File size: 4,668 Bytes
f451243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b666c
 
f451243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b666c
 
 
 
 
 
 
 
 
 
 
 
f451243
 
 
 
 
 
 
 
 
 
 
 
 
e2b666c
 
 
 
 
 
f451243
 
 
 
 
 
 
 
 
57fcc79
f451243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2b666c
f451243
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import json
import datasets

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
TODO
"""

_HOMEPAGE = ""

_DESCRIPTION = """\
Text To Image Evaluation (TeTIm-Eval)
"""

_URLS = {
    "mini": "https://huggingface.co./datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval-Mini.zip",
    "full": "https://huggingface.co./datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval.zip"
}

_CATEGORIES = [
    "digital_art",
    "sketch_art",
    "traditional_art",
    "baroque_painting",
    "high_renaissance_painting",
    "neoclassical_painting",
    "animal_photo",
    "food_photo",
    "landscape_photo",
    "person_photo"
]


_FOLDERS = {
    "mini": {
        _CATEGORIES[0]: "TeTIm-Eval-Mini/sampled_art_digital",
        _CATEGORIES[1]: "TeTIm-Eval-Mini/sampled_art_sketch",
        _CATEGORIES[2]: "TeTIm-Eval-Mini/sampled_art_traditional",
        _CATEGORIES[3]: "TeTIm-Eval-Mini/sampled_painting_baroque",
        _CATEGORIES[4]: "TeTIm-Eval-Mini/sampled_painting_high-renaissance",
        _CATEGORIES[5]: "TeTIm-Eval-Mini/sampled_painting_neoclassicism",
        _CATEGORIES[6]: "TeTIm-Eval-Mini/sampled_photo_animal",
        _CATEGORIES[7]: "TeTIm-Eval-Mini/sampled_photo_food",
        _CATEGORIES[8]: "TeTIm-Eval-Mini/sampled_photo_landscape",
        _CATEGORIES[9]: "TeTIm-Eval-Mini/sampled_photo_person",
    },
    "full": {
        _CATEGORIES[0]: "TeTIm-Eval/sampled_art_digital",
        _CATEGORIES[1]: "TeTIm-Eval/sampled_art_sketch",
        _CATEGORIES[2]: "TeTIm-Eval/sampled_art_traditional",
        _CATEGORIES[3]: "TeTIm-Eval/sampled_painting_baroque",
        _CATEGORIES[4]: "TeTIm-Eval/sampled_painting_high-renaissance",
        _CATEGORIES[5]: "TeTIm-Eval/sampled_painting_neoclassicism",
        _CATEGORIES[6]: "TeTIm-Eval/sampled_photo_animal",
        _CATEGORIES[7]: "TeTIm-Eval/sampled_photo_food",
        _CATEGORIES[8]: "TeTIm-Eval/sampled_photo_landscape",
        _CATEGORIES[9]: "TeTIm-Eval/sampled_photo_person",
    }
}

class TeTImConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(TeTImConfig, self).__init__(**kwargs)


class TeTIm(datasets.GeneratorBasedBuilder):
    BUILDER_CONFIGS = [
        TeTImConfig(
            name="mini",
            version=datasets.Version("1.0.0", ""),
            description="A random sampling of 300 text-images pairs (30 per category) from the TeTIm dataset, manually annotated by the same person",
        ),
        TeTImConfig(
            name="full",
            version=datasets.Version("1.0.0", ""),
            description="2500 labelled images (250 per category) from the TeTIm dataset",
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("int32"),
                    "image": datasets.Image(),
                    "caption": datasets.Value("string"),
                    "category": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        target = os.environ.get(f"TETIMEVAL_{self.config.name}", _URLS[self.config.name])
        downloaded_files = dl_manager.download_and_extract(target)

        return [
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"path": downloaded_files}),
        ]

    
    def _generate_examples(self, path):
        id = 0
        for category, folder in _FOLDERS[self.config.name].items():
            images_folder = os.path.join(path, folder, "images")
            annotations_folder = os.path.join(path, folder, "annotations")

            for image in os.listdir(images_folder):
                image_id = int(image.split(".")[0])
                annotation_file = os.path.join(annotations_folder, f"{image_id}.json")
                with open(annotation_file) as f:
                    annotation = json.load(f)
                
                yield id, {
                    "id": id,
                    "image": os.path.join(images_folder, image),
                    "caption": annotation["caption"],
                    "category": category
                }
                id += 1


if __name__ == "__main__":
    from datasets import load_dataset
    dataset_config = {
        "LOADING_SCRIPT_FILES": os.path.join(os.getcwd(), "TeTIm-Eval.py"),
        "CONFIG_NAME": "full",
    }
    ds = load_dataset(
        dataset_config["LOADING_SCRIPT_FILES"],
        dataset_config["CONFIG_NAME"],
    )
    print(ds)