fdaudens HF staff commited on
Commit
07c5abf
·
verified ·
1 Parent(s): a6634c6

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .argilla/dataset.json +16 -0
  2. .argilla/settings.json +208 -0
  3. .argilla/version.json +3 -0
  4. README.md +145 -44
.argilla/dataset.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
3
+ "name": "blog_posts_classified",
4
+ "guidelines": "Pre-annotated blog posts with manual labels. Please verify and adjust the classifications as needed.",
5
+ "allow_extra_metadata": false,
6
+ "status": "ready",
7
+ "distribution": {
8
+ "strategy": "overlap",
9
+ "min_submitted": 1
10
+ },
11
+ "metadata": null,
12
+ "workspace_id": "c19af2a7-2281-4c1d-8d77-236ae33465d6",
13
+ "last_activity_at": "2025-01-19T19:16:16.880298",
14
+ "inserted_at": "2025-01-16T03:08:33.075762",
15
+ "updated_at": "2025-01-16T03:08:35.204326"
16
+ }
.argilla/settings.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "guidelines": "Pre-annotated blog posts with manual labels. Please verify and adjust the classifications as needed.",
3
+ "allow_extra_metadata": false,
4
+ "distribution": {
5
+ "strategy": "overlap",
6
+ "min_submitted": 1
7
+ },
8
+ "fields": [
9
+ {
10
+ "id": "1f0e84c5-2514-4163-a1e6-304201da98e1",
11
+ "name": "title",
12
+ "title": "Blog Post Title",
13
+ "required": true,
14
+ "settings": {
15
+ "type": "text",
16
+ "use_markdown": false
17
+ },
18
+ "dataset_id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
19
+ "inserted_at": "2025-01-16T03:08:33.869561",
20
+ "updated_at": "2025-01-16T03:08:33.869561"
21
+ },
22
+ {
23
+ "id": "ec24600e-c201-485e-93c1-f2879f308d97",
24
+ "name": "authors",
25
+ "title": "Authors",
26
+ "required": true,
27
+ "settings": {
28
+ "type": "text",
29
+ "use_markdown": false
30
+ },
31
+ "dataset_id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
32
+ "inserted_at": "2025-01-16T03:08:34.116371",
33
+ "updated_at": "2025-01-16T03:08:34.116371"
34
+ },
35
+ {
36
+ "id": "d7bfcc44-0dcb-434a-b899-6e6d2e86aebf",
37
+ "name": "filename",
38
+ "title": "Source Filename",
39
+ "required": true,
40
+ "settings": {
41
+ "type": "text",
42
+ "use_markdown": false
43
+ },
44
+ "dataset_id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
45
+ "inserted_at": "2025-01-16T03:08:34.373369",
46
+ "updated_at": "2025-01-16T03:08:34.373369"
47
+ },
48
+ {
49
+ "id": "eae3ed0a-e907-49d4-917c-c6f4bda39cbe",
50
+ "name": "content",
51
+ "title": "Blog Content",
52
+ "required": true,
53
+ "settings": {
54
+ "type": "text",
55
+ "use_markdown": false
56
+ },
57
+ "dataset_id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
58
+ "inserted_at": "2025-01-16T03:08:34.597688",
59
+ "updated_at": "2025-01-16T03:08:34.597688"
60
+ }
61
+ ],
62
+ "questions": [
63
+ {
64
+ "id": "a8e2b25b-fe8b-467c-ab90-416124d9a8e4",
65
+ "name": "content_class",
66
+ "title": "What topics does this blog post cover?",
67
+ "description": "Select all topics that apply to this blog post",
68
+ "required": true,
69
+ "settings": {
70
+ "type": "multi_label_selection",
71
+ "options": [
72
+ {
73
+ "value": "llm",
74
+ "text": "LLM",
75
+ "description": null
76
+ },
77
+ {
78
+ "value": "computer_vision",
79
+ "text": "Computer-Vision",
80
+ "description": null
81
+ },
82
+ {
83
+ "value": "audio",
84
+ "text": "Audio",
85
+ "description": null
86
+ },
87
+ {
88
+ "value": "transformers",
89
+ "text": "Transformers",
90
+ "description": null
91
+ },
92
+ {
93
+ "value": "data",
94
+ "text": "Data",
95
+ "description": null
96
+ },
97
+ {
98
+ "value": "mlops",
99
+ "text": "MLOps",
100
+ "description": null
101
+ },
102
+ {
103
+ "value": "research",
104
+ "text": "Research",
105
+ "description": null
106
+ },
107
+ {
108
+ "value": "implementation",
109
+ "text": "Implementation",
110
+ "description": null
111
+ },
112
+ {
113
+ "value": "benchmarks",
114
+ "text": "Benchmarks",
115
+ "description": null
116
+ },
117
+ {
118
+ "value": "tutorial",
119
+ "text": "Tutorial",
120
+ "description": null
121
+ },
122
+ {
123
+ "value": "community",
124
+ "text": "Community",
125
+ "description": null
126
+ },
127
+ {
128
+ "value": "security",
129
+ "text": "Security",
130
+ "description": null
131
+ },
132
+ {
133
+ "value": "optimization",
134
+ "text": "Optimization",
135
+ "description": null
136
+ },
137
+ {
138
+ "value": "deployment",
139
+ "text": "Deployment",
140
+ "description": null
141
+ },
142
+ {
143
+ "value": "tools",
144
+ "text": "Tools",
145
+ "description": null
146
+ },
147
+ {
148
+ "value": "text_generation",
149
+ "text": "Text-Generation",
150
+ "description": null
151
+ },
152
+ {
153
+ "value": "text_classification",
154
+ "text": "Text-Classification",
155
+ "description": null
156
+ },
157
+ {
158
+ "value": "translation",
159
+ "text": "Translation",
160
+ "description": null
161
+ },
162
+ {
163
+ "value": "image_generation",
164
+ "text": "Image-Generation",
165
+ "description": null
166
+ },
167
+ {
168
+ "value": "multi_modal",
169
+ "text": "Multi-Modal",
170
+ "description": null
171
+ },
172
+ {
173
+ "value": "quantization",
174
+ "text": "Quantization",
175
+ "description": null
176
+ },
177
+ {
178
+ "value": "fine_tuning",
179
+ "text": "Fine-Tuning",
180
+ "description": null
181
+ },
182
+ {
183
+ "value": "integration",
184
+ "text": "Integration",
185
+ "description": null
186
+ },
187
+ {
188
+ "value": "efficient_computing",
189
+ "text": "Efficient-Computing",
190
+ "description": null
191
+ },
192
+ {
193
+ "value": "robotics",
194
+ "text": "Robotics",
195
+ "description": null
196
+ }
197
+ ],
198
+ "visible_options": 8,
199
+ "options_order": "natural"
200
+ },
201
+ "dataset_id": "88840a37-5d1c-4967-9c89-a9a16d4bfad9",
202
+ "inserted_at": "2025-01-16T03:08:34.877040",
203
+ "updated_at": "2025-01-16T03:08:34.877040"
204
+ }
205
+ ],
206
+ "metadata": [],
207
+ "vectors": []
208
+ }
.argilla/version.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "argilla": "2.6.0"
3
+ }
README.md CHANGED
@@ -1,46 +1,147 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: id
5
- dtype: string
6
- - name: status
7
- dtype: string
8
- - name: inserted_at
9
- dtype: timestamp[us]
10
- - name: updated_at
11
- dtype: timestamp[us]
12
- - name: _server_id
13
- dtype: string
14
- - name: title
15
- dtype: string
16
- - name: authors
17
- dtype: string
18
- - name: filename
19
- dtype: string
20
- - name: content
21
- dtype: string
22
- - name: content_class.responses
23
- sequence:
24
- sequence: string
25
- - name: content_class.responses.users
26
- sequence: string
27
- - name: content_class.responses.status
28
- sequence: string
29
- - name: content_class.suggestion
30
- sequence: string
31
- - name: content_class.suggestion.agent
32
- dtype: 'null'
33
- - name: content_class.suggestion.score
34
- dtype: 'null'
35
- splits:
36
- - name: train
37
- num_bytes: 5680715
38
- num_examples: 507
39
- download_size: 2923635
40
- dataset_size: 5680715
41
- configs:
42
- - config_name: default
43
- data_files:
44
- - split: train
45
- path: data/train-*
46
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - rlfh
4
+ - argilla
5
+ - human-feedback
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
+
8
+ # Dataset Card for blog_posts_classified
9
+
10
+
11
+
12
+
13
+
14
+
15
+
16
+ This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets).
17
+
18
+
19
+ ## Using this dataset with Argilla
20
+
21
+ To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code:
22
+
23
+ ```python
24
+ import argilla as rg
25
+
26
+ ds = rg.Dataset.from_hub("fdaudens/blog_posts_classified", settings="auto")
27
+ ```
28
+
29
+ This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.
30
+
31
+ ## Using this dataset with `datasets`
32
+
33
+ To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code:
34
+
35
+ ```python
36
+ from datasets import load_dataset
37
+
38
+ ds = load_dataset("fdaudens/blog_posts_classified")
39
+ ```
40
+
41
+ This will only load the records of the dataset, but not the Argilla settings.
42
+
43
+ ## Dataset Structure
44
+
45
+ This dataset repo contains:
46
+
47
+ * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`.
48
+ * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla.
49
+ * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`.
50
+
51
+ The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**.
52
+
53
+ ### Fields
54
+
55
+ The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.
56
+
57
+ | Field Name | Title | Type | Required |
58
+ | ---------- | ----- | ---- | -------- |
59
+ | title | Blog Post Title | text | True |
60
+ | authors | Authors | text | True |
61
+ | filename | Source Filename | text | True |
62
+ | content | Blog Content | text | True |
63
+
64
+
65
+ ### Questions
66
+
67
+ The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.
68
+
69
+ | Question Name | Title | Type | Required | Description | Values/Labels |
70
+ | ------------- | ----- | ---- | -------- | ----------- | ------------- |
71
+ | content_class | What topics does this blog post cover? | multi_label_selection | True | Select all topics that apply to this blog post | ['llm', 'computer_vision', 'audio', 'transformers', 'data', 'mlops', 'research', 'implementation', 'benchmarks', 'tutorial', 'community', 'security', 'optimization', 'deployment', 'tools', 'text_generation', 'text_classification', 'translation', 'image_generation', 'multi_modal', 'quantization', 'fine_tuning', 'integration', 'efficient_computing', 'robotics'] |
72
+
73
+
74
+ <!-- check length of metadata properties -->
75
+
76
+
77
+
78
+
79
+ ### Data Splits
80
+
81
+ The dataset contains a single split, which is `train`.
82
+
83
+ ## Dataset Creation
84
+
85
+ ### Curation Rationale
86
+
87
+ [More Information Needed]
88
+
89
+ ### Source Data
90
+
91
+ #### Initial Data Collection and Normalization
92
+
93
+ [More Information Needed]
94
+
95
+ #### Who are the source language producers?
96
+
97
+ [More Information Needed]
98
+
99
+ ### Annotations
100
+
101
+ #### Annotation guidelines
102
+
103
+ Pre-annotated blog posts with manual labels. Please verify and adjust the classifications as needed.
104
+
105
+ #### Annotation process
106
+
107
+ [More Information Needed]
108
+
109
+ #### Who are the annotators?
110
+
111
+ [More Information Needed]
112
+
113
+ ### Personal and Sensitive Information
114
+
115
+ [More Information Needed]
116
+
117
+ ## Considerations for Using the Data
118
+
119
+ ### Social Impact of Dataset
120
+
121
+ [More Information Needed]
122
+
123
+ ### Discussion of Biases
124
+
125
+ [More Information Needed]
126
+
127
+ ### Other Known Limitations
128
+
129
+ [More Information Needed]
130
+
131
+ ## Additional Information
132
+
133
+ ### Dataset Curators
134
+
135
+ [More Information Needed]
136
+
137
+ ### Licensing Information
138
+
139
+ [More Information Needed]
140
+
141
+ ### Citation Information
142
+
143
+ [More Information Needed]
144
+
145
+ ### Contributions
146
+
147
+ [More Information Needed]