# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Cleaned Italian split of the mC4 corpus.""" import json import gzip import textwrap import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ @article{JMLR:v21:20-074, author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu}, title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer}, journal = {Journal of Machine Learning Research}, year = {2020}, volume = {21}, number = {140}, pages = {1-67}, url = {http://jmlr.org/papers/v21/20-074.html} } """ _DESCRIPTION = """\ A thoroughly cleaned version of the Italian portion of the multilingual colossal, cleaned version of Common Crawl's web crawl corpus (mC4) by AllenAI. Based on Common Crawl dataset: "https://commoncrawl.org". This is the processed version of Google's mC4 dataset by AllenAI, with further cleaning detailed in the repository README file. """ _HOMEPAGE = "https://github.com/allenai/allennlp/discussions/5056" _LICENSE = "Open Data Commons Attribution License (ODC-By) v1.0" _BASE_URL = "https://huggingface.co./datasets/gsarti/clean_mc4_it/resolve/main/clean-mc4-it/c4-it{split_suffix}.tfrecord-{index:05d}-of-{n_shards:05d}.json.gz" _CONFIGS = { "tiny": {"train": 100, "validation": 1}, "small": {"train": 250, "validation": 2}, "medium": {"train": 500, "validation": 4}, "large": {"train": 750, "validation": 6}, "full": {"train": 1024, "validation": 8} } class CleanMc4ItConfig(datasets.BuilderConfig): """BuilderConfig for the Clean mC4 Italian.""" def __init__(self, **kwargs): """BuilderConfig for Clean mC4 Italian. Args: **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) class Mc4(datasets.GeneratorBasedBuilder): """mC4, a colossal, cleaned version of Common Crawl's web crawl corpus.""" BUILDER_CONFIGS = [ CleanMc4ItConfig( name="tiny", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A tiny cleaned version of the Italian portion of the multilingual C4 corpus. Estimated size of compressed files: 10GB """ ) ), CleanMc4ItConfig( name="small", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A small cleaned version of the Italian portion of the multilingual C4 corpus. Estimated size of compressed files: 25GB """ ) ), CleanMc4ItConfig( name="medium", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A medium cleaned version of the Italian portion of the multilingual C4 corpus. Estimated size of compressed files: 50GB """ ) ), CleanMc4ItConfig( name="large", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ A large cleaned version of the Italian portion of the multilingual C4 corpus. Estimated size of compressed files: 75GB """ ) ), CleanMc4ItConfig( name="full", version=datasets.Version("1.0.0"), description=textwrap.dedent( f"""\ The full cleaned version of the Italian portion of the multilingual C4 corpus. Estimated size of compressed files: 103GB """ ) ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "timestamp": datasets.Value("string"), "url": datasets.Value("string"), } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_urls = {} for split in ["train", "validation"]: data_urls[split] = [ _BASE_URL.format( split_suffix="-validation" if split == "validation" else "", index=index, n_shards=8 if split == "validation" else 1024, ) for index in range(_CONFIGS[self.config.name][split]) ] train_downloaded_files = dl_manager.download(data_urls["train"]) validation_downloaded_files = dl_manager.download(data_urls["validation"]) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files} ), ] def _generate_examples(self, filepaths): """This function returns the examples in the raw (text) form by iterating on all the files.""" id_ = 0 for filepath in filepaths: logger.info(f"Generating examples from {filepath}") with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: for line in f: if line: example = json.loads(line) yield id_, example id_ += 1