flaviagiammarino commited on
Commit
6ccbafa
·
1 Parent(s): 8d2603c

Upload 4 files

Browse files
Files changed (3) hide show
  1. README.md +7 -26
  2. image.png +3 -0
  3. path_vqa.py +30 -65
README.md CHANGED
@@ -11,7 +11,8 @@ size_categories:
11
  - 10K<n<100K
12
  ---
13
 
14
- # PathVQA
 
15
 
16
  ## Dataset Description
17
  PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to be used for training and testing
@@ -20,7 +21,7 @@ Board of Pathology (ABP) test. The dataset includes both open-ended questions an
20
  built from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology", and a publicly-available
21
  digital library: "Pathology Education Informational Resource" (PEIR). The copyrights of images and captions belong to the
22
  publishers and authors of these two books, and the owners of the PEIR digital library.<br>
23
- ![image](image.png)<br>
24
  **Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)<br>
25
  **Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)<br>
26
  **Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa)
@@ -47,33 +48,15 @@ The question-answer pairs are in English.
47
 
48
  ### Data Instances
49
  Each instance consists of an image-question-answer triplet.
50
-
51
- Example from training dataset:
52
- ```
53
- {
54
- 'image': 'train_0001',
55
- 'question': 'What is the appearance of the chromatin texture, with fine and coarse clumps?',
56
- 'answer': 'a salt-and-pepper pattern'
57
- }
58
- ```
59
- Example from validation dataset:
60
  ```
61
  {
62
- 'image': 'val_0000',
63
- 'question': 'How are the organisms?',
64
- 'answer': 'somewhat variable in size'
65
- }
66
- ```
67
- Example from test dataset:
68
- ```
69
- {
70
- 'image': 'test_0001',
71
- 'question': 'Is squamous cell carcinoma composed of nests of malignant cells that partially recapitulate the stratified organization of squamous epithelium?',
72
- 'answer': 'yes'
73
  }
74
  ```
75
  ### Data Fields
76
- - `'image'`: the filename of the referenced image, excluding the file extension, which is `.jpg`.
77
  - `'question'`: the text of the question about the image.
78
  - `'answer'`: the text of the expected answer.
79
 
@@ -83,11 +66,9 @@ The dataset is split into training, validation and test. The split is provided d
83
  ## Additional Information
84
 
85
  ### Licensing Information
86
-
87
  The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE).
88
 
89
  ### Citation Information
90
-
91
  ```
92
  @article{he2020pathvqa,
93
  title={PathVQA: 30000+ Questions for Medical Visual Question Answering},
 
11
  - 10K<n<100K
12
  ---
13
 
14
+ # Dataset Card for PathVQA
15
+ ![image](image.png)
16
 
17
  ## Dataset Description
18
  PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to be used for training and testing
 
21
  built from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology", and a publicly-available
22
  digital library: "Pathology Education Informational Resource" (PEIR). The copyrights of images and captions belong to the
23
  publishers and authors of these two books, and the owners of the PEIR digital library.<br>
24
+
25
  **Repository:** [PathVQA Official GitHub Repository](https://github.com/UCSD-AI4H/PathVQA)<br>
26
  **Paper:** [PathVQA: 30000+ Questions for Medical Visual Question Answering](https://arxiv.org/abs/2003.10286)<br>
27
  **Leaderboard:** [Papers with Code Leaderboard](https://paperswithcode.com/sota/medical-visual-question-answering-on-pathvqa)
 
48
 
49
  ### Data Instances
50
  Each instance consists of an image-question-answer triplet.
 
 
 
 
 
 
 
 
 
 
51
  ```
52
  {
53
+ 'image': {'bytes': b'\xff\xd8\xff\xee\x00\x0eAdobe\x00d..., 'path': None},
54
+ 'question': 'What does immunoperoxidase staining reveal that marks positively with anti-CD4 antibodies?',
55
+ 'answer': 'a predominantly perivascular cellular infiltrate'
 
 
 
 
 
 
 
 
56
  }
57
  ```
58
  ### Data Fields
59
+ - `'image'`: the image referenced by the question-answer pair, as a byte array.
60
  - `'question'`: the text of the question about the image.
61
  - `'answer'`: the text of the expected answer.
62
 
 
66
  ## Additional Information
67
 
68
  ### Licensing Information
 
69
  The authors have released the dataset under the [MIT License](https://github.com/UCSD-AI4H/PathVQA/blob/master/LICENSE).
70
 
71
  ### Citation Information
 
72
  ```
73
  @article{he2020pathvqa,
74
  title={PathVQA: 30000+ Questions for Medical Visual Question Answering},
image.png ADDED

Git LFS Details

  • SHA256: 37bffeab62579dbd82ce4dbaf28aed8e6f2eebe00d3d6c6c495aa445c4d49cb9
  • Pointer size: 132 Bytes
  • Size of remote file: 1.02 MB
path_vqa.py CHANGED
@@ -1,8 +1,7 @@
1
  """PathVQA: 30000+ Questions for Medical Visual Question Answering"""
2
 
3
- import pandas
4
  import os
5
-
6
  import datasets
7
 
8
  _CITATION = """\
@@ -15,11 +14,13 @@ _CITATION = """\
15
  """
16
 
17
  _DESCRIPTION = """\
18
- PathVQA is a dataset of question-answer pairs on pathology images. The questions are similar to those in the
19
- American Board of Pathology (ABP) test. The dataset includes both open-ended questions and binary "yes/no"
20
- questions. The dataset is built from two publicly-available pathology textbooks: "Textbook of Pathology" and
21
- "Basic Pathology", and a publicly-available digital library: "Pathology Education Informational Resource"
22
- (PEIR). The copyrights of images and captions belong to the publishers and authors of these two books,
 
 
23
  and the owners of the PEIR digital library.
24
  """
25
 
@@ -28,12 +29,9 @@ _HOMEPAGE = "https://github.com/UCSD-AI4H/PathVQA"
28
  _LICENSE = "MIT"
29
 
30
  _URLS = {
31
- "image_train": "data/image/train_img.tar",
32
- "image_val": "data/image/val_img.tar",
33
- "image_test": "data/image/test_img.tar",
34
- "text_train": "data/text/train_qa.jsonl",
35
- "text_val": "data/text/val_qa.jsonl",
36
- "text_test": "data/text/test_qa.jsonl",
37
  }
38
 
39
  class PathVQA(datasets.GeneratorBasedBuilder):
@@ -41,95 +39,62 @@ class PathVQA(datasets.GeneratorBasedBuilder):
41
  """
42
  PathVQA: 30000+ Questions for Medical Visual Question Answering.
43
 
44
- The data was obtained from the updated Google Drive link shared by the authors in their GitHub repository
45
- on Feb 15, 2023, see https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab.
46
-
47
- This version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs. Of the
48
- 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images are not used.
49
- Furthermore, there are several duplicates, i.e. there are some image-question-answer triplets which occur
50
- more than once in the same split (train, val, test). After dropping the duplicate image-question-answer
51
  triplets, the dataset contains 32,632 question-answer pairs on 4,289 images.
52
  """
53
 
54
  VERSION = datasets.Version("0.1.0")
55
 
56
- BUILDER_CONFIGS = [
57
- datasets.BuilderConfig(name="full", version=VERSION, description="Original dataset."),
58
- datasets.BuilderConfig(name="de-duped", version=VERSION, description="De-duplicated dataset."),
59
- ]
60
-
61
- DEFAULT_CONFIG_NAME = "de-duped"
62
-
63
  def _info(self):
64
-
65
- features = datasets.Features(
66
- {
67
- "image": datasets.Image(),
68
- "question": datasets.Value("string"),
69
- "answer": datasets.Value("string")
70
- }
71
- )
72
-
73
  return datasets.DatasetInfo(
74
  description=_DESCRIPTION,
75
- features=features,
 
 
 
 
 
 
76
  homepage=_HOMEPAGE,
77
  license=_LICENSE,
78
  citation=_CITATION,
79
  )
80
 
81
  def _split_generators(self, dl_manager):
82
-
83
- # images
84
- image_train_dir = dl_manager.download_and_extract(_URLS["image_train"])
85
- image_val_dir = dl_manager.download_and_extract(_URLS["image_val"])
86
- image_test_dir = dl_manager.download_and_extract(_URLS["image_test"])
87
-
88
- # question-answer pairs
89
- text_train_dir = dl_manager.download(_URLS["text_train"])
90
- text_val_dir = dl_manager.download(_URLS["text_val"])
91
- text_test_dir = dl_manager.download(_URLS["text_test"])
92
-
93
  return [
94
-
95
  datasets.SplitGenerator(
96
  name=datasets.Split.TRAIN,
97
  gen_kwargs={
98
- "image_filepath": os.path.join(image_train_dir),
99
- "text_filepath": os.path.join(text_train_dir),
100
  "split": "train",
101
  },
102
  ),
103
-
104
  datasets.SplitGenerator(
105
  name=datasets.Split.VALIDATION,
106
  gen_kwargs={
107
- "image_filepath": os.path.join(image_val_dir),
108
- "text_filepath": os.path.join(text_val_dir),
109
  "split": "val",
110
  },
111
  ),
112
-
113
  datasets.SplitGenerator(
114
  name=datasets.Split.TEST,
115
  gen_kwargs={
116
- "image_filepath": os.path.join(image_test_dir),
117
- "text_filepath": os.path.join(text_test_dir),
118
  "split": "test"
119
  },
120
  ),
121
  ]
122
 
123
- def _generate_examples(self, image_filepath, text_filepath, split):
124
-
125
- df = pandas.read_json(text_filepath, orient='records', lines=True)
126
- if self.config.name == "de-duped":
127
- df = df.drop_duplicates(ignore_index=True)
128
-
129
  for key, row in df.iterrows():
130
  yield key, {
131
- "image": os.path.join(image_filepath, row['image']),
132
  "question": row["question"],
133
  "answer": row["answer"]
134
  }
135
-
 
1
  """PathVQA: 30000+ Questions for Medical Visual Question Answering"""
2
 
 
3
  import os
4
+ import pandas
5
  import datasets
6
 
7
  _CITATION = """\
 
14
  """
15
 
16
  _DESCRIPTION = """\
17
+ PathVQA is a dataset of question-answer pairs on pathology images. The dataset is intended to
18
+ be used for training and testing Medical Visual Question Answering (VQA) systems. The questions
19
+ contained in the dataset are similar to those in the American Board of Pathology (ABP) test. The
20
+ dataset includes both open-ended questions and binary "yes/no" questions. The dataset is built
21
+ from two publicly-available pathology textbooks: "Textbook of Pathology" and "Basic Pathology",
22
+ and a publicly-available digital library: "Pathology Education Informational Resource" (PEIR).
23
+ The copyrights of images and captions belong to the publishers and authors of these two books,
24
  and the owners of the PEIR digital library.
25
  """
26
 
 
29
  _LICENSE = "MIT"
30
 
31
  _URLS = {
32
+ "train": "data/train.parquet",
33
+ "val": "data/val.parquet",
34
+ "test": "data/test.parquet",
 
 
 
35
  }
36
 
37
  class PathVQA(datasets.GeneratorBasedBuilder):
 
39
  """
40
  PathVQA: 30000+ Questions for Medical Visual Question Answering.
41
 
42
+ The data was obtained from the updated Google Drive link shared by the authors on Feb 15, 2023,
43
+ see https://github.com/UCSD-AI4H/PathVQA/commit/117e7f4ef88a0e65b0e7f37b98a73d6237a3ceab. This
44
+ version of the dataset contains a total of 5,004 images and 32,795 question-answer pairs. Out
45
+ of the 5,004 images, 4,289 images are referenced by a question-answer pair, while 715 images
46
+ are not used. There are a few image-question-answer triplets which occur more than once in the
47
+ same split (training, validation, test). After dropping the duplicate image-question-answer
 
48
  triplets, the dataset contains 32,632 question-answer pairs on 4,289 images.
49
  """
50
 
51
  VERSION = datasets.Version("0.1.0")
52
 
 
 
 
 
 
 
 
53
  def _info(self):
 
 
 
 
 
 
 
 
 
54
  return datasets.DatasetInfo(
55
  description=_DESCRIPTION,
56
+ features=datasets.Features(
57
+ {
58
+ "image": datasets.Image(),
59
+ "question": datasets.Value("string"),
60
+ "answer": datasets.Value("string")
61
+ }
62
+ ),
63
  homepage=_HOMEPAGE,
64
  license=_LICENSE,
65
  citation=_CITATION,
66
  )
67
 
68
  def _split_generators(self, dl_manager):
 
 
 
 
 
 
 
 
 
 
 
69
  return [
 
70
  datasets.SplitGenerator(
71
  name=datasets.Split.TRAIN,
72
  gen_kwargs={
73
+ "filepath": os.path.join(dl_manager.download(_URLS["train"])),
 
74
  "split": "train",
75
  },
76
  ),
 
77
  datasets.SplitGenerator(
78
  name=datasets.Split.VALIDATION,
79
  gen_kwargs={
80
+ "filepath": os.path.join(dl_manager.download(_URLS["val"])),
 
81
  "split": "val",
82
  },
83
  ),
 
84
  datasets.SplitGenerator(
85
  name=datasets.Split.TEST,
86
  gen_kwargs={
87
+ "filepath": os.path.join(dl_manager.download(_URLS["test"])),
 
88
  "split": "test"
89
  },
90
  ),
91
  ]
92
 
93
+ def _generate_examples(self, filepath, split):
94
+ df = pandas.read_parquet(filepath)
 
 
 
 
95
  for key, row in df.iterrows():
96
  yield key, {
97
+ "image": row["image"],
98
  "question": row["question"],
99
  "answer": row["answer"]
100
  }