import json import os import datasets from datasets.tasks import ImageClassification logger = datasets.logging.get_logger(__name__) _CITATION = """""" _DESCRIPTION = """\ Ornithoscope dataset is the dataset used to train the model for the Ornithoscope project. """ _HOMEPAGE = "" _FOLDERS = [ 'iNatv1', 'iNatv2', 'PhotoFeederv1/task_05-01-2021', ] class OrnithoscopeConfig(datasets.BuilderConfig): """BuilderConfig for Ornithoscope.""" def __init__( self, classes: list[str], train_json: str, validation_json: str, test_json: str, **kwargs ): """BuilderConfig for Ornithoscope. Args: classes: list of classes. train_json: path to the json file containing the train annotations. validation_json: path to the json file containing the validation annotations. test_json: path to the json file containing the test annotations. **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.classes = classes self.train_json = train_json self.validation_json = validation_json self.test_json = test_json class Ornithoscope(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ OrnithoscopeConfig( name="DS3", description="The main dataset.", classes=[], # TODO train_json="sets/DS3_train.json", validation_json="sets/DS3_val.json", test_json="sets/DS3_test.json", ), ] def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "label": datasets.ClassLabel(names=self.config.classes), } ), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification( image_column="image", label_column="label", )], ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]: """Returns SplitGenerators.""" archives = self._get_archives(dl_manager) # Get train paths. train_json = json.load( open(dl_manager.download_and_extract(self.config.train_json), 'r')) train_vals = [] for id_path, value in train_json.items(): root, file = os.path.split(id_path) path = os.path.join(archives[root], file) val = { "id_path": id_path, "path": path, "boxes": value['boxes'], "size": value['size'], } train_vals.append(val) # Get validation paths. validation_json = json.load( open(dl_manager.download_and_extract(self.config.validation_json), 'r')) validation_vals = [] for id_path, value in validation_json.items(): root, file = os.path.split(id_path) path = os.path.join(archives[root], file) val = { "id_path": id_path, "path": path, "boxes": value['boxes'], "size": value['size'], } validation_vals.append(val) # Get test paths. test_json = json.load( open(dl_manager.download_and_extract(self.config.test_json), 'r')) test_vals = [] for id_path, value in test_json.item(): root, file = os.path.split(id_path) path = os.path.join(archives[root], file) val = { "id_path": id_path, "path": path, "boxes": value['boxes'], "size": value['size'], } return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "values": train_vals, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "values": validation_vals, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "values": test_vals, }, ), ] def _generate_examples(self, values: list) -> tuple: """Yields examples.""" idx = 0 for val in values: example = { "id_path": val["id_path"], "path": val["path"], "boxes": val["boxes"], "size": val["size"], } yield idx, example idx += 1 def _get_archives(self, dl_manager: datasets.DownloadManager) -> dict: """Get the archives containing the images.""" archives = {} for folder in _FOLDERS: i = 0 while True: try: archives[folder] = dl_manager.download_and_extract( f'data/{folder}.tar' ) i += 1 except: break return archives