Datasets:
Create flickr30k-fa.py
Browse files- flickr30k-fa.py +81 -0
flickr30k-fa.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import os
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
logger = datasets.logging.get_logger(__name__)
|
7 |
+
|
8 |
+
_CITATION = """"""
|
9 |
+
|
10 |
+
_DESCRIPTION = """Flickr30k filtered and translated to Persian made by Sajjad Ayoubi https://www.kaggle.com/datasets/sajjadayobi360/flickrfa"""
|
11 |
+
|
12 |
+
_DOWNLOAD_URLS = {
|
13 |
+
"train": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/annotations_train.csv",
|
14 |
+
"test": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/annotations_test.csv",
|
15 |
+
"train_dataset": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/flickr30k-fa_train.zip",
|
16 |
+
"test_dataset": "https://huggingface.co/datasets/hezarai/flickr30k-fa/resolve/main/flickr30k-fa_test.zip",
|
17 |
+
}
|
18 |
+
|
19 |
+
|
20 |
+
class Flickr30kFaConfig(datasets.BuilderConfig):
|
21 |
+
def __init__(self, **kwargs):
|
22 |
+
super(Flickr30kFaConfig, self).__init__(**kwargs)
|
23 |
+
|
24 |
+
|
25 |
+
class Flickr30kFa(datasets.GeneratorBasedBuilder):
|
26 |
+
BUILDER_CONFIGS = [
|
27 |
+
Flickr30kFaConfig(
|
28 |
+
name="Persian flickr30k",
|
29 |
+
version=datasets.Version("1.0.0"),
|
30 |
+
description=_DESCRIPTION,
|
31 |
+
),
|
32 |
+
]
|
33 |
+
|
34 |
+
def _info(self):
|
35 |
+
return datasets.DatasetInfo(
|
36 |
+
description=_DESCRIPTION,
|
37 |
+
features=datasets.Features(
|
38 |
+
{
|
39 |
+
"image_path": datasets.Value("string"),
|
40 |
+
"label": datasets.Value("string"),
|
41 |
+
}
|
42 |
+
),
|
43 |
+
citation=_CITATION,
|
44 |
+
)
|
45 |
+
|
46 |
+
def _split_generators(self, dl_manager):
|
47 |
+
"""
|
48 |
+
Return SplitGenerators.
|
49 |
+
"""
|
50 |
+
|
51 |
+
train_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["train"])
|
52 |
+
test_path = dl_manager.download_and_extract(_DOWNLOAD_URLS["test"])
|
53 |
+
|
54 |
+
archive_path = dl_manager.download(_DOWNLOAD_URLS["train_dataset"])
|
55 |
+
train_extracted_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else ""
|
56 |
+
|
57 |
+
archive_path = dl_manager.download(_DOWNLOAD_URLS["test_dataset"])
|
58 |
+
test_extracted_path = dl_manager.extract(archive_path) if not dl_manager.is_streaming else ""
|
59 |
+
|
60 |
+
return [
|
61 |
+
datasets.SplitGenerator(
|
62 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "dataset_dir": train_extracted_path}
|
63 |
+
),
|
64 |
+
datasets.SplitGenerator(
|
65 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "dataset_dir": test_extracted_path}
|
66 |
+
),
|
67 |
+
]
|
68 |
+
|
69 |
+
def _generate_examples(self, filepath, dataset_dir):
|
70 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
71 |
+
|
72 |
+
with open(filepath, encoding="utf-8") as csv_file:
|
73 |
+
csv_reader = csv.reader(csv_file, quotechar='"', skipinitialspace=True)
|
74 |
+
|
75 |
+
# Skip header
|
76 |
+
next(csv_reader, None)
|
77 |
+
|
78 |
+
for id_, row in enumerate(csv_reader):
|
79 |
+
label, filename = row
|
80 |
+
image_path = os.path.join(dataset_dir, filename)
|
81 |
+
yield id_, {"image_path": image_path, "label": label}
|