File size: 12,759 Bytes
aae87bb 2be0214 aae87bb 2be0214 04b35e5 aae87bb 2bedb52 aae87bb 5e666e8 a4842f7 f4c897e a808f4e 94f3e06 512f1d1 94f3e06 512f1d1 94f3e06 512f1d1 94f3e06 aae87bb a4842f7 aae87bb a4842f7 aae87bb 1b5f77d aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 aae87bb 5e666e8 1b5f77d a808f4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- n<1K
source_datasets:
- original
task_categories:
- other
- text-generation
- fill-mask
- token-classification
task_ids:
- dialogue-modeling
- parsing
paperswithcode_id: coached-conversational-preference-elicitation
pretty_name: Coached Conversational Preference Elicitation
tags:
- Conversational Recommendation
dataset_info:
features:
- name: conversationId
dtype: string
- name: utterances
sequence:
- name: index
dtype: int32
- name: speaker
dtype:
class_label:
names:
'0': USER
'1': ASSISTANT
- name: text
dtype: string
- name: segments
sequence:
- name: startIndex
dtype: int32
- name: endIndex
dtype: int32
- name: text
dtype: string
- name: annotations
sequence:
- name: annotationType
dtype:
class_label:
names:
'0': ENTITY_NAME
'1': ENTITY_PREFERENCE
'2': ENTITY_DESCRIPTION
'3': ENTITY_OTHER
- name: entityType
dtype:
class_label:
names:
'0': MOVIE_GENRE_OR_CATEGORY
'1': MOVIE_OR_SERIES
'2': PERSON
'3': SOMETHING_ELSE
config_name: coached_conv_pref
splits:
- name: train
num_bytes: 2295579
num_examples: 502
download_size: 5191959
dataset_size: 2295579
---
# Dataset Card for Coached Conversational Preference Elicitation
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Coached Conversational Preference Elicitation Homepage](https://research.google/tools/datasets/coached-conversational-preference-elicitation/)
- **Repository:** [Coached Conversational Preference Elicitation Repository](https://github.com/google-research-datasets/ccpe)
- **Paper:** [Aclweb](https://www.aclweb.org/anthology/W19-5941/)
### Dataset Summary
A dataset consisting of 502 English dialogs with 12,000 annotated utterances between a user and an assistant discussing movie preferences in natural language. It was collected using a Wizard-of-Oz methodology between two paid crowd-workers, where one worker plays the role of an 'assistant', while the other plays the role of a 'user'. The 'assistant' elicits the 'user’s' preferences about movies following a Coached Conversational Preference Elicitation (CCPE) method. The assistant asks questions designed to minimize the bias in the terminology the 'user' employs to convey his or her preferences as much as possible, and to obtain these preferences in natural language. Each dialog is annotated with entity mentions, preferences expressed about entities, descriptions of entities provided, and other statements of entities.
### Supported Tasks and Leaderboards
* `other-other-Conversational Recommendation`: The dataset can be used to train a model for Conversational recommendation, which consists in Coached Conversation Preference Elicitation.
### Languages
The text in the dataset is in English. The associated BCP-47 code is `en`.
## Dataset Structure
### Data Instances
A typical data point comprises of a series of utterances between the 'assistant' and the 'user'. Each such utterance is annotated into categories mentioned in data fields.
An example from the Coached Conversational Preference Elicitation dataset looks as follows:
```
{'conversationId': 'CCPE-6faee',
'utterances': {'index': [0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15],
'segments': [{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [0], 'entityType': [0]},
{'annotationType': [1], 'entityType': [0]}],
'endIndex': [20, 27],
'startIndex': [14, 0],
'text': ['comedy', 'I really like comedy movies']},
{'annotations': [{'annotationType': [0], 'entityType': [0]}],
'endIndex': [24],
'startIndex': [16],
'text': ['comedies']},
{'annotations': [{'annotationType': [1], 'entityType': [0]}],
'endIndex': [15],
'startIndex': [0],
'text': ['I love to laugh']},
{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [0], 'entityType': [1]},
{'annotationType': [1], 'entityType': [1]}],
'endIndex': [21, 21],
'startIndex': [8, 0],
'text': ['Step Brothers', 'I liked Step Brothers']},
{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [1], 'entityType': [1]}],
'endIndex': [32],
'startIndex': [0],
'text': ['Had some amazing one-liners that']},
{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [0], 'entityType': [1]},
{'annotationType': [1], 'entityType': [1]}],
'endIndex': [15, 15],
'startIndex': [13, 0],
'text': ['RV', "I don't like RV"]},
{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [1], 'entityType': [1]},
{'annotationType': [1], 'entityType': [1]}],
'endIndex': [48, 66],
'startIndex': [18, 50],
'text': ['It was just so slow and boring', "I didn't like it"]},
{'annotations': [{'annotationType': [0], 'entityType': [1]}],
'endIndex': [63],
'startIndex': [33],
'text': ['Jurassic World: Fallen Kingdom']},
{'annotations': [{'annotationType': [0], 'entityType': [1]},
{'annotationType': [3], 'entityType': [1]}],
'endIndex': [52, 52],
'startIndex': [22, 0],
'text': ['Jurassic World: Fallen Kingdom',
'I have seen the movie Jurassic World: Fallen Kingdom']},
{'annotations': [{'annotationType': [], 'entityType': []}],
'endIndex': [0],
'startIndex': [0],
'text': ['']},
{'annotations': [{'annotationType': [1], 'entityType': [1]},
{'annotationType': [1], 'entityType': [1]},
{'annotationType': [1], 'entityType': [1]}],
'endIndex': [24, 125, 161],
'startIndex': [0, 95, 135],
'text': ['I really like the actors',
'I just really like the scenery',
'the dinosaurs were awesome']}],
'speaker': [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0],
'text': ['What kinds of movies do you like?',
'I really like comedy movies.',
'Why do you like comedies?',
"I love to laugh and comedy movies, that's their whole purpose. Make you laugh.",
'Alright, how about a movie you liked?',
'I liked Step Brothers.',
'Why did you like that movie?',
'Had some amazing one-liners that still get used today even though the movie was made awhile ago.',
'Well, is there a movie you did not like?',
"I don't like RV.",
'Why not?',
"And I just didn't It was just so slow and boring. I didn't like it.",
'Ok, then have you seen the movie Jurassic World: Fallen Kingdom',
'I have seen the movie Jurassic World: Fallen Kingdom.',
'What is it about these kinds of movies that you like or dislike?',
'I really like the actors. I feel like they were doing their best to make the movie better. And I just really like the scenery, and the the dinosaurs were awesome.']}}
```
### Data Fields
Each conversation has the following fields:
* `conversationId`: A unique random ID for the conversation. The ID has no meaning.
* `utterances`: An array of utterances by the workers.
Each utterance has the following fields:
* `index`: A 0-based index indicating the order of the utterances in the conversation.
* `speaker`: Either USER or ASSISTANT, indicating which role generated this utterance.
* `text`: The raw text as written by the ASSISTANT, or transcribed from the spoken recording of USER.
* `segments`: An array of semantic annotations of spans in the text.
Each semantic annotation segment has the following fields:
* `startIndex`: The position of the start of the annotation in the utterance text.
* `endIndex`: The position of the end of the annotation in the utterance text.
* `text`: The raw text that has been annotated.
* `annotations`: An array of annotation details for this segment.
Each annotation has two fields:
* `annotationType`: The class of annotation (see ontology below).
* `entityType`: The class of the entity to which the text refers (see ontology below).
**EXPLANATION OF ONTOLOGY**
In the corpus, preferences and the entities that these preferences refer to are annotated with an annotation type as well as an entity type.
Annotation types fall into four categories:
* `ENTITY_NAME` (0): These mark the names of relevant entities mentioned.
* `ENTITY_PREFERENCE` (1): These are defined as statements indicating that the dialog participant does or does not like the relevant entity in general, or that they do or do not like some aspect of the entity. This may also be thought of the participant having some sentiment about what is being discussed.
* `ENTITY_DESCRIPTION` (2): Neutral descriptions that describe an entity but do not convey an explicit liking or disliking.
* `ENTITY_OTHER` (3): Other relevant statements about an entity that convey relevant information of how the participant relates to the entity but do not provide a sentiment. Most often, these relate to whether a participant has seen a particular movie, or knows a lot about a given entity.
Entity types are marked as belonging to one of four categories:
* `MOVIE_GENRE_OR_CATEGORY` (0): For genres or general descriptions that capture a particular type or style of movie.
* `MOVIE_OR_SERIES` (1): For the full or partial name of a movie or series of movies.
* `PERSON` (2): For the full or partial name of an actual person.
* `SOMETHING_ELSE ` (3): For other important proper nouns, such as the names of characters or locations.
### Data Splits
There is a single split of the dataset named 'train' which contains the whole datset.
| | Train |
| ------------------- | ----- |
| Input Conversations | 502 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[Creative Commons Attribution 4.0 License](https://creativecommons.org/licenses/by/4.0/)
### Citation Information
```
@inproceedings{radlinski-etal-2019-ccpe,
title = {Coached Conversational Preference Elicitation: A Case Study in Understanding Movie Preferences},
author = {Filip Radlinski and Krisztian Balog and Bill Byrne and Karthik Krishnamoorthi},
booktitle = {Proceedings of the Annual Meeting of the Special Interest Group on Discourse and Dialogue ({SIGDIAL})},
year = 2019
}
```
### Contributions
Thanks to [@vineeths96](https://github.com/vineeths96) for adding this dataset. |