Datasets:
File size: 4,668 Bytes
f451243 e2b666c f451243 e2b666c f451243 e2b666c f451243 57fcc79 f451243 e2b666c f451243 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import os
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
TODO
"""
_HOMEPAGE = ""
_DESCRIPTION = """\
Text To Image Evaluation (TeTIm-Eval)
"""
_URLS = {
"mini": "https://huggingface.co./datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval-Mini.zip",
"full": "https://huggingface.co./datasets/galatolo/TeTIm-Eval/resolve/main/data/TeTIm-Eval.zip"
}
_CATEGORIES = [
"digital_art",
"sketch_art",
"traditional_art",
"baroque_painting",
"high_renaissance_painting",
"neoclassical_painting",
"animal_photo",
"food_photo",
"landscape_photo",
"person_photo"
]
_FOLDERS = {
"mini": {
_CATEGORIES[0]: "TeTIm-Eval-Mini/sampled_art_digital",
_CATEGORIES[1]: "TeTIm-Eval-Mini/sampled_art_sketch",
_CATEGORIES[2]: "TeTIm-Eval-Mini/sampled_art_traditional",
_CATEGORIES[3]: "TeTIm-Eval-Mini/sampled_painting_baroque",
_CATEGORIES[4]: "TeTIm-Eval-Mini/sampled_painting_high-renaissance",
_CATEGORIES[5]: "TeTIm-Eval-Mini/sampled_painting_neoclassicism",
_CATEGORIES[6]: "TeTIm-Eval-Mini/sampled_photo_animal",
_CATEGORIES[7]: "TeTIm-Eval-Mini/sampled_photo_food",
_CATEGORIES[8]: "TeTIm-Eval-Mini/sampled_photo_landscape",
_CATEGORIES[9]: "TeTIm-Eval-Mini/sampled_photo_person",
},
"full": {
_CATEGORIES[0]: "TeTIm-Eval/sampled_art_digital",
_CATEGORIES[1]: "TeTIm-Eval/sampled_art_sketch",
_CATEGORIES[2]: "TeTIm-Eval/sampled_art_traditional",
_CATEGORIES[3]: "TeTIm-Eval/sampled_painting_baroque",
_CATEGORIES[4]: "TeTIm-Eval/sampled_painting_high-renaissance",
_CATEGORIES[5]: "TeTIm-Eval/sampled_painting_neoclassicism",
_CATEGORIES[6]: "TeTIm-Eval/sampled_photo_animal",
_CATEGORIES[7]: "TeTIm-Eval/sampled_photo_food",
_CATEGORIES[8]: "TeTIm-Eval/sampled_photo_landscape",
_CATEGORIES[9]: "TeTIm-Eval/sampled_photo_person",
}
}
class TeTImConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(TeTImConfig, self).__init__(**kwargs)
class TeTIm(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
TeTImConfig(
name="mini",
version=datasets.Version("1.0.0", ""),
description="A random sampling of 300 text-images pairs (30 per category) from the TeTIm dataset, manually annotated by the same person",
),
TeTImConfig(
name="full",
version=datasets.Version("1.0.0", ""),
description="2500 labelled images (250 per category) from the TeTIm dataset",
),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("int32"),
"image": datasets.Image(),
"caption": datasets.Value("string"),
"category": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
target = os.environ.get(f"TETIMEVAL_{self.config.name}", _URLS[self.config.name])
downloaded_files = dl_manager.download_and_extract(target)
return [
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"path": downloaded_files}),
]
def _generate_examples(self, path):
id = 0
for category, folder in _FOLDERS[self.config.name].items():
images_folder = os.path.join(path, folder, "images")
annotations_folder = os.path.join(path, folder, "annotations")
for image in os.listdir(images_folder):
image_id = int(image.split(".")[0])
annotation_file = os.path.join(annotations_folder, f"{image_id}.json")
with open(annotation_file) as f:
annotation = json.load(f)
yield id, {
"id": id,
"image": os.path.join(images_folder, image),
"caption": annotation["caption"],
"category": category
}
id += 1
if __name__ == "__main__":
from datasets import load_dataset
dataset_config = {
"LOADING_SCRIPT_FILES": os.path.join(os.getcwd(), "TeTIm-Eval.py"),
"CONFIG_NAME": "full",
}
ds = load_dataset(
dataset_config["LOADING_SCRIPT_FILES"],
dataset_config["CONFIG_NAME"],
)
print(ds) |