Add README
Browse files
README.md
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- code
|
4 |
+
pretty_name: CoCoNuT-Python(2010)
|
5 |
+
---
|
6 |
+
|
7 |
+
# Dataset Card for CoCoNuT-Python(2010)
|
8 |
+
|
9 |
+
## Dataset Description
|
10 |
+
|
11 |
+
- **Homepage:** [CoCoNuT training data](https://github.com/lin-tan/CoCoNut-Artifact/releases/tag/training_data_1.0.0)
|
12 |
+
- **Repository:** [CoCoNuT repository](https://github.com/lin-tan/CoCoNut-Artifact)
|
13 |
+
- **Paper:** [CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair](https://dl.acm.org/doi/abs/10.1145/3395363.3397369)
|
14 |
+
|
15 |
+
### Dataset Summary
|
16 |
+
|
17 |
+
Part of the data used to train the models in the "CoCoNuT: Combining Context-Aware Neural Translation Models using Ensemble for Program Repair" paper.
|
18 |
+
These datasets contain raw data extracted from GitHub, GitLab, and Bitbucket, and have neither been shuffled nor tokenized.
|
19 |
+
The year in the dataset’s name is the cutting year that shows the year of the newest commit in the dataset.
|
20 |
+
|
21 |
+
### Languages
|
22 |
+
|
23 |
+
- Python
|
24 |
+
|
25 |
+
## Dataset Structure
|
26 |
+
|
27 |
+
### Data Fields
|
28 |
+
|
29 |
+
The dataset consists of 4 columns: `add`, `rem`, `context`, and `meta`.
|
30 |
+
These match the original dataset files: `add.txt`, `rem.txt`, `context.txt`, and `meta.txt`.
|
31 |
+
|
32 |
+
### Data Instances
|
33 |
+
|
34 |
+
There is a mapping between the 4 columns for each instance.
|
35 |
+
For example:
|
36 |
+
|
37 |
+
5 first rows of `rem` (i.e., the buggy line/hunk):
|
38 |
+
|
39 |
+
```
|
40 |
+
1 public synchronized StringBuffer append(char ch)
|
41 |
+
2 ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this;
|
42 |
+
3 public String substring(int beginIndex, int endIndex)
|
43 |
+
4 if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) throw new StringIndexOutOfBoundsException(); if (beginIndex == 0 && endIndex == count) return this; int len = endIndex - beginIndex; return new String(value, beginIndex + offset, len, (len << 2) >= value.length);
|
44 |
+
5 public Object next() {
|
45 |
+
```
|
46 |
+
|
47 |
+
5 first rows of add (i.e., the fixed line/hunk):
|
48 |
+
|
49 |
+
```
|
50 |
+
1 public StringBuffer append(Object obj)
|
51 |
+
2 return append(obj == null ? "null" : obj.toString());
|
52 |
+
3 public String substring(int begin)
|
53 |
+
4 return substring(begin, count);
|
54 |
+
5 public FSEntry next() {
|
55 |
+
```
|
56 |
+
|
57 |
+
These map to the 5 instances:
|
58 |
+
|
59 |
+
```diff
|
60 |
+
- public synchronized StringBuffer append(char ch)
|
61 |
+
+ public StringBuffer append(Object obj)
|
62 |
+
```
|
63 |
+
|
64 |
+
```diff
|
65 |
+
- ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this;
|
66 |
+
+ return append(obj == null ? "null" : obj.toString());
|
67 |
+
```
|
68 |
+
|
69 |
+
```diff
|
70 |
+
- public String substring(int beginIndex, int endIndex)
|
71 |
+
+ public String substring(int begin)
|
72 |
+
```
|
73 |
+
|
74 |
+
```diff
|
75 |
+
- if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) throw new StringIndexOutOfBoundsException(); if (beginIndex == 0 && endIndex == count) return this; int len = endIndex - beginIndex; return new String(value, beginIndex + offset, len, (len << 2) >= value.length);
|
76 |
+
+ return substring(begin, count);
|
77 |
+
```
|
78 |
+
|
79 |
+
```diff
|
80 |
+
- public Object next() {
|
81 |
+
+ public FSEntry next() {
|
82 |
+
```
|
83 |
+
|
84 |
+
`context` contains the associated "context". Context is the (in-lined) buggy function (including the buggy lines and comments).
|
85 |
+
For example, the context of
|
86 |
+
|
87 |
+
```
|
88 |
+
public synchronized StringBuffer append(char ch)
|
89 |
+
```
|
90 |
+
|
91 |
+
is its associated function:
|
92 |
+
|
93 |
+
```java
|
94 |
+
public synchronized StringBuffer append(char ch) { ensureCapacity_unsynchronized(count + 1); value[count++] = ch; return this; }
|
95 |
+
```
|
96 |
+
|
97 |
+
`meta` contains some metadata about the project:
|
98 |
+
|
99 |
+
```
|
100 |
+
1056 /local/tlutelli/issta_data/temp/all_java0context/java/2006_temp/2006/1056/68a6301301378680519f2b146daec37812a1bc22/StringBuffer.java/buggy/core/src/classpath/java/java/lang/StringBuffer.java
|
101 |
+
```
|
102 |
+
|
103 |
+
`1056` is the project id. `/local/...` is the absolute path to the buggy file. This can be parsed to extract the commit id: `68a6301301378680519f2b146daec37812a1bc22`, the file name: `StringBuffer.java` and the original path within the project
|
104 |
+
`core/src/classpath/java/java/lang/StringBuffer.java`
|
105 |
+
|
106 |
+
| Number of projects | Number of Instances |
|
107 |
+
| ------------------ |-------------------- |
|
108 |
+
| 13,899 | 480,777 |
|
109 |
+
|
110 |
+
## Dataset Creation
|
111 |
+
|
112 |
+
### Curation Rationale
|
113 |
+
|
114 |
+
Data is collected to train automated program repair (APR) models.
|
115 |
+
|
116 |
+
### Citation Information
|
117 |
+
|
118 |
+
```bib
|
119 |
+
@inproceedings{lutellierCoCoNuTCombiningContextaware2020,
|
120 |
+
title = {{{CoCoNuT}}: Combining Context-Aware Neural Translation Models Using Ensemble for Program Repair},
|
121 |
+
shorttitle = {{{CoCoNuT}}},
|
122 |
+
booktitle = {Proceedings of the 29th {{ACM SIGSOFT International Symposium}} on {{Software Testing}} and {{Analysis}}},
|
123 |
+
author = {Lutellier, Thibaud and Pham, Hung Viet and Pang, Lawrence and Li, Yitong and Wei, Moshi and Tan, Lin},
|
124 |
+
year = {2020},
|
125 |
+
month = jul,
|
126 |
+
series = {{{ISSTA}} 2020},
|
127 |
+
pages = {101--114},
|
128 |
+
publisher = {{Association for Computing Machinery}},
|
129 |
+
address = {{New York, NY, USA}},
|
130 |
+
doi = {10.1145/3395363.3397369},
|
131 |
+
url = {https://doi.org/10.1145/3395363.3397369},
|
132 |
+
urldate = {2022-12-06},
|
133 |
+
isbn = {978-1-4503-8008-9},
|
134 |
+
keywords = {AI and Software Engineering,Automated program repair,Deep Learning,Neural Machine Translation}
|
135 |
+
}
|
136 |
+
```
|