Datasets:

ArXiv:
License:
File size: 6,965 Bytes
ea5c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ed64d8
ea5c540
 
 
 
 
 
 
 
865b470
ea5c540
 
 
 
 
 
 
 
 
 
 
4ed64d8
ea5c540
 
4ed64d8
ea5c540
4ed64d8
 
 
ea5c540
 
 
 
 
 
4ed64d8
ea5c540
 
 
 
 
4ed64d8
ea5c540
 
 
 
 
 
 
 
4ed64d8
ea5c540
 
 
 
 
 
 
 
4ed64d8
ea5c540
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47422ca
ea5c540
 
 
 
 
 
 
 
 
 
2ad9180
ea5c540
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3

import csv
import os

import pandas as pd

import datasets


_VERSION = "1.0.0"

_CITATION = """
@misc{wang2020covost,
    title={CoVoST 2: A Massively Multilingual Speech-to-Text Translation Corpus},
    author={Changhan Wang and Anne Wu and Juan Pino},
    year={2020},
    eprint={2007.10310},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
"""

_DESCRIPTION = """
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English \
and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of \
crowdsourced voice recordings.

Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:


```python
import torchaudio

def map_to_array(batch):
    speech_array, _ = torchaudio.load(batch["file"])
    batch["speech"] = speech_array.numpy()
    return batch

dataset = dataset.map(map_to_array, remove_columns=["file"])
```
"""

_HOMEPAGE = "https://github.com/facebookresearch/covost"

# fmt: off
XX_EN_LANGUAGES = ["fr", "de", "es", "ca", "it", "ru", "zh-CN", "pt", "fa", "et", "mn", "nl", "tr", "ar", "sv-SE", "lv", "sl", "ta", "ja", "id", "cy"]
EN_XX_LANGUAGES = ["de", "tr", "fa", "sv-SE", "mn", "zh-CN", "cy", "ca", "sl", "et", "id", "ar", "ta", "lv", "ja"]
# fmt: on

COVOST_URL_TEMPLATE = "https://dl.fbaipublicfiles.com/covost/covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"


def _get_builder_configs():
    builder_configs = [
        datasets.BuilderConfig(name=f"en_{lang}", version=datasets.Version(_VERSION)) for lang in EN_XX_LANGUAGES
    ]

    builder_configs += [
        datasets.BuilderConfig(name=f"{lang}_en", version=datasets.Version(_VERSION)) for lang in XX_EN_LANGUAGES
    ]
    return builder_configs


class Covost2(datasets.GeneratorBasedBuilder):
    """CoVOST2 Dataset."""

    VERSION = datasets.Version(_VERSION)

    BUILDER_CONFIGS = _get_builder_configs()

    @property
    def manual_download_instructions(self):
        return f"""Please download the Common Voice Corpus 4 in {self.config.name.split('_')[0]} from https://commonvoice.mozilla.org/en/datasets and unpack it with `tar xvzf {self.config.name.split('_')[0]}.tar`. Make sure to pass the path to the directory in which you unpacked the downloaded file as `data_dir`: `datasets.load_dataset('covost2', data_dir="path/to/dir")`
        """

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                client_id=datasets.Value("string"),
                file=datasets.Value("string"),
                audio=datasets.Audio(sampling_rate=16_000),
                sentence=datasets.Value("string"),
                translation=datasets.Value("string"),
                id=datasets.Value("string"),
            ),
            supervised_keys=("file", "translation"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_root = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))

        source_lang, target_lang = self.config.name.split("_")

        if not os.path.exists(data_root):
            raise FileNotFoundError(
                f"You are trying to load the {self.config.name} speech translation dataset. "
                f"It is required that you manually download the input speech data {source_lang}. "
                f"Manual download instructions: {self.manual_download_instructions}"
            )

        covost_url = COVOST_URL_TEMPLATE.format(src_lang=source_lang, tgt_lang=target_lang)
        extracted_path = dl_manager.download_and_extract(covost_url)

        covost_tsv_path = os.path.join(extracted_path, f"covost_v2.{source_lang}_{target_lang}.tsv")
        cv_tsv_path = os.path.join(data_root, "validated.tsv")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "source_path": data_root,
                    "covost_tsv_path": covost_tsv_path,
                    "cv_tsv_path": cv_tsv_path,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "source_path": data_root,
                    "covost_tsv_path": covost_tsv_path,
                    "cv_tsv_path": cv_tsv_path,
                    "split": "dev",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "source_path": data_root,
                    "covost_tsv_path": covost_tsv_path,
                    "cv_tsv_path": cv_tsv_path,
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, source_path, covost_tsv_path, cv_tsv_path, split):
        covost_tsv = self._load_df_from_tsv(covost_tsv_path)
        cv_tsv = self._load_df_from_tsv(cv_tsv_path)

        df = pd.merge(
            left=cv_tsv[["path", "sentence", "client_id"]],
            right=covost_tsv[["path", "translation", "split"]],
            how="inner",
            on="path",
        )

        if split == "train":
            df = df[(df["split"] == "train") | (df["split"] == "train_covost")]
        else:
            df = df[df["split"] == split]

        for i, row in df.iterrows():
            yield i, {
                "id": row["path"].replace(".mp3", ""),
                "client_id": row["client_id"],
                "sentence": row["sentence"],
                "translation": row["translation"],
                "file": os.path.join(source_path, "clips", row["path"]),
                "audio": os.path.join(source_path, "clips", row["path"]),
            }

    def _load_df_from_tsv(self, path):
        return pd.read_csv(
            path,
            sep="\t",
            header=0,
            encoding="utf-8",
            escapechar="\\",
            quoting=csv.QUOTE_NONE,
            na_filter=False,
        )