|
import os |
|
import numpy as np |
|
from PIL import Image |
|
import csv |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """""" |
|
|
|
_DESCRIPTION = """Persian Licensee plate dataset. Primarily taken from AmirKabir University Challenge. |
|
Annotation are provided by the authors""" |
|
|
|
_DOWNLOAD_URLS = { |
|
"train": "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_train.csv", |
|
"val": "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_val.csv", |
|
"test": "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_test.csv", |
|
'train_dataset': "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_train.zip", |
|
'val_dataset': "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_val.zip", |
|
'test_dataset': "https://huggingface.co./datasets/hezarai/persian-license-plate-v1/resolve/main/persian_license_plate_test.zip", |
|
} |
|
|
|
|
|
class PersianLicensePlateConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(PersianLicensePlateConfig, self).__init__(**kwargs) |
|
|
|
|
|
class PersianLicensePlate(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
PersianLicensePlateConfig( |
|
name="PersianLicensePlate", |
|
version=datasets.Version("1.0.0"), |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"label": datasets.Value("string"), |
|
"filename": datasets.Value("string"), |
|
"image": datasets.Sequence(datasets.Value("int32")), |
|
} |
|
), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
""" |
|
Return SplitGenerators. |
|
""" |
|
|
|
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"]) |
|
val_path = dl_manager.download_and_extract(_DOWNLOAD_URLS['val']) |
|
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"]) |
|
|
|
archive_path = dl_manager.download(_DOWNLOAD_URLS['train_dataset']) |
|
train_extracted_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else None |
|
|
|
archive_path = dl_manager.download(_DOWNLOAD_URLS['val_dataset']) |
|
val_extracted_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else None |
|
|
|
archive_path = dl_manager.download(_DOWNLOAD_URLS['test_dataset']) |
|
test_extracted_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else None |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "dataset_dir": train_extracted_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "dataset_dir": test_extracted_path} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": val_path, "dataset_dir": val_extracted_path} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, dataset_dir): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True) |
|
|
|
|
|
next(csv_reader, None) |
|
|
|
for id_, row in enumerate(csv_reader): |
|
label, filename = row |
|
image_path = os.path.join(dataset_dir, filename) |
|
yield id_, {"label": label, "image_path": image_path} |
|
|