File size: 8,560 Bytes
31ea808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9830498
 
 
 
 
 
 
 
 
 
 
 
 
31ea808
83d0eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495523f
 
 
31ea808
 
 
 
14aae6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea808
 
 
14aae6f
 
 
 
 
 
 
31ea808
 
 
 
 
0bac591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ea808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
000853c
31ea808
 
 
 
 
 
 
 
6fc135c
31ea808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336cfb9
 
 
31ea808
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import json
import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """"""

_DESCRIPTION = """\
Ornithoscope dataset is the dataset used to train the model for the Ornithoscope project.
"""

_HOMEPAGE = ""

_FOLDERS = [
    'iNatv1',
    'iNatv2/10069',
    'iNatv2/13851',
    'iNatv2/145303',
    'iNatv2/14850',
    'iNatv2/17871',
    'iNatv2/18911',
    'iNatv2/204496',
    'iNatv2/3017',
    'iNatv2/7278',
    'iNatv2/792985',
    'iNatv2/8088',
    'iNatv2/9398',
    'iNatv2/9801',
    'PhotoFeederv1/task_05-01-2021',
    'PhotoFeederv1/task_06-01-2021',
    'PhotoFeederv1/task_18-01-2021',
    'PhotoFeederv1/task_19-01-2021',
    'PhotoFeederv1/task_20210205',
    'PhotoFeederv1/task_20210217',
    'PhotoFeederv1/task_20210227',
    'PhotoFeederv1/task_20210228',
    'PhotoFeederv1/task_2021-03-01_07',
    'PhotoFeederv1/task_2021-03-01_08',
    'PhotoFeederv1/task_2021-03-01_09',
    'PhotoFeederv1/task_2021-03-01_10',
    'PhotoFeederv1/task_2021-03-01_11',
    'PhotoFeederv1/task_2021-03-01_12',
    'PhotoFeederv1/task_2021-03-01_13',
    'PhotoFeederv1/task_2021-03-01_14',
    'PhotoFeederv1/task_2021-03-01_15',
    'PhotoFeederv1/task_2021-03-01_16',
    'PhotoFeederv1/task_2021-03-01_17',
    'PhotoFeederv1/task_2021-03-01_18',
    'PhotoFeederv1/task_20210409',
    'PhotoFeederv1/task_20210411',
    'PhotoFeederv1/task_20210412',
    'PhotoFeederv1/task_20210413_UPS',
    'PhotoFeederv1/task_20210414',
    'PhotoFeederv1/task_20210415_UPS',
    'PhotoFeederv1/task_20210416_UPS',
    'PhotoFeederv1/task_20210417_UPS',
    'PhotoFeederv1/task_20210418_UPS',
    'PhotoFeederv1/task_20210419_UPS',
    'PhotoFeederv1/task_20210420',
    'PhotoFeederv1/task_20210523_UPS',
    'PhotoFeederv1/task_20210525_UPS',
    'PhotoFeederv1/task_20210526_UPS',
    'PhotoFeederv1/task_20210611_Lab',
    'PhotoFeederv1/task_20210612_1_Lab',
    'PhotoFeederv1/task_20210615_Lab',
    'PhotoFeederv1/task_20210616_Lab',
    'PhotoFeederv1/task_20210623_balacet',
    'PhotoFeederv1/task_20210624_balacet',
    'PhotoFeederv1/task_20210625_balacet',
    'PhotoFeederv1/task_20210705-07_balacet',
    'PhotoFeederv1/task_20211008_Moulis',
    'PhotoFeederv1/task_2021_11_03-04_cescau4',
    'PhotoFeederv1/task_20211109_cescau1',
    'PhotoFeederv1/task_20211204_Orlu',
    'PhotoFeederv1/task_21-01-2021',
    'PhotoFeederv1/task_berggris_dordogne',
    'PhotoFeederv1/task_berggris',
    'PhotoFeederv1/task_MOIDOM_ODJ',
    'PhotoFeederv2/Balacet_session1',
    'PhotoFeederv2/Balacet_session4',
    'PhotoFeederv2/C1_session1',
    'PhotoFeederv2/C1_session3',
    'PhotoFeederv2/C1_session4',
    'PhotoFeederv2/C4_session1',
    'PhotoFeederv2/C4_session4',
    'PhotoFeederv2/Francon_session1',
    'PhotoFeederv2/Francon_session4',
    'PhotoFeederv2/Montpellier_session1',
    'PhotoFeederv2/Montpellier_session4',
    'PhotoFeederv2/Moulis_session4',
    'PhotoFeederv2/Orlu_session4',
]


class OrnithoscopeConfig(datasets.BuilderConfig):
    """BuilderConfig for Ornithoscope."""

    def __init__(
        self,
        train_json: str,
        validation_json: str,
        test_json: str,
        **kwargs
    ):
        """BuilderConfig for Ornithoscope.

        Args:
            train_json: path to the json file containing the train annotations.
            validation_json: path to the json file containing the validation annotations.
            test_json: path to the json file containing the test annotations.
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.train_json = train_json
        self.validation_json = validation_json
        self.test_json = test_json


class Ornithoscope(datasets.GeneratorBasedBuilder):

    NAMES = [
        'DS1',
        'DS2',
        'DS3',
        'DS4',
        'DS5',
        'DS6',
        'DS7',
        'DS8',
        'DS9.0',
        'DS9.1',
        'DS9.2',
        'DS9.3',
        'DS9.4',
        'DS9.5',
    ]
    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIGS = [
        OrnithoscopeConfig(
            name=name,
            description=f'{name} ornithoscope dataset.',
            train_json=f'sets/{name}_train.json',
            validation_json=f'sets/{name}_val.json',
            test_json=f'sets/{name}_test.json',
        )
        for name in NAMES
    ]

    def _info(self) -> datasets.DatasetInfo:
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            # features=datasets.Features(
            #     {
            #         "id_path": datasets.Value("string"),
            #         "path": datasets.Value("string"),
            #         "boxes": datasets.Sequence(
            #             {
            #                 "label": datasets.Value("string"),
            #                 "xmin": datasets.Value("float32"),
            #                 "xmax": datasets.Value("float32"),
            #                 "ymin": datasets.Value("float32"),
            #                 "ymax": datasets.Value("float32"),
            #             }
            #         ),
            #         "size": {
            #             "width": datasets.Value("int32"),
            #             "height": datasets.Value("int32"),
            #         },
            #     },
            # ),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> list[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        archives = self._get_archives(dl_manager)

        # Get train paths.
        train_json = json.load(
            open(dl_manager.download_and_extract(self.config.train_json), 'r'))
        train_vals = []
        for id_path, value in train_json.items():
            root, file = os.path.split(id_path)
            path = os.path.join(archives[root], file)
            val = {
                "id_path": id_path,
                "path": path,
                "boxes": value['boxes'],
                "size": value['size'],
            }
            train_vals.append(val)

        # Get validation paths.
        validation_json = json.load(
            open(dl_manager.download_and_extract(self.config.validation_json), 'r'))
        validation_vals = []
        for id_path, value in validation_json.items():
            root, file = os.path.split(id_path)
            path = os.path.join(archives[root], file)
            val = {
                "id_path": id_path,
                "path": path,
                "boxes": value['boxes'],
                "size": value['size'],
            }
            validation_vals.append(val)

        # Get test paths.
        test_json = json.load(
            open(dl_manager.download_and_extract(self.config.test_json), 'r'))
        test_vals = []
        for id_path, value in test_json.items():
            root, file = os.path.split(id_path)
            path = os.path.join(archives[root], file)
            val = {
                "id_path": id_path,
                "path": path,
                "boxes": value['boxes'],
                "size": value['size'],
            }
            test_vals.append(val)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "values": train_vals,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "values": validation_vals,
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "values": test_vals,
                },
            ),
        ]

    def _generate_examples(self, values: list) -> tuple:
        """Yields examples."""
        idx = 0
        for val in values:
            example = {
                "id_path": val["id_path"],
                "path": val["path"],
                "boxes": val["boxes"],
                "size": val["size"],
            }
            yield idx, example
            idx += 1

    def _get_archives(self, dl_manager: datasets.DownloadManager) -> dict:
        """Get the archives containing the images."""
        archives = {}
        for folder in _FOLDERS:
            archives[folder] = dl_manager.download_and_extract(
                f'data/{folder}.tar'
            )
        return archives