gorkemgoknar
commited on
Commit
Β·
79987d1
1
Parent(s):
95d7862
Update README.md
Browse files
README.md
CHANGED
@@ -27,24 +27,43 @@ target_lang="tr" # change to your target lang
|
|
27 |
|
28 |
from datasets import load_dataset
|
29 |
#ted-multi is a multiple language translated dataset
|
30 |
-
#fits for our case , not to big and curated
|
31 |
|
32 |
dataset = load_dataset("ted_multi")
|
33 |
-
|
34 |
-
#there is no Turkish lanugage in europarl, so will need to choose one
|
35 |
dataset.cleanup_cache_files()
|
36 |
|
37 |
-
|
38 |
#chars_to_ignore_regex = '[,?.!\-\;\:\"β%ββοΏ½βββ¦β]' # change to the ignored characters of your fine-tuned model
|
39 |
|
40 |
#will use cahya/wav2vec2-base-turkish-artificial-cv
|
41 |
#checking inside model repository to find which chars removed (no run.sh)
|
42 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β\β\β\'\`β¦\β»«]'
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
cols_to_remove = ['translations', 'talk_name']
|
45 |
dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove)
|
46 |
|
47 |
|
|
|
48 |
dataset_cleaned = dataset.filter(lambda x: x['text'] is not None)
|
49 |
dataset_cleaned
|
50 |
|
|
|
27 |
|
28 |
from datasets import load_dataset
|
29 |
#ted-multi is a multiple language translated dataset
|
30 |
+
#fits for our case , not to big and curated but need a simple processing
|
31 |
|
32 |
dataset = load_dataset("ted_multi")
|
|
|
|
|
33 |
dataset.cleanup_cache_files()
|
34 |
|
35 |
+
#original from patrick's
|
36 |
#chars_to_ignore_regex = '[,?.!\-\;\:\"β%ββοΏ½βββ¦β]' # change to the ignored characters of your fine-tuned model
|
37 |
|
38 |
#will use cahya/wav2vec2-base-turkish-artificial-cv
|
39 |
#checking inside model repository to find which chars removed (no run.sh)
|
40 |
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β\β\β\'\`β¦\β»«]'
|
41 |
|
42 |
+
|
43 |
+
import re
|
44 |
+
|
45 |
+
def extract_target_lang_entries(batch):
|
46 |
+
#specific mapping for ted_multi dataset
|
47 |
+
#need to find index of language in each translation as it can shift
|
48 |
+
try:
|
49 |
+
target_index_for_lang= batch["translations"]["language"].index(target_lang)
|
50 |
+
except ValueError:
|
51 |
+
#target not in list empty it for later processing
|
52 |
+
batch["text"] = None
|
53 |
+
return batch
|
54 |
+
|
55 |
+
#index_translation_pairs = zip(batch, target_index_for_batch)
|
56 |
+
text= batch["translations"]["translation"][target_index_for_lang]
|
57 |
+
batch["text"] = re.sub(chars_to_ignore_regex, "", text.lower())
|
58 |
+
return batch
|
59 |
+
|
60 |
+
|
61 |
+
#this dataset has additional columns need to say it
|
62 |
cols_to_remove = ['translations', 'talk_name']
|
63 |
dataset = dataset.map(extract_target_lang_entries, remove_columns=cols_to_remove)
|
64 |
|
65 |
|
66 |
+
#on preocessing we tagged None for empty ones
|
67 |
dataset_cleaned = dataset.filter(lambda x: x['text'] is not None)
|
68 |
dataset_cleaned
|
69 |
|