foxy-steve commited on
Commit
0e7c275
·
1 Parent(s): d797905

Update README.md hoping to comply with Datasheet standard

Browse files

Need to add the other datasets, but it would be good if I could generate this instance of writing it manually.

Files changed (1) hide show
  1. README.md +164 -3
README.md CHANGED
@@ -23,10 +23,171 @@ task_categories:
23
  - time-series-forecasting
24
  language:
25
  - en
26
- pretty_name: Appliannces Energy Regression Dataset
27
  size_categories:
28
  - 10K<n<100K
29
  ---
30
- # Dataset Card for "tser-appliances-energy"
31
 
32
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  - time-series-forecasting
24
  language:
25
  - en
26
+ pretty_name: Appliances Energy Regression Dataset
27
  size_categories:
28
  - 10K<n<100K
29
  ---
 
30
 
31
+ # Dataset Card for Time Series Extrinsic Regression
32
+
33
+ ## Dataset Description
34
+
35
+ - **Homepage:** [Time Series Extrinsic Regression Repository](http://tseregression.org/)
36
+ - **Repository:** [GitHub code repository](https://github.com/ChangWeiTan/TS-Extrinsic-Regression/tree/master), [Raw data repository](https://zenodo.org/record/3902651)
37
+ - **Paper:** [Monash University, UEA, UCR Time Series Extrinsic Regression Archive](https://arxiv.org/abs/2006.10996)
38
+ - **Leaderboard:** [Baseline results](http://tseregression.org/#results)
39
+ - **Point of Contact:** [Stephen Fox]([email protected])
40
+
41
+ ### Dataset Summary
42
+
43
+ A collection of datasets from Monash, UEA, and UCR supporting research into Time Series Extrinsic Regression (TSER),
44
+ a regression task of which the aim is to learn the relationship between *a time series and a continuous scalar variable*.
45
+ This task is closely related to time series classification, where a single categorical variable is learned.
46
+ Please read the [paper](https://arxiv.org/abs/2006.10996) for more.
47
+
48
+ If you use the results or code, please cite the paper
49
+ **"Chang Wei Tan, Christoph Bergmeir, Francois Petitjean, Geoffrey I. Webb, Time Series Extrinsic Regression: Predicting numeric values from time series data"**.
50
+ (Full BibTex citation can be found at the end of this card).
51
+
52
+ (It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).)
53
+
54
+ ### Supported Tasks and Leaderboards
55
+
56
+ [More Information Needed]
57
+
58
+ ### Languages
59
+
60
+ ## Dataset Structure
61
+
62
+ ### Data Instances
63
+
64
+ A sample from the training set of Appliances Energy (a multivariate time series dataset) is provided.
65
+ The following is a single record from that dataset:
66
+
67
+ ```python
68
+ {'start': Timestamp('2016-02-28 17:00:00'),
69
+ 'feat_static_cat': 0,
70
+ 'to_predict': 19.38,
71
+ 'timeseries': array([[21.29 , 21.29 , 21.29 , ..., 21.79 ,
72
+ 21.79 , 21.79 ],
73
+ [31.66666667, 31.92666667, 32.06 , ..., 33.66 ,
74
+ 33.7 , 33.56666667],
75
+ [19.89 , 19.82333333, 19.79 , ..., 19.79 ,
76
+ 19.79 , 19.79 ],
77
+ ...,
78
+ [ 7. , 6.83333333, 6.66666667, ..., 5. ,
79
+ 5. , 5. ],
80
+ [40. , 40. , 40. , ..., 40. ,
81
+ 40. , 40. ],
82
+ [-4.2 , -4.16666667, -4.13333333, ..., -4.3 ,
83
+ -4.16666667, -4.03333333]]),
84
+ 'item_id': 'item_000'}
85
+ ```
86
+
87
+ ### Data Fields
88
+ This format was loosely adapted from [the Gluon format](https://ts.gluon.ai/stable/getting_started/concepts.html)
89
+ and [the HF convention](https://github.com/huggingface/notebooks/blob/main/examples/time_series_datasets.ipynb)
90
+ also seen in the recent [series](https://huggingface.co/blog/time-series-transformers) of [Time Series Transformer notebooks](https://github.com/huggingface/notebooks/blob/main/examples/time-series-transformers.ipynb)
91
+
92
+ - `start`: a datetime of the first entry of each time series in the data record
93
+ - `feat_static_cat`: the original identifier given to this record
94
+ - `timeseries`: the timeseries itself
95
+ - `to_predict`: continuous variable to predict
96
+ - `item_id`: an identifier given to each record (for e.g. group-by style aggregations)
97
+
98
+ The `timeseries` field will be a single array in the univariate forecasting scenario, and a 2-D array in the multivariate scenario.
99
+
100
+ The `to_predict` will be a single number in most cases, or an array in a few instances (noted in the table above **TODO**).
101
+
102
+ ### Data Splits
103
+
104
+ Train and test are temporally split (i.e. "train" is the past and "test" is the future) 70/30 whenever possible, though some datasets have more particular splits.
105
+
106
+ For details, see [the paper](https://arxiv.org/abs/2006.10996) and the particular dataset you are interested in. In our porting to HF Hub, we made as few changes as possible.
107
+
108
+
109
+ ## Dataset Creation
110
+
111
+ While I (Stephen) did not create the original dataset, I took the initiative to put the data on Hugging Face Hub.
112
+ **Any grievances with the dataset should first and foremost be directed to me**.
113
+
114
+ ### Curation Rationale
115
+
116
+ To facilitate the evaluation of global forecasting models that are predicting a single-point estimate in the future.
117
+ All datasets in the repository are intended for research purposes and to evaluate the performance of new TSER algorithms.
118
+ This
119
+
120
+ ### Source Data
121
+
122
+ #### Initial Data Collection and Normalization
123
+
124
+ The origins of each dataset are articulated in [the paper](https://link.springer.com/article/10.1007/s10618-021-00745-9).
125
+
126
+ Minimal preprocess was applied to the dataset, as they are still in their `sktime`-compatible `.ts` format. (As far as Stephen is aware.)
127
+
128
+ #### Who are the source language producers?
129
+
130
+ The data comes from the datasets listed in the paper and in the table on [the website](http://tseregression.org/#results)
131
+
132
+ ### Annotations
133
+
134
+ #### Annotation process
135
+
136
+ Please see [the paper](https://link.springer.com/article/10.1007/s10618-021-00745-9) for the annotation aggregation propcess
137
+
138
+ #### Who are the annotators?
139
+
140
+ The annotation comes from the datasets listed in the paper and in the table on [the website](http://tseregression.org/#results)
141
+
142
+ ### Personal and Sensitive Information
143
+
144
+ [More Information Needed]
145
+
146
+ ## Considerations for Using the Data
147
+
148
+ ### Social Impact of Dataset
149
+
150
+ [More Information Needed]
151
+
152
+ ### Discussion of Biases
153
+
154
+ [More Information Needed]
155
+
156
+ ### Other Known Limitations
157
+
158
+ [More Information Needed]
159
+
160
+ ## Additional Information
161
+
162
+ ### Dataset Curators
163
+
164
+ - [Chang Wei Tan](https://changweitan.com/)
165
+ - [Anthony Bagnall](https://www.uea.ac.uk/computing/people/profile/anthony-bagnall)
166
+ - [Christoph Bergmeir](https://research.monash.edu/en/persons/christoph-bergmeir)
167
+ - [Daniel Schmidt](https://research.monash.edu/en/persons/daniel-schmidt)
168
+ - [Eamonn Keogh](http://www.cs.ucr.edu/~eamonn/)
169
+ - [François Petitjean](https://www.francois-petitjean.com/)
170
+ - [Geoff Webb](http://i.giwebb.com/)
171
+
172
+ ### Licensing Information
173
+
174
+ [GNU General Public License (GPL) 3](https://www.gnu.org/licenses/gpl-3.0.en.html)
175
+
176
+ ### Citation Information
177
+
178
+ ```tex
179
+ @article{
180
+ Tan2020TSER,
181
+ title={Time Series Extrinsic Regression},
182
+ author={Tan, Chang Wei and Bergmeir, Christoph and Petitjean, Francois and Webb, Geoffrey I},
183
+ journal={Data Mining and Knowledge Discovery},
184
+ pages={1--29},
185
+ year={2021},
186
+ publisher={Springer},
187
+ doi={https://doi.org/10.1007/s10618-021-00745-9}
188
+ }
189
+
190
+ ```
191
+ ### Contributions
192
+
193
+ [More Information Needed]