--- dataset_info: features: - name: instruction dtype: string - name: output dtype: string splits: - name: train num_bytes: 15268888.05 num_examples: 487500 - name: test num_bytes: 391509.95 num_examples: 12500 download_size: 12160789 dataset_size: 15660398.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # Simple Math Just like my teacher gave me homework, i thought maybe we can also add some of these basics on the trainings of our models. It was created with this code, if you add more complex operations and so.. please share the code :D thank you ```py import random # Define the number of samples you want to generate num_samples = 500000 # Define the range for the random numbers min_value = -99.99 max_value = 99.99 # Define the arithmetic operations operations = ['+', '-', '*', '/'] # Generate data data = [] for _ in range(num_samples): num1 = float("%.3f" % random.uniform(min_value, max_value)) num2 = float("%.3f" % random.uniform(min_value, max_value)) while num2 == 0.0: num2 = float("%.3f" % random.uniform(min_value, max_value)) while num1 == 0.0: num1 = float("%.3f" % random.uniform(min_value, max_value)) operation = random.choice(operations) if operation == '/': result = num1 / num2 elif operation == '-': result = num1 - num2 elif operation == '*': result = num1 * num2 elif operation == '+': result = num1 + num2 output = "%.4f" % result instruction = f"{num1} {operation} {num2}" data.append({'instruction': instruction, 'output': output}) # Create the dataset import json out_file = 'arithmetic-float4a.json' with open(out_file, 'w') as f: json.dump(data, f) ``` We have also a new community submission for a more complex dataset of 3 elements: ``` mport random import json import operator # Define the number of samples you want to generate num_samples = 500000 # Define the range for the random numbers min_value = -99.99 max_value = 99.99 # Define the arithmetic operations and their corresponding functions operations = { '+': operator.add, '-': operator.sub, '*': operator.mul, '/': operator.truediv } def generate_random_number(): return float("%.3f" % random.uniform(min_value, max_value)) def safe_division(numerator, denominator): return numerator if denominator == 0 else numerator / denominator # Generate complex data data = [] for _ in range(num_samples): num1 = generate_random_number() num2 = generate_random_number() num3 = generate_random_number() # Ensure num2 and num3 are not zero if they will be used as divisors if num2 == 0.0: num2 = generate_random_number() if num3 == 0.0: num3 = generate_random_number() # Randomly choose two operations operation1 = random.choice(list(operations.keys())) operation2 = random.choice(list(operations.keys())) # Create a more complex expression if random.choice([True, False]): # With parentheses expression = f"({num1} {operation1} {num2}) {operation2} {num3}" if operation1 == '/': intermediate_result = safe_division(num1, num2) else: intermediate_result = operations[operation1](num1, num2) if operation2 == '/' and intermediate_result != 0: result = safe_division(intermediate_result, num3) else: result = operations[operation2](intermediate_result, num3) else: # Without parentheses expression = f"{num1} {operation1} {num2} {operation2} {num3}" if operation1 == '/': intermediate_result = safe_division(num1, num2) else: intermediate_result = operations[operation1](num1, num2) if operation2 == '/': result = safe_division(intermediate_result, num3) else: result = operations[operation2](intermediate_result, num3) output = "%.4f" % result data.append({'instruction': expression, 'output': output}) # Create the dataset out_file = 'arithmetic-float-complex.json' with open(out_file, 'w') as f: json.dump(data, f) ``` If you use Simple Math o train your model, please cite on the modelcard or the paper. Thank you