ornithoscope / ornithoscope.py
gdamms's picture
first commit
31ea808
raw
history blame
5.33 kB
import json
import os
import datasets
from datasets.tasks import ImageClassification
logger = datasets.logging.get_logger(__name__)
_CITATION = """"""
_DESCRIPTION = """\
Ornithoscope dataset is the dataset used to train the model for the Ornithoscope project.
"""
_HOMEPAGE = ""
_FOLDERS = [
'iNatv1',
'iNatv2',
'PhotoFeederv1/task_05-01-2021',
]
class OrnithoscopeConfig(datasets.BuilderConfig):
"""BuilderConfig for Ornithoscope."""
def __init__(
self,
classes: list[str],
train_json: str,
validation_json: str,
test_json: str,
**kwargs
):
"""BuilderConfig for Ornithoscope.
Args:
classes: list of classes.
train_json: path to the json file containing the train annotations.
validation_json: path to the json file containing the validation annotations.
test_json: path to the json file containing the test annotations.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.classes = classes
class Ornithoscope(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
OrnithoscopeConfig(
name="DS3",
description="The main dataset.",
classes=[], # TODO
train_json="sets/DS3_train.json",
validation_json="sets/DS3_val.json",
test_json="sets/DS3_test.json",
),
]
def _info(self) -> datasets.DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.ClassLabel(names=self.config.classes),
}
),
homepage=_HOMEPAGE,
citation=_CITATION,
task_templates=[ImageClassification(
image_column="image",
label_column="label",
)],
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
archives = self._get_archives(dl_manager)
# Get train paths.
train_json = json.load(
open(dl_manager.download_and_extract(self.config.train_json), 'r'))
train_vals = []
for id_path, value in train_json.items():
root, file = os.path.split(id_path)
path = os.path.join(archives[root], file)
val = {
"id_path": id_path,
"path": path,
"boxes": value['boxes'],
"size": value['size'],
}
train_vals.append(val)
# Get validation paths.
validation_json = json.load(
open(dl_manager.download_and_extract(self.config.validation_json), 'r'))
validation_vals = []
for id_path, value in validation_json.items():
root, file = os.path.split(id_path)
path = os.path.join(archives[root], file)
val = {
"id_path": id_path,
"path": path,
"boxes": value['boxes'],
"size": value['size'],
}
validation_vals.append(val)
# Get test paths.
test_json = json.load(
open(dl_manager.download_and_extract(self.config.test_json), 'r'))
test_vals = []
for id_path, value in test_json.item():
root, file = os.path.split(id_path)
path = os.path.join(archives[root], file)
val = {
"id_path": id_path,
"path": path,
"boxes": value['boxes'],
"size": value['size'],
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"values": train_vals,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"values": validation_vals,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"values": test_vals,
},
),
]
def _generate_examples(self, values: list) -> tuple:
"""Yields examples."""
idx = 0
for val in values:
example = {
"id_path": val["id_path"],
"path": val["path"],
"boxes": val["boxes"],
"size": val["size"],
}
yield idx, example
idx += 1
def _get_archives(self, dl_manager: datasets.DownloadManager) -> dict:
"""Get the archives containing the images."""
archives = {}
for folder in _FOLDERS:
i = 0
while True:
try:
archives[folder] = dl_manager.download_and_extract(
f'data/{folder}.tar'
)
i += 1
except:
break
return archives