":\r\n return load_binary_dataset(shard_filepaths)\r\n if filetype == \"arrow\":\r\n return load_arrow_dataset(shard_filepaths)\r\n else:\r\n raise ValueError(\"Unsupported filetype\")\r\n\r\n\r\n# Example usage:\r\nsplit = \"train\"\r\nsplit_save_dir = \"/tmp/random_split\"\r\n\r\nfiletype = \"binary\" # or \"parquet\", or \"arrow\"\r\nnum_shards = 16\r\n\r\nshard_filepaths = generate_split_shards(split_save_dir, filetype=filetype, num_shards=num_shards)\r\ndataset = load_dataset_wrapper(filetype=filetype, shard_filepaths=shard_filepaths)\r\n\r\ndataset = dataset.shuffle(buffer_size=100, seed=42)\r\n\r\nstart_time = time.time()\r\nfor count, item in enumerate(dataset):\r\n if count > 0 and count % 100 == 0:\r\n elapsed_time = time.time() - start_time\r\n iterations_per_second = count / elapsed_time\r\n print(f\"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second\")\r\n```",
"update: I was able to reproduce the issue you described -- but ONLY if I do \r\n\r\n```\r\nrandom_dataset = random_dataset.with_format(\"numpy\")\r\n```\r\n\r\nIf I do this, I see similar numbers as what you reported. If I do not use numpy format, parquet and arrow are about 17 iterations per second regardless of whether or not we shuffle. Using binary, (again no numpy format tried with this yet), still shows the fastest speeds on average (shuffle and no shuffle) of about 850 it/sec.\r\n\r\nI suspect some issues with arrow and numpy being optimized for sequential reads, and shuffling cuases issuses... hmm"
] | 1,723,671,884,000 | 1,723,738,651,000 | null | NONE | null | null | null | ### Describe the bug
When I load a dataset from a number of arrow files, as in:
```
random_dataset = load_dataset(
"arrow",
data_files={split: shard_filepaths},
streaming=True,
split=split,
)
```
I'm able to get fast iteration speeds when iterating over the dataset without shuffling.
When I shuffle the dataset, the iteration speed is reduced by ~1000x.
It's very possible the way I'm loading dataset shards is not appropriate; if so please advise!
Thanks for the help
### Steps to reproduce the bug
Here's full code to reproduce the issue:
- Generate a random dataset
- Create shards of data independently using Dataset.save_to_disk()
- The below will generate 16 shards (arrow files), of 512 examples each
```
import time
from pathlib import Path
from multiprocessing import Pool, cpu_count
import torch
from datasets import Dataset, load_dataset
split = "train"
split_save_dir = "/tmp/random_split"
def generate_random_example():
return {
'inputs': torch.randn(128).tolist(),
'indices': torch.randint(0, 10000, (2, 20000)).tolist(),
'values': torch.randn(20000).tolist(),
}
def generate_shard_dataset(examples_per_shard: int = 512):
dataset_dict = {
'inputs': [],
'indices': [],
'values': []
}
for _ in range(examples_per_shard):
example = generate_random_example()
dataset_dict['inputs'].append(example['inputs'])
dataset_dict['indices'].append(example['indices'])
dataset_dict['values'].append(example['values'])
return Dataset.from_dict(dataset_dict)
def save_shard(shard_idx, save_dir, examples_per_shard):
shard_dataset = generate_shard_dataset(examples_per_shard)
shard_write_path = Path(save_dir) / f"shard_{shard_idx}"
shard_dataset.save_to_disk(shard_write_path)
return str(Path(shard_write_path) / "data-00000-of-00001.arrow")
def generate_split_shards(save_dir, num_shards: int = 16, examples_per_shard: int = 512):
with Pool(cpu_count()) as pool:
args = [(m, save_dir, examples_per_shard) for m in range(num_shards)]
shard_filepaths = pool.starmap(save_shard, args)
return shard_filepaths
shard_filepaths = generate_split_shards(split_save_dir)
```
Load the dataset as IterableDataset:
```
random_dataset = load_dataset(
"arrow",
data_files={split: shard_filepaths},
streaming=True,
split=split,
)
random_dataset = random_dataset.with_format("numpy")
```
Observe the iterations/second when iterating over the dataset directly, and applying shuffling before iterating:
Without shuffling, this gives ~1500 iterations/second
```
start_time = time.time()
for count, item in enumerate(random_dataset):
if count > 0 and count % 100 == 0:
elapsed_time = time.time() - start_time
iterations_per_second = count / elapsed_time
print(f"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second")
```
```
Processed 100 items at an average of 705.74 iterations/second
Processed 200 items at an average of 1169.68 iterations/second
Processed 300 items at an average of 1497.97 iterations/second
Processed 400 items at an average of 1739.62 iterations/second
Processed 500 items at an average of 1931.11 iterations/second`
```
When shuffling, this gives ~3 iterations/second:
```
random_dataset = random_dataset.shuffle(buffer_size=100,seed=42)
start_time = time.time()
for count, item in enumerate(random_dataset):
if count > 0 and count % 100 == 0:
elapsed_time = time.time() - start_time
iterations_per_second = count / elapsed_time
print(f"Processed {count} items at an average of {iterations_per_second:.2f} iterations/second")
```
```
Processed 100 items at an average of 3.75 iterations/second
Processed 200 items at an average of 3.93 iterations/second
```
### Expected behavior
Iterations per second should be barely affected by shuffling, especially with a small buffer size
### Environment info
Datasets version: 2.21.0
Python 3.10
Ubuntu 22.04 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7102/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7102/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7101 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7101/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7101/comments | https://api.github.com/repos/huggingface/datasets/issues/7101/events | https://github.com/huggingface/datasets/issues/7101 | 2,466,510,783 | I_kwDODunzps6TA_e_ | 7,101 | `load_dataset` from Hub with `name` to specify `config` using incorrect builder type when multiple data formats are present | {
"avatar_url": "https://avatars.githubusercontent.com/u/106811348?v=4",
"events_url": "https://api.github.com/users/hlky/events{/privacy}",
"followers_url": "https://api.github.com/users/hlky/followers",
"following_url": "https://api.github.com/users/hlky/following{/other_user}",
"gists_url": "https://api.github.com/users/hlky/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/hlky",
"id": 106811348,
"login": "hlky",
"node_id": "U_kgDOBl3P1A",
"organizations_url": "https://api.github.com/users/hlky/orgs",
"received_events_url": "https://api.github.com/users/hlky/received_events",
"repos_url": "https://api.github.com/users/hlky/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/hlky/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/hlky/subscriptions",
"type": "User",
"url": "https://api.github.com/users/hlky"
} | [] | open | false | null | [] | null | [
"Having looked into this further it seems the core of the issue is with two different formats in the same repo.\r\n\r\nWhen the `parquet` config is first, the `WebDataset`s are loaded as `parquet`, if the `WebDataset` configs are first, the `parquet` is loaded as `WebDataset`.\r\n\r\nA workaround in my case would be to just turn the `parquet` into a `WebDataset`, although I'd still need the Dataset Viewer config limit increasing. In other cases using the same format may not be possible.\r\n\r\nRelevant code: \r\n- [HubDatasetModuleFactoryWithoutScript](https://github.com/huggingface/datasets/blob/5f42139a2c5583a55d34a2f60d537f5fba285c28/src/datasets/load.py#L964)\r\n- [get_data_patterns](https://github.com/huggingface/datasets/blob/5f42139a2c5583a55d34a2f60d537f5fba285c28/src/datasets/data_files.py#L415)"
] | 1,723,659,145,000 | 1,723,977,218,000 | null | NONE | null | null | null | Following [documentation](https://huggingface.co./docs/datasets/repository_structure#define-your-splits-and-subsets-in-yaml) I had defined different configs for [`Dataception`](https://huggingface.co./datasets/bigdata-pw/Dataception), a dataset of datasets:
```yaml
configs:
- config_name: dataception
data_files:
- path: dataception.parquet
split: train
default: true
- config_name: dataset_5423
data_files:
- path: datasets/5423.tar
split: train
...
- config_name: dataset_721736
data_files:
- path: datasets/721736.tar
split: train
```
The intent was for metadata to be browsable via Dataset Viewer, in addition to each individual dataset, and to allow datasets to be loaded by specifying the config/name to `load_dataset`.
While testing `load_dataset` I encountered the following error:
```python
>>> dataset = load_dataset("bigdata-pw/Dataception", "dataset_7691")
Downloading readme: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 467k/467k [00:00<00:00, 1.99MB/s]
Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 71.0M/71.0M [00:02<00:00, 26.8MB/s]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "datasets\load.py", line 2145, in load_dataset
builder_instance.download_and_prepare(
File "datasets\builder.py", line 1027, in download_and_prepare
self._download_and_prepare(
File "datasets\builder.py", line 1100, in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "datasets\packaged_modules\parquet\parquet.py", line 58, in _split_generators
self.info.features = datasets.Features.from_arrow_schema(pq.read_schema(f))
^^^^^^^^^^^^^^^^^
File "pyarrow\parquet\core.py", line 2325, in read_schema
file = ParquetFile(
^^^^^^^^^^^^
File "pyarrow\parquet\core.py", line 318, in __init__
self.reader.open(
File "pyarrow\_parquet.pyx", line 1470, in pyarrow._parquet.ParquetReader.open
File "pyarrow\error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Parquet magic bytes not found in footer. Either the file is corrupted or this is not a parquet file.
```
The correct file is downloaded, however the incorrect builder type is detected; `parquet` due to other content of the repository. It would appear that the config needs to be taken into account.
Note that I have removed the additional configs from the repository because of this issue and there is a limit of 3000 configs anyway so the Dataset Viewer doesn't work as I intended. I'll add them back in if it assists with testing.
| {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7101/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7101/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7100 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7100/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7100/comments | https://api.github.com/repos/huggingface/datasets/issues/7100/events | https://github.com/huggingface/datasets/issues/7100 | 2,465,529,414 | I_kwDODunzps6S9P5G | 7,100 | IterableDataset: cannot resolve features from list of numpy arrays | {
"avatar_url": "https://avatars.githubusercontent.com/u/18899212?v=4",
"events_url": "https://api.github.com/users/VeryLazyBoy/events{/privacy}",
"followers_url": "https://api.github.com/users/VeryLazyBoy/followers",
"following_url": "https://api.github.com/users/VeryLazyBoy/following{/other_user}",
"gists_url": "https://api.github.com/users/VeryLazyBoy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/VeryLazyBoy",
"id": 18899212,
"login": "VeryLazyBoy",
"node_id": "MDQ6VXNlcjE4ODk5MjEy",
"organizations_url": "https://api.github.com/users/VeryLazyBoy/orgs",
"received_events_url": "https://api.github.com/users/VeryLazyBoy/received_events",
"repos_url": "https://api.github.com/users/VeryLazyBoy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/VeryLazyBoy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/VeryLazyBoy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/VeryLazyBoy"
} | [] | open | false | null | [] | null | [] | 1,723,633,311,000 | 1,723,633,311,000 | null | NONE | null | null | null | ### Describe the bug
when resolve features of `IterableDataset`, got `pyarrow.lib.ArrowInvalid: Can only convert 1-dimensional array values` error.
```
Traceback (most recent call last):
File "test.py", line 6
iter_ds = iter_ds._resolve_features()
File "lib/python3.10/site-packages/datasets/iterable_dataset.py", line 2876, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
File "lib/python3.10/site-packages/datasets/iterable_dataset.py", line 63, in _infer_features_from_batch
pa_table = pa.Table.from_pydict(batch)
File "pyarrow/table.pxi", line 1813, in pyarrow.lib._Tabular.from_pydict
File "pyarrow/table.pxi", line 5339, in pyarrow.lib._from_pydict
File "pyarrow/array.pxi", line 374, in pyarrow.lib.asarray
File "pyarrow/array.pxi", line 344, in pyarrow.lib.array
File "pyarrow/array.pxi", line 42, in pyarrow.lib._sequence_to_array
File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Can only convert 1-dimensional array values
```
### Steps to reproduce the bug
```python
from datasets import Dataset
import numpy as np
# create list of numpy
iter_ds = Dataset.from_dict({'a': [[[1, 2, 3], [1, 2, 3]]]}).to_iterable_dataset().map(lambda x: {'a': [np.array(x['a'])]})
iter_ds = iter_ds._resolve_features() # errors here
```
### Expected behavior
features can be successfully resolved
### Environment info
- `datasets` version: 2.21.0
- Platform: Linux-5.15.0-94-generic-x86_64-with-glibc2.35
- Python version: 3.10.13
- `huggingface_hub` version: 0.23.4
- PyArrow version: 15.0.0
- Pandas version: 2.2.0
- `fsspec` version: 2023.10.0 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7100/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7100/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7099 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7099/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7099/comments | https://api.github.com/repos/huggingface/datasets/issues/7099/events | https://github.com/huggingface/datasets/pull/7099 | 2,465,221,827 | PR_kwDODunzps54U7s4 | 7,099 | Set dev version | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7099). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005649 / 0.011353 (-0.005704) | 0.003918 / 0.011008 (-0.007091) | 0.064333 / 0.038508 (0.025825) | 0.031909 / 0.023109 (0.008800) | 0.249020 / 0.275898 (-0.026878) | 0.273563 / 0.323480 (-0.049917) | 0.004184 / 0.007986 (-0.003802) | 0.002809 / 0.004328 (-0.001519) | 0.049066 / 0.004250 (0.044816) | 0.043324 / 0.037052 (0.006272) | 0.257889 / 0.258489 (-0.000600) | 0.285410 / 0.293841 (-0.008431) | 0.030681 / 0.128546 (-0.097865) | 0.012389 / 0.075646 (-0.063258) | 0.206172 / 0.419271 (-0.213100) | 0.036500 / 0.043533 (-0.007032) | 0.253674 / 0.255139 (-0.001465) | 0.272086 / 0.283200 (-0.011114) | 0.019558 / 0.141683 (-0.122125) | 1.149501 / 1.452155 (-0.302653) | 1.198036 / 1.492716 (-0.294680) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.139977 / 0.018006 (0.121971) | 0.301149 / 0.000490 (0.300659) | 0.000253 / 0.000200 (0.000053) | 0.000049 / 0.000054 (-0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.019137 / 0.037411 (-0.018274) | 0.062616 / 0.014526 (0.048090) | 0.075965 / 0.176557 (-0.100591) | 0.120976 / 0.737135 (-0.616159) | 0.076384 / 0.296338 (-0.219954) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.283801 / 0.215209 (0.068592) | 2.794074 / 2.077655 (0.716419) | 1.475633 / 1.504120 (-0.028487) | 1.336270 / 1.541195 (-0.204925) | 1.376159 / 1.468490 (-0.092331) | 0.718768 / 4.584777 (-3.866009) | 2.375970 / 3.745712 (-1.369742) | 2.969121 / 5.269862 (-2.300741) | 1.900236 / 4.565676 (-2.665440) | 0.082463 / 0.424275 (-0.341812) | 0.005159 / 0.007607 (-0.002448) | 0.329057 / 0.226044 (0.103012) | 3.250535 / 2.268929 (0.981607) | 1.846415 / 55.444624 (-53.598210) | 1.496622 / 6.876477 (-5.379855) | 1.538125 / 2.142072 (-0.603947) | 0.806127 / 4.805227 (-3.999101) | 0.135272 / 6.500664 (-6.365392) | 0.042668 / 0.075469 (-0.032801) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.983035 / 1.841788 (-0.858753) | 11.725835 / 8.074308 (3.651527) | 9.962818 / 10.191392 (-0.228574) | 0.131928 / 0.680424 (-0.548496) | 0.015784 / 0.534201 (-0.518417) | 0.301640 / 0.579283 (-0.277643) | 0.266251 / 0.434364 (-0.168113) | 0.339723 / 0.540337 (-0.200614) | 0.443384 / 1.386936 (-0.943552) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006301 / 0.011353 (-0.005052) | 0.004346 / 0.011008 (-0.006662) | 0.051406 / 0.038508 (0.012898) | 0.032263 / 0.023109 (0.009154) | 0.273715 / 0.275898 (-0.002183) | 0.300982 / 0.323480 (-0.022498) | 0.004533 / 0.007986 (-0.003452) | 0.002911 / 0.004328 (-0.001418) | 0.050464 / 0.004250 (0.046214) | 0.041131 / 0.037052 (0.004078) | 0.289958 / 0.258489 (0.031469) | 0.328632 / 0.293841 (0.034791) | 0.033545 / 0.128546 (-0.095001) | 0.013145 / 0.075646 (-0.062501) | 0.062241 / 0.419271 (-0.357031) | 0.035095 / 0.043533 (-0.008438) | 0.273303 / 0.255139 (0.018164) | 0.293652 / 0.283200 (0.010452) | 0.019980 / 0.141683 (-0.121703) | 1.155432 / 1.452155 (-0.296722) | 1.211409 / 1.492716 (-0.281307) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.094885 / 0.018006 (0.076879) | 0.307423 / 0.000490 (0.306933) | 0.000254 / 0.000200 (0.000054) | 0.000068 / 0.000054 (0.000013) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023462 / 0.037411 (-0.013949) | 0.081980 / 0.014526 (0.067454) | 0.089890 / 0.176557 (-0.086666) | 0.131058 / 0.737135 (-0.606078) | 0.091873 / 0.296338 (-0.204465) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.298522 / 0.215209 (0.083313) | 2.981771 / 2.077655 (0.904116) | 1.632515 / 1.504120 (0.128395) | 1.502885 / 1.541195 (-0.038310) | 1.496868 / 1.468490 (0.028377) | 0.750145 / 4.584777 (-3.834632) | 0.988853 / 3.745712 (-2.756859) | 3.029162 / 5.269862 (-2.240700) | 1.952304 / 4.565676 (-2.613373) | 0.082418 / 0.424275 (-0.341857) | 0.005724 / 0.007607 (-0.001883) | 0.356914 / 0.226044 (0.130870) | 3.523804 / 2.268929 (1.254875) | 1.983254 / 55.444624 (-53.461370) | 1.673135 / 6.876477 (-5.203342) | 1.716639 / 2.142072 (-0.425433) | 0.821568 / 4.805227 (-3.983659) | 0.136113 / 6.500664 (-6.364551) | 0.041593 / 0.075469 (-0.033876) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.044670 / 1.841788 (-0.797118) | 12.739375 / 8.074308 (4.665066) | 10.263619 / 10.191392 (0.072227) | 0.132811 / 0.680424 (-0.547613) | 0.015491 / 0.534201 (-0.518710) | 0.305545 / 0.579283 (-0.273738) | 0.129226 / 0.434364 (-0.305138) | 0.345532 / 0.540337 (-0.194805) | 0.460406 / 1.386936 (-0.926530) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ebec2691fb1e40145429f63375cef3f46d3011ab \"CML watermark\")\n"
] | 1,723,624,277,000 | 1,723,625,117,000 | 1,723,624,765,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7099.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7099",
"merged_at": "2024-08-14T08:39:25",
"patch_url": "https://github.com/huggingface/datasets/pull/7099.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7099"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7099/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7099/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7098 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7098/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7098/comments | https://api.github.com/repos/huggingface/datasets/issues/7098/events | https://github.com/huggingface/datasets/pull/7098 | 2,465,016,562 | PR_kwDODunzps54UPMS | 7,098 | Release: 2.21.0 | {
"avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4",
"events_url": "https://api.github.com/users/albertvillanova/events{/privacy}",
"followers_url": "https://api.github.com/users/albertvillanova/followers",
"following_url": "https://api.github.com/users/albertvillanova/following{/other_user}",
"gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/albertvillanova",
"id": 8515462,
"login": "albertvillanova",
"node_id": "MDQ6VXNlcjg1MTU0NjI=",
"organizations_url": "https://api.github.com/users/albertvillanova/orgs",
"received_events_url": "https://api.github.com/users/albertvillanova/received_events",
"repos_url": "https://api.github.com/users/albertvillanova/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions",
"type": "User",
"url": "https://api.github.com/users/albertvillanova"
} | [] | closed | false | null | [] | null | [
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7098). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 1,723,617,313,000 | 1,723,617,667,000 | 1,723,617,666,000 | MEMBER | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7098.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7098",
"merged_at": "2024-08-14T06:41:06",
"patch_url": "https://github.com/huggingface/datasets/pull/7098.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7098"
} | null | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7098/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7098/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7097 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7097/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7097/comments | https://api.github.com/repos/huggingface/datasets/issues/7097/events | https://github.com/huggingface/datasets/issues/7097 | 2,458,455,489 | I_kwDODunzps6SiQ3B | 7,097 | Some of DownloadConfig's properties are always being overridden in load.py | {
"avatar_url": "https://avatars.githubusercontent.com/u/29772899?v=4",
"events_url": "https://api.github.com/users/ductai199x/events{/privacy}",
"followers_url": "https://api.github.com/users/ductai199x/followers",
"following_url": "https://api.github.com/users/ductai199x/following{/other_user}",
"gists_url": "https://api.github.com/users/ductai199x/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ductai199x",
"id": 29772899,
"login": "ductai199x",
"node_id": "MDQ6VXNlcjI5NzcyODk5",
"organizations_url": "https://api.github.com/users/ductai199x/orgs",
"received_events_url": "https://api.github.com/users/ductai199x/received_events",
"repos_url": "https://api.github.com/users/ductai199x/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ductai199x/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ductai199x/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ductai199x"
} | [] | open | false | null | [] | null | [] | 1,723,227,997,000 | 1,723,227,997,000 | null | NONE | null | null | null | ### Describe the bug
The `extract_compressed_file` and `force_extract` properties of DownloadConfig are always being set to True in the function `dataset_module_factory` in the `load.py` file. This behavior is very annoying because data extracted will just be ignored the next time the dataset is loaded.
See this image below:
![image](https://github.com/user-attachments/assets/9e76ebb7-09b1-4c95-adc8-a959b536f93c)
### Steps to reproduce the bug
1. Have a local dataset that contains archived files (zip, tar.gz, etc)
2. Build a dataset loading script to download and extract these files
3. Run the load_dataset function with a DownloadConfig that specifically set `force_extract` to False
4. The extraction process will start no matter if the archives was extracted previously
### Expected behavior
The extraction process should not run when the archives were previously extracted and `force_extract` is set to False.
### Environment info
datasets==2.20.0
python3.9 | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7097/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7097/timeline | null | null | false |
https://api.github.com/repos/huggingface/datasets/issues/7096 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7096/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7096/comments | https://api.github.com/repos/huggingface/datasets/issues/7096/events | https://github.com/huggingface/datasets/pull/7096 | 2,456,929,173 | PR_kwDODunzps535Xkr | 7,096 | Automatically create `cache_dir` from `cache_file_name` | {
"avatar_url": "https://avatars.githubusercontent.com/u/27844407?v=4",
"events_url": "https://api.github.com/users/ringohoffman/events{/privacy}",
"followers_url": "https://api.github.com/users/ringohoffman/followers",
"following_url": "https://api.github.com/users/ringohoffman/following{/other_user}",
"gists_url": "https://api.github.com/users/ringohoffman/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ringohoffman",
"id": 27844407,
"login": "ringohoffman",
"node_id": "MDQ6VXNlcjI3ODQ0NDA3",
"organizations_url": "https://api.github.com/users/ringohoffman/orgs",
"received_events_url": "https://api.github.com/users/ringohoffman/received_events",
"repos_url": "https://api.github.com/users/ringohoffman/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ringohoffman/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ringohoffman/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ringohoffman"
} | [] | closed | false | null | [] | null | [
"Hi @albertvillanova, is this PR looking okay to you? Anything else you'd like to see?",
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7096). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.",
"<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005278 / 0.011353 (-0.006075) | 0.003536 / 0.011008 (-0.007472) | 0.062604 / 0.038508 (0.024096) | 0.030704 / 0.023109 (0.007595) | 0.242178 / 0.275898 (-0.033720) | 0.264335 / 0.323480 (-0.059145) | 0.004118 / 0.007986 (-0.003868) | 0.002789 / 0.004328 (-0.001539) | 0.048813 / 0.004250 (0.044563) | 0.041787 / 0.037052 (0.004735) | 0.252369 / 0.258489 (-0.006120) | 0.280981 / 0.293841 (-0.012859) | 0.029646 / 0.128546 (-0.098900) | 0.012093 / 0.075646 (-0.063553) | 0.203036 / 0.419271 (-0.216235) | 0.035814 / 0.043533 (-0.007719) | 0.248929 / 0.255139 (-0.006210) | 0.266568 / 0.283200 (-0.016632) | 0.018761 / 0.141683 (-0.122922) | 1.188443 / 1.452155 (-0.263712) | 1.219324 / 1.492716 (-0.273392) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.095256 / 0.018006 (0.077250) | 0.301069 / 0.000490 (0.300579) | 0.000219 / 0.000200 (0.000019) | 0.000054 / 0.000054 (-0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.018541 / 0.037411 (-0.018870) | 0.067333 / 0.014526 (0.052807) | 0.075483 / 0.176557 (-0.101073) | 0.121301 / 0.737135 (-0.615834) | 0.076924 / 0.296338 (-0.219414) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.284722 / 0.215209 (0.069513) | 2.817656 / 2.077655 (0.740001) | 1.483827 / 1.504120 (-0.020293) | 1.363072 / 1.541195 (-0.178123) | 1.380472 / 1.468490 (-0.088018) | 0.739543 / 4.584777 (-3.845234) | 2.390699 / 3.745712 (-1.355013) | 2.980347 / 5.269862 (-2.289515) | 1.897881 / 4.565676 (-2.667795) | 0.078827 / 0.424275 (-0.345448) | 0.005193 / 0.007607 (-0.002414) | 0.342739 / 0.226044 (0.116695) | 3.370871 / 2.268929 (1.101942) | 1.846475 / 55.444624 (-53.598150) | 1.577860 / 6.876477 (-5.298617) | 1.628606 / 2.142072 (-0.513466) | 0.815686 / 4.805227 (-3.989541) | 0.134985 / 6.500664 (-6.365679) | 0.042330 / 0.075469 (-0.033139) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.962530 / 1.841788 (-0.879258) | 11.271449 / 8.074308 (3.197141) | 9.615452 / 10.191392 (-0.575940) | 0.140322 / 0.680424 (-0.540101) | 0.014057 / 0.534201 (-0.520144) | 0.306212 / 0.579283 (-0.273071) | 0.266758 / 0.434364 (-0.167606) | 0.341229 / 0.540337 (-0.199108) | 0.428974 / 1.386936 (-0.957962) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.005980 / 0.011353 (-0.005373) | 0.003831 / 0.011008 (-0.007177) | 0.049837 / 0.038508 (0.011329) | 0.030602 / 0.023109 (0.007493) | 0.274107 / 0.275898 (-0.001791) | 0.298175 / 0.323480 (-0.025305) | 0.004492 / 0.007986 (-0.003494) | 0.002840 / 0.004328 (-0.001489) | 0.048984 / 0.004250 (0.044733) | 0.040001 / 0.037052 (0.002949) | 0.286130 / 0.258489 (0.027641) | 0.321546 / 0.293841 (0.027705) | 0.032675 / 0.128546 (-0.095871) | 0.012222 / 0.075646 (-0.063424) | 0.060321 / 0.419271 (-0.358950) | 0.034456 / 0.043533 (-0.009077) | 0.272408 / 0.255139 (0.017269) | 0.294714 / 0.283200 (0.011515) | 0.018568 / 0.141683 (-0.123115) | 1.169826 / 1.452155 (-0.282329) | 1.223906 / 1.492716 (-0.268810) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.093734 / 0.018006 (0.075727) | 0.305915 / 0.000490 (0.305425) | 0.000210 / 0.000200 (0.000010) | 0.000052 / 0.000054 (-0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022389 / 0.037411 (-0.015022) | 0.076640 / 0.014526 (0.062114) | 0.088660 / 0.176557 (-0.087897) | 0.128998 / 0.737135 (-0.608137) | 0.090346 / 0.296338 (-0.205992) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.291642 / 0.215209 (0.076433) | 2.897270 / 2.077655 (0.819615) | 1.571564 / 1.504120 (0.067444) | 1.449533 / 1.541195 (-0.091662) | 1.458744 / 1.468490 (-0.009746) | 0.725465 / 4.584777 (-3.859312) | 0.962597 / 3.745712 (-2.783115) | 3.035056 / 5.269862 (-2.234806) | 1.902542 / 4.565676 (-2.663135) | 0.079869 / 0.424275 (-0.344407) | 0.005172 / 0.007607 (-0.002435) | 0.352099 / 0.226044 (0.126055) | 3.469058 / 2.268929 (1.200129) | 1.953402 / 55.444624 (-53.491222) | 1.647182 / 6.876477 (-5.229294) | 1.686473 / 2.142072 (-0.455599) | 0.797218 / 4.805227 (-4.008009) | 0.134161 / 6.500664 (-6.366503) | 0.041563 / 0.075469 (-0.033906) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.045855 / 1.841788 (-0.795933) | 12.271390 / 8.074308 (4.197082) | 10.186889 / 10.191392 (-0.004503) | 0.141141 / 0.680424 (-0.539283) | 0.015482 / 0.534201 (-0.518719) | 0.305699 / 0.579283 (-0.273584) | 0.128539 / 0.434364 (-0.305825) | 0.348492 / 0.540337 (-0.191845) | 0.444867 / 1.386936 (-0.942069) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#93dc73501298ccb1d31d854ba20fcf2c3b2fea8b \"CML watermark\")\n"
] | 1,723,167,246,000 | 1,723,742,726,000 | 1,723,716,802,000 | CONTRIBUTOR | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7096.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7096",
"merged_at": "2024-08-15T10:13:22",
"patch_url": "https://github.com/huggingface/datasets/pull/7096.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7096"
} | You get a pretty unhelpful error message when specifying a `cache_file_name` in a directory that doesn't exist, e.g. `cache_file_name="./cache/data.map"`
```python
import datasets
cache_file_name="./cache/train.map"
dataset = datasets.load_dataset("ylecun/mnist")
dataset["train"].map(lambda x: x, cache_file_name=cache_file_name)
```
```
FileNotFoundError: [Errno 2] No such file or directory: '/.../cache/tmp48r61siw'
```
It is simple enough to create and I was expecting that this would have been the case.
cc: @albertvillanova @lhoestq | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 1,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7096/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7096/timeline | null | null | true |
https://api.github.com/repos/huggingface/datasets/issues/7094 | https://api.github.com/repos/huggingface/datasets | https://api.github.com/repos/huggingface/datasets/issues/7094/labels{/name} | https://api.github.com/repos/huggingface/datasets/issues/7094/comments | https://api.github.com/repos/huggingface/datasets/issues/7094/events | https://github.com/huggingface/datasets/pull/7094 | 2,454,418,130 | PR_kwDODunzps53w2b7 | 7,094 | Add Arabic Docs to Datasets | {
"avatar_url": "https://avatars.githubusercontent.com/u/53489256?v=4",
"events_url": "https://api.github.com/users/AhmedAlmaghz/events{/privacy}",
"followers_url": "https://api.github.com/users/AhmedAlmaghz/followers",
"following_url": "https://api.github.com/users/AhmedAlmaghz/following{/other_user}",
"gists_url": "https://api.github.com/users/AhmedAlmaghz/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/AhmedAlmaghz",
"id": 53489256,
"login": "AhmedAlmaghz",
"node_id": "MDQ6VXNlcjUzNDg5MjU2",
"organizations_url": "https://api.github.com/users/AhmedAlmaghz/orgs",
"received_events_url": "https://api.github.com/users/AhmedAlmaghz/received_events",
"repos_url": "https://api.github.com/users/AhmedAlmaghz/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/AhmedAlmaghz/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/AhmedAlmaghz/subscriptions",
"type": "User",
"url": "https://api.github.com/users/AhmedAlmaghz"
} | [] | open | false | null | [] | null | [] | 1,723,067,586,000 | 1,723,067,586,000 | null | NONE | null | 0 | {
"diff_url": "https://github.com/huggingface/datasets/pull/7094.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7094",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7094.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7094"
} | Translate Docs into Arabic issue-number : #7093
[Arabic Docs](https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/ar/index.mdx)
[English Docs](https://github.com/AhmedAlmaghz/datasets/blob/main/docs/source/en/index.mdx)
@stevhliu | {
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7094/reactions"
} | https://api.github.com/repos/huggingface/datasets/issues/7094/timeline | null | null | true |
End of preview.