Datasets:
Commit
•
28cc287
1
Parent(s):
9f6d2ae
add segmentation (without saving file on disk)
Browse files- voxpopuli.py +75 -19
voxpopuli.py
CHANGED
@@ -1,5 +1,9 @@
|
|
|
|
1 |
import os
|
2 |
import glob
|
|
|
|
|
|
|
3 |
|
4 |
import datasets
|
5 |
|
@@ -14,6 +18,7 @@ _LANGUAGES_V2 = [f"{x}_v2" for x in _LANGUAGES]
|
|
14 |
|
15 |
_YEARS = list(range(2009, 2020 + 1))
|
16 |
|
|
|
17 |
_CONFIG_TO_LANGS = {
|
18 |
"400k": _LANGUAGES,
|
19 |
"100k": _LANGUAGES,
|
@@ -33,7 +38,20 @@ _BASE_URL = "https://dl.fbaipublicfiles.com/voxpopuli/"
|
|
33 |
|
34 |
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar"
|
35 |
|
36 |
-
_META_URL = _BASE_URL + "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
|
39 |
class Voxpopuli(datasets.GeneratorBasedBuilder):
|
@@ -41,7 +59,7 @@ class Voxpopuli(datasets.GeneratorBasedBuilder):
|
|
41 |
|
42 |
VERSION = datasets.Version("1.0.0") # TODO ??
|
43 |
BUILDER_CONFIGS = [
|
44 |
-
|
45 |
name=name,
|
46 |
# version=VERSION,
|
47 |
description="", # TODO
|
@@ -58,6 +76,7 @@ class Voxpopuli(datasets.GeneratorBasedBuilder):
|
|
58 |
"language": datasets.ClassLabel(names=_LANGUAGES),
|
59 |
"year": datasets.Value("int16"),
|
60 |
"audio": datasets.Audio(sampling_rate=16_000),
|
|
|
61 |
}
|
62 |
)
|
63 |
return datasets.DatasetInfo(
|
@@ -68,38 +87,75 @@ class Voxpopuli(datasets.GeneratorBasedBuilder):
|
|
68 |
# citation=_CITATION,
|
69 |
)
|
70 |
|
71 |
-
def
|
72 |
-
#
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
84 |
|
85 |
return [
|
86 |
datasets.SplitGenerator(
|
87 |
name=datasets.Split.TRAIN,
|
88 |
gen_kwargs={
|
89 |
-
"data_dirs":
|
|
|
90 |
}
|
91 |
),
|
92 |
]
|
93 |
|
94 |
-
def _generate_examples(self, data_dirs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
for data_dir in data_dirs:
|
96 |
-
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True):
|
97 |
path_components = file.split(os.sep)
|
98 |
-
language, year = path_components[-3
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
"path": file,
|
102 |
"language": language,
|
103 |
"year": year,
|
104 |
-
"audio": {
|
|
|
|
|
|
|
|
|
105 |
}
|
|
|
1 |
+
from collections import defaultdict
|
2 |
import os
|
3 |
import glob
|
4 |
+
import csv
|
5 |
+
from pathlib import Path
|
6 |
+
from tqdm.auto import tqdm
|
7 |
|
8 |
import datasets
|
9 |
|
|
|
18 |
|
19 |
_YEARS = list(range(2009, 2020 + 1))
|
20 |
|
21 |
+
# unnecessary
|
22 |
_CONFIG_TO_LANGS = {
|
23 |
"400k": _LANGUAGES,
|
24 |
"100k": _LANGUAGES,
|
|
|
38 |
|
39 |
_DATA_URL = _BASE_URL + "audios/{lang}_{year}.tar"
|
40 |
|
41 |
+
_META_URL = _BASE_URL + "annotations/unlabelled_v2.tsv.gz"
|
42 |
+
|
43 |
+
|
44 |
+
class VoxpopuliConfig(datasets.BuilderConfig):
|
45 |
+
"""BuilderConfig for VoxPopuli."""
|
46 |
+
|
47 |
+
def __init__(self, name, **kwargs):
|
48 |
+
"""
|
49 |
+
Args:
|
50 |
+
name: `string`, name of dataset config
|
51 |
+
**kwargs: keyword arguments forwarded to super.
|
52 |
+
"""
|
53 |
+
super().__init__(name=name, **kwargs)
|
54 |
+
self.languages = [name] if name in _LANGUAGES else _LANGUAGES
|
55 |
|
56 |
|
57 |
class Voxpopuli(datasets.GeneratorBasedBuilder):
|
|
|
59 |
|
60 |
VERSION = datasets.Version("1.0.0") # TODO ??
|
61 |
BUILDER_CONFIGS = [
|
62 |
+
VoxpopuliConfig(
|
63 |
name=name,
|
64 |
# version=VERSION,
|
65 |
description="", # TODO
|
|
|
76 |
"language": datasets.ClassLabel(names=_LANGUAGES),
|
77 |
"year": datasets.Value("int16"),
|
78 |
"audio": datasets.Audio(sampling_rate=16_000),
|
79 |
+
"segment_id": datasets.Value("int16"),
|
80 |
}
|
81 |
)
|
82 |
return datasets.DatasetInfo(
|
|
|
87 |
# citation=_CITATION,
|
88 |
)
|
89 |
|
90 |
+
def _read_metadata(self, metadata_path):
|
91 |
+
# TODO: check for predicate??
|
92 |
+
# @ https://github.com/facebookresearch/voxpopuli/blob/main/voxpopuli/get_unlabelled_data.py#L34
|
93 |
+
metadata = defaultdict(list)
|
94 |
|
95 |
+
with open(metadata_path, encoding="utf-8") as csv_file:
|
96 |
+
csv_reader = csv.reader(csv_file, delimiter="\t")
|
97 |
+
for i, row in tqdm(enumerate(csv_reader)):
|
98 |
+
if i == 0:
|
99 |
+
continue
|
100 |
+
audio_id, segment_id, start, end = row
|
101 |
+
event_id, lang = audio_id.rsplit("_", 1)[-2:]
|
102 |
+
if lang in self.languages:
|
103 |
+
# if lang in ["hr", "et"]:
|
104 |
+
metadata[audio_id].append((float(start), float(end)))
|
105 |
|
106 |
+
return metadata
|
107 |
+
|
108 |
+
def _split_generators(self, dl_manager):
|
109 |
+
metadata_path = dl_manager.download_and_extract(_META_URL)
|
110 |
|
111 |
+
years = _CONFIG_TO_YEARS[self.config.name]
|
112 |
+
# urls = [_DATA_URL.format(lang=language, year=year) for language in ["hr", "et"] for year in [2020]] # , "et"]
|
113 |
+
urls = [_DATA_URL.format(lang=language, year=year) for language in self.languages for year in years]
|
114 |
+
dl_manager.download_config.num_proc = len(urls)
|
115 |
+
data_dirs = dl_manager.download_and_extract(urls)
|
116 |
|
117 |
return [
|
118 |
datasets.SplitGenerator(
|
119 |
name=datasets.Split.TRAIN,
|
120 |
gen_kwargs={
|
121 |
+
"data_dirs": data_dirs,
|
122 |
+
"metadata_path": metadata_path,
|
123 |
}
|
124 |
),
|
125 |
]
|
126 |
|
127 |
+
def _generate_examples(self, data_dirs, metadata_path):
|
128 |
+
try:
|
129 |
+
import torch
|
130 |
+
import torchaudio
|
131 |
+
except ImportError as e:
|
132 |
+
raise ValueError(
|
133 |
+
"Loading voxpopuli requires `torchaudio` to be installed."
|
134 |
+
"You can install torchaudio with `pip install torchaudio`." + e
|
135 |
+
)
|
136 |
+
|
137 |
+
metadata = self._read_metadata(metadata_path)
|
138 |
+
|
139 |
for data_dir in data_dirs:
|
140 |
+
for file in glob.glob(f"{data_dir}/**/*.ogg", recursive=True)[:5]:
|
141 |
path_components = file.split(os.sep)
|
142 |
+
language, year, audio_filename = path_components[-3:]
|
143 |
+
audio_id, _ = os.path.splitext(audio_filename)
|
144 |
+
timestamps = metadata[audio_id]
|
145 |
+
|
146 |
+
waveform, sr = torchaudio.load(file)
|
147 |
+
duration = waveform.size(1)
|
148 |
+
|
149 |
+
for segment_id, (start, stop) in enumerate(timestamps):
|
150 |
+
segment = waveform[:, int(start * sr): min(int(stop * sr), duration)]
|
151 |
+
|
152 |
+
yield f"{audio_filename}_{segment_id}", {
|
153 |
"path": file,
|
154 |
"language": language,
|
155 |
"year": year,
|
156 |
+
"audio": {
|
157 |
+
"array": segment[0], # segment is a 2-dim array
|
158 |
+
"sampling_rate": 16_000
|
159 |
+
},
|
160 |
+
"segment_id": segment_id,
|
161 |
}
|