|
import os |
|
|
|
import pydicom |
|
import pydicom_seg |
|
|
|
import pandas as pd |
|
import SimpleITK as sitk |
|
|
|
from tqdm import tqdm |
|
|
|
|
|
patient_ids = data['Subject ID'].unique() |
|
|
|
for pid in tqdm(patient_ids): |
|
|
|
row = data[data['Subject ID'] == pid] |
|
out_fn = f'NSCLC-Radiomics-NIFTI3/{pid}' |
|
os.makedirs(out_fn) |
|
|
|
try: |
|
inp_fn_img = row[row['Number of Images'] > 1]['File Location'].values[0] |
|
dicom2nifti.convert_directory(inp_fn_img, out_fn) |
|
except: |
|
print(f'Image {inp_fn_img} failed to convert') |
|
pass |
|
|
|
try: |
|
inp_fn_seg = row[row['File Location'].str.contains('Segmentation')]['File Location'].values[0] + '/1-1.dcm' |
|
dcm = pydicom.dcmread(inp_fn_seg) |
|
reader = pydicom_seg.SegmentReader() |
|
result = reader.read(dcm) |
|
|
|
for segment_number in result.available_segments: |
|
image = result.segment_image(segment_number) |
|
sitk.WriteImage(image, os.path.join(out_fn, f'seg-{result.segment_infos[segment_number].SegmentDescription}.nii.gz'), True) |
|
except: |
|
print(f'Segmentation {inp_fn_seg} failed to convert') |
|
pass |
|
|
|
|