## Introduction This respository introduces how to reproduce the `Dense`, `Sparse`, and `Dense+Sparse` evaluation results of the paper [BGE-M3](https://arxiv.org/pdf/2402.03216.pdf) on the [MIRACL](https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00595/117438/MIRACL-A-Multilingual-Retrieval-Dataset-Covering) dev split. ## Requirements ```bash # Install Java (Linux) apt update apt install openjdk-21-jdk # Install Pyserini pip install pyserini # Install Faiss ## CPU version conda install -c conda-forge faiss-cpu ## GPU version conda install -c conda-forge faiss-gpu ``` **It should be noted that** the Pyserini code needs to be modified to support the multiple alpha settings in `pyserini/fusion`. I have already submitted a pull request to the official repository to support this feature. You can refer to this [PR](https://github.com/castorini/pyserini/pull/1858) to modify the code. ## 2CR ### Download and Unzip ```bash # Download ## MIRACL topics and qrels git clone https://huggingface.co./datasets/miracl/miracl mv miracl/*/*/* topics-and-qrels ## Dense and Sparse Index git lfs install git clone https://huggingface.co./datasets/hanhainebula/bge-m3_miracl_2cr cat bge-m3_miracl_2cr/dense/en.tar.gz.part_* > bge-m3_miracl_2cr/dense/en.tar.gz cat bge-m3_miracl_2cr/dense/de.tar.gz.part_* > bge-m3_miracl_2cr/dense/de.tar.gz # Unzip languages=(ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo) ## Dense for lang in ${languages[@]}; do tar -zxvf bge-m3_miracl_2cr/dense/${lang}.tar.gz -C bge-m3_miracl_2cr/dense/ done ## Sparse for lang in ${languages[@]}; do tar -zxvf bge-m3_miracl_2cr/sparse/${lang}.tar.gz -C bge-m3_miracl_2cr/sparse/ done ``` ### Reproduction #### Dense ```bash # Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo lang=zh # Generate run python -m pyserini.search.faiss \ --threads 16 --batch-size 512 \ --encoder-class auto \ --encoder BAAI/bge-m3 \ --pooling cls --l2-norm \ --topics topics-and-qrels/topics.miracl-v1.0-${lang}-dev.tsv \ --index bge-m3_miracl_2cr/dense/${lang} \ --output bge-m3_miracl_2cr/dense/runs/${lang}.txt \ --hits 1000 # Evaluate ## nDCG@10 python -m pyserini.eval.trec_eval \ -c -M 100 -m ndcg_cut.10 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/dense/runs/${lang}.txt ## Recall@100 python -m pyserini.eval.trec_eval \ -c -m recall.100 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/dense/runs/${lang}.txt ``` #### Sparse ```bash # Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo lang=zh # Generate run python -m pyserini.search.lucene \ --threads 16 --batch-size 128 \ --topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \ --index bge-m3_miracl_2cr/sparse/${lang}/index \ --output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \ --output-format trec \ --impact --hits 1000 # Evaluate ## nDCG@10 python -m pyserini.eval.trec_eval \ -c -M 100 -m ndcg_cut.10 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/sparse/runs/${lang}.txt ## Recall@100 python -m pyserini.eval.trec_eval \ -c -m recall.100 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/sparse/runs/${lang}.txt ``` #### Dense+Sparse **Note**: You should first merge this [PR](https://github.com/castorini/pyserini/pull/1858) to support the multiple alpha settings in `pyserini/fusion`. ```bash # Avaliable Language: ar bn en es fa fi fr hi id ja ko ru sw te th zh de yo lang=zh # Generate dense run and sparse run python -m pyserini.search.faiss \ --threads 16 --batch-size 512 \ --encoder-class auto \ --encoder BAAI/bge-m3 \ --pooling cls --l2-norm \ --topics topics-and-qrels/topics.miracl-v1.0-${lang}-dev.tsv \ --index bge-m3_miracl_2cr/dense/${lang} \ --output bge-m3_miracl_2cr/dense/runs/${lang}.txt \ --hits 1000 python -m pyserini.search.lucene \ --threads 16 --batch-size 128 \ --topics bge-m3_miracl_2cr/sparse/${lang}/query_embd.tsv \ --index bge-m3_miracl_2cr/sparse/${lang}/index \ --output bge-m3_miracl_2cr/sparse/runs/${lang}.txt \ --output-format trec \ --impact --hits 1000 # Generate dense+sparse run mkdir -p bge-m3_miracl_2cr/fusion/runs python -m pyserini.fusion \ --method interpolation \ --runs bge-m3_miracl_2cr/dense/runs/${lang}.txt bge-m3_miracl_2cr/sparse/runs/${lang}.txt \ --alpha 1 3e-5 \ --output bge-m3_miracl_2cr/fusion/runs/${lang}.txt \ --depth 1000 --k 1000 # Evaluation ## nDCG@10 python -m pyserini.eval.trec_eval \ -c -M 100 -m ndcg_cut.10 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/fusion/runs/${lang}.txt ## Recall@100 python -m pyserini.eval.trec_eval \ -c -m recall.100 \ topics-and-qrels/qrels.miracl-v1.0-${lang}-dev.tsv \ bge-m3_miracl_2cr/fusion/runs/${lang}.txt ``` Note: - The hybrid method we used for MIRACL in BGE-M3 paper is: `s_dense + 0.3 * s_sparse`. But when the sparse score is calculated, it has already been multiplied by 100^2, so the alpha for sparse run here is 3e-5, instead of 0.3.