Datasets:
Delete flickr30k-fa.py
Browse files- flickr30k-fa.py +0 -79
flickr30k-fa.py
DELETED
@@ -1,79 +0,0 @@
|
|
1 |
-
import csv
|
2 |
-
import os
|
3 |
-
|
4 |
-
import datasets
|
5 |
-
|
6 |
-
logger = datasets.logging.get_logger(__name__)
|
7 |
-
|
8 |
-
_CITATION = """"""
|
9 |
-
|
10 |
-
_DESCRIPTION = """Flickr30k filtered and translated to Persian made by Sajjad Ayoubi https://www.kaggle.com/datasets/sajjadayobi360/flickrfa"""
|
11 |
-
|
12 |
-
_DOWNLOAD_URLS = {
|
13 |
-
"train": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/annotations_train.csv",
|
14 |
-
"test": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/annotations_test.csv",
|
15 |
-
"data": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/images.zip",
|
16 |
-
}
|
17 |
-
|
18 |
-
ZIP_IMAGES_DIR = "images"
|
19 |
-
|
20 |
-
|
21 |
-
class Flickr30kFaConfig(datasets.BuilderConfig):
|
22 |
-
def __init__(self, **kwargs):
|
23 |
-
super(Flickr30kFaConfig, self).__init__(**kwargs)
|
24 |
-
|
25 |
-
|
26 |
-
class Flickr30kFa(datasets.GeneratorBasedBuilder):
|
27 |
-
BUILDER_CONFIGS = [
|
28 |
-
Flickr30kFaConfig(
|
29 |
-
name="Persian flickr30k",
|
30 |
-
version=datasets.Version("1.0.0"),
|
31 |
-
description=_DESCRIPTION,
|
32 |
-
),
|
33 |
-
]
|
34 |
-
|
35 |
-
def _info(self):
|
36 |
-
return datasets.DatasetInfo(
|
37 |
-
description=_DESCRIPTION,
|
38 |
-
features=datasets.Features(
|
39 |
-
{
|
40 |
-
"image_path": datasets.Value("string"),
|
41 |
-
"label": datasets.Value("string"),
|
42 |
-
}
|
43 |
-
),
|
44 |
-
citation=_CITATION,
|
45 |
-
)
|
46 |
-
|
47 |
-
def _split_generators(self, dl_manager):
|
48 |
-
"""
|
49 |
-
Return SplitGenerators.
|
50 |
-
"""
|
51 |
-
|
52 |
-
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
53 |
-
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
54 |
-
archive_path = dl_manager.download(_DOWNLOAD_URLS["data"])
|
55 |
-
images_dir = dl_manager.extract(archive_path) if not dl_manager.is_streaming else ""
|
56 |
-
images_dir = os.path.join(images_dir, ZIP_IMAGES_DIR)
|
57 |
-
|
58 |
-
return [
|
59 |
-
datasets.SplitGenerator(
|
60 |
-
name=datasets.Split.TRAIN, gen_kwargs={"annotations_file": train_path, "images_dir": images_dir}
|
61 |
-
),
|
62 |
-
datasets.SplitGenerator(
|
63 |
-
name=datasets.Split.TEST, gen_kwargs={"annotations_file": test_path, "images_dir": images_dir}
|
64 |
-
),
|
65 |
-
]
|
66 |
-
|
67 |
-
def _generate_examples(self, annotations_file, images_dir):
|
68 |
-
logger.info("⏳ Generating examples from = %s", annotations_file)
|
69 |
-
|
70 |
-
with open(annotations_file, encoding="utf-8") as csv_file:
|
71 |
-
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
72 |
-
|
73 |
-
# Skip header
|
74 |
-
next(csv_reader, None)
|
75 |
-
|
76 |
-
for id_, row in enumerate(csv_reader):
|
77 |
-
filename, label = row
|
78 |
-
image_path = os.path.join(images_dir, filename)
|
79 |
-
yield id_, {"image_path": image_path, "label": label}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|