Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 7,858 Bytes
02e4e4e 0d5442e 02e4e4e 0d5442e fb31617 02e4e4e 1c99765 c17b98f 1c99765 c17b98f 4760001 1c99765 4760001 c17b98f 1c99765 c17b98f 1c99765 02e4e4e c17b98f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- extractive-qa
- open-domain-qa
pretty_name: 'DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question
Answering'
dataset_info:
features:
- name: squad_v2_id
dtype: string
- name: original question
dtype: string
- name: disfluent question
dtype: string
- name: title
dtype: string
- name: context
dtype: string
- name: answers
sequence:
- name: text
dtype: string
- name: answer_start
dtype: int32
splits:
- name: train
num_bytes: 7712491
num_examples: 7182
- name: test
num_bytes: 3865065
num_examples: 3643
- name: validation
num_bytes: 1072699
num_examples: 1000
download_size: 4246350
dataset_size: 12650255
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: validation
path: data/validation-*
---
# Dataset Card for DISFL-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Disfl-QA](https://github.com/google-research-datasets/disfl-qa)
- **Paper:** [Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering](https://arxiv.org/pdf/2106.04016.pdf)
- **Point of Contact:** [disfl-qa team]([email protected])
### Dataset Summary
Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 ([Rajpurkar et al., 2018](https://www.aclweb.org/anthology/P18-2124/)) dataset, where each question in the dev set is annotated to add a contextual disfluency using the paragraph as a source of distractors.
The final dataset consists of ~12k (disfluent question, answer) pairs. Over 90\% of the disfluencies are corrections or restarts, making it a much harder test set for disfluency correction. Disfl-QA aims to fill a major gap between speech and NLP research community. The authors hope the dataset can serve as a benchmark dataset for testing robustness of models against disfluent inputs.
The expriments reveal that the state-of-the-art models are brittle when subjected to disfluent inputs from Disfl-QA. Detailed experiments and analyses can be found in the [paper](https://arxiv.org/pdf/2106.04016.pdf).
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is in English only.
## Dataset Structure
### Data Instances
This example was too long and was cropped:
```
{
"answers": {
"answer_start": [94, 87, 94, 94],
"text": ["10th and 11th centuries", "in the 10th and 11th centuries", "10th and 11th centuries", "10th and 11th centuries"]
},
"context": "\"The Normans (Norman: Nourmands; French: Normands; Latin: Normanni) were the people who in the 10th and 11th centuries gave thei...",
"id": "56ddde6b9a695914005b9629",
"original question": "When were the Normans in Normandy?",
"disfluent question": "From which countries no tell me when were the Normans in Normandy?"
"title": "Normans"
}
```
### Data Fields
- `id`: a `string` feature.
- `title`: a `string` feature.
- `context`: a `string` feature.
- `original question`: Original question from SQuAD-v2 (a `string` feature)
- `disfluent question`: Disfluent question from Disfl-QA (a `string` feature)
- `answers`: a dictionary feature containing:
- `text`: a `string` feature.
- `answer_start`: a `int32` feature.
### Data Splits
Disfl-QA consists of ~12k disfluent questions with the following train/dev/test splits:
| File | Questions |
|-----|-----|
|train.json | 7182 |
|dev.json | 1000 |
|test.json | 3643 |
## Dataset Creation
### Curation Rationale
The research in NLP and speech community has been impeded by the lack of curated datasets containing such disfluencies. The datasets available today are mostly conversational in nature, and span a limited number of very specific domains (e.g., telephone conversations, court proceedings). Furthermore, only a small fraction of the utterances in these datasets contain disfluencies, with a limited and skewed distribution of disfluencies types. In the most popular dataset in the literature, the SWITCHBOARD corpus (Godfrey et al., 1992), only 5.9% of the words are disfluencies (Charniak and Johnson, 2001), of which > 50% are repetitions (Shriberg, 1996), which has been shown to be the relatively simpler form of disfluencies (Zayats et al., 2014; Jamshid Lou et al., 2018; Zayats et al., 2019). To fill this gap, the authors presented DISFL-QA, the first dataset containing contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages.
### Source Data
#### Initial Data Collection and Normalization
DISFL-QA is constructed by asking human raters to insert disfluencies in questions from SQUAD-v2, a popular question answering dataset, using the passage and remaining questions as context. These contextual disfluencies lend naturalness to DISFL-QA, and challenge models relying on shallow matching between question and context to predict an answer.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
Each question associated with the paragraph is sent for a human annotation task to add a contextual disfluency using the paragraph as a source of distractors. Finally, to ensure the quality of the dataset, a subsequent round of human evaluation with an option to re-annotate is conducted.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
Disfl-QA dataset is licensed under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/).
### Citation Information
```
@inproceedings{gupta-etal-2021-disflqa,
title = "{Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering}",
author = "Gupta, Aditya and Xu, Jiacheng and Upadhyay, Shyam and Yang, Diyi and Faruqui, Manaal",
booktitle = "Findings of ACL",
year = "2021"
}
```
### Contributions
Thanks to [@bhavitvyamalik](https://github.com/bhavitvyamalik) for adding this dataset. |