Datasets:
Tasks:
Question Answering
Sub-tasks:
extractive-qa
Languages:
English
Size:
1K<n<10K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""QED: A Dataset for Explanations in Question Answering""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@misc{lamm2020qed, | |
title={QED: A Framework and Dataset for Explanations in Question Answering}, | |
author={Matthew Lamm and Jennimaria Palomaki and Chris Alberti and Daniel Andor and Eunsol Choi and Livio Baldini Soares and Michael Collins}, | |
year={2020}, | |
eprint={2009.06354}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
_DESCRIPTION = """\ | |
QED, is a linguistically informed, extensible framework for explanations in question answering. \ | |
A QED explanation specifies the relationship between a question and answer according to formal semantic notions \ | |
such as referential equality, sentencehood, and entailment. It is an expertannotated dataset of QED explanations \ | |
built upon a subset of the Google Natural Questions dataset. | |
""" | |
_HOMEPAGE = "https://github.com/google-research-datasets/QED" | |
_BASE_URL = "https://raw.githubusercontent.com/google-research-datasets/QED/master/" | |
_URLS = { | |
"train": _BASE_URL + "qed-train.jsonlines", | |
"dev": _BASE_URL + "qed-dev.jsonlines", | |
} | |
class Qed(datasets.GeneratorBasedBuilder): | |
"""QED: A Dataset for Explanations in Question Answering""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="qed", version=datasets.Version("1.0.0")), | |
] | |
def _info(self): | |
span_features = { | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"string": datasets.Value("string"), | |
} | |
reference_features = { | |
"start": datasets.Value("int32"), | |
"end": datasets.Value("int32"), | |
"bridge": datasets.Value("string"), | |
"string": datasets.Value("string"), | |
} | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"example_id": datasets.Value("int64"), | |
"title_text": datasets.Value("string"), | |
"url": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"paragraph_text": datasets.Value("string"), | |
"sentence_starts": datasets.Sequence(datasets.Value("int32")), | |
"original_nq_answers": [span_features], | |
"annotation": { | |
"referential_equalities": [ | |
{ | |
"question_reference": span_features, | |
"sentence_reference": reference_features, | |
} | |
], | |
"answer": [ | |
{ | |
"sentence_reference": reference_features, | |
"paragraph_reference": span_features, | |
} | |
], | |
"explanation_type": datasets.Value("string"), | |
"selected_sentence": span_features, | |
}, | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_paths = dl_manager.download(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_paths["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={"filepath": downloaded_paths["dev"]}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
examples = f.readlines() | |
for example in examples: | |
example = json.loads(example.strip()) | |
example["question"] = example.pop("question_text") | |
# some examples have missing annotation, assign empty values to such examples | |
if "answer" not in example["annotation"]: | |
example["annotation"]["answer"] = [] | |
if "selected_sentence" not in example["annotation"]: | |
example["annotation"]["selected_sentence"] = { | |
"start": -1, | |
"end": -1, | |
"string": "", | |
} | |
if "referential_equalities" not in example["annotation"]: | |
example["annotation"]["referential_equalities"] = [] | |
else: | |
for referential_equalities in example["annotation"]["referential_equalities"]: | |
bridge = referential_equalities["sentence_reference"]["bridge"] | |
referential_equalities["sentence_reference"]["bridge"] = ( | |
bridge if bridge is not False else None | |
) | |
# remove the nested list | |
example["original_nq_answers"] = example["original_nq_answers"][0] | |
yield example["example_id"], example | |