File size: 6,965 Bytes
ea5c540 4ed64d8 ea5c540 865b470 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 4ed64d8 ea5c540 47422ca ea5c540 2ad9180 ea5c540 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
# coding=utf-8
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import csv
import os
import pandas as pd
import datasets
_VERSION = "1.0.0"
_CITATION = """
@misc{wang2020covost,
title={CoVoST 2: A Massively Multilingual Speech-to-Text Translation Corpus},
author={Changhan Wang and Anne Wu and Juan Pino},
year={2020},
eprint={2007.10310},
archivePrefix={arXiv},
primaryClass={cs.CL}
"""
_DESCRIPTION = """
CoVoST 2, a large-scale multilingual speech translation corpus covering translations from 21 languages into English \
and from English into 15 languages. The dataset is created using Mozilla’s open source Common Voice database of \
crowdsourced voice recordings.
Note that in order to limit the required storage for preparing this dataset, the audio
is stored in the .mp3 format and is not converted to a float32 array. To convert, the audio
file to a float32 array, please make use of the `.map()` function as follows:
```python
import torchaudio
def map_to_array(batch):
speech_array, _ = torchaudio.load(batch["file"])
batch["speech"] = speech_array.numpy()
return batch
dataset = dataset.map(map_to_array, remove_columns=["file"])
```
"""
_HOMEPAGE = "https://github.com/facebookresearch/covost"
# fmt: off
XX_EN_LANGUAGES = ["fr", "de", "es", "ca", "it", "ru", "zh-CN", "pt", "fa", "et", "mn", "nl", "tr", "ar", "sv-SE", "lv", "sl", "ta", "ja", "id", "cy"]
EN_XX_LANGUAGES = ["de", "tr", "fa", "sv-SE", "mn", "zh-CN", "cy", "ca", "sl", "et", "id", "ar", "ta", "lv", "ja"]
# fmt: on
COVOST_URL_TEMPLATE = "https://dl.fbaipublicfiles.com/covost/covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
def _get_builder_configs():
builder_configs = [
datasets.BuilderConfig(name=f"en_{lang}", version=datasets.Version(_VERSION)) for lang in EN_XX_LANGUAGES
]
builder_configs += [
datasets.BuilderConfig(name=f"{lang}_en", version=datasets.Version(_VERSION)) for lang in XX_EN_LANGUAGES
]
return builder_configs
class Covost2(datasets.GeneratorBasedBuilder):
"""CoVOST2 Dataset."""
VERSION = datasets.Version(_VERSION)
BUILDER_CONFIGS = _get_builder_configs()
@property
def manual_download_instructions(self):
return f"""Please download the Common Voice Corpus 4 in {self.config.name.split('_')[0]} from https://commonvoice.mozilla.org/en/datasets and unpack it with `tar xvzf {self.config.name.split('_')[0]}.tar`. Make sure to pass the path to the directory in which you unpacked the downloaded file as `data_dir`: `datasets.load_dataset('covost2', data_dir="path/to/dir")`
"""
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
client_id=datasets.Value("string"),
file=datasets.Value("string"),
audio=datasets.Audio(sampling_rate=16_000),
sentence=datasets.Value("string"),
translation=datasets.Value("string"),
id=datasets.Value("string"),
),
supervised_keys=("file", "translation"),
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_root = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
source_lang, target_lang = self.config.name.split("_")
if not os.path.exists(data_root):
raise FileNotFoundError(
f"You are trying to load the {self.config.name} speech translation dataset. "
f"It is required that you manually download the input speech data {source_lang}. "
f"Manual download instructions: {self.manual_download_instructions}"
)
covost_url = COVOST_URL_TEMPLATE.format(src_lang=source_lang, tgt_lang=target_lang)
extracted_path = dl_manager.download_and_extract(covost_url)
covost_tsv_path = os.path.join(extracted_path, f"covost_v2.{source_lang}_{target_lang}.tsv")
cv_tsv_path = os.path.join(data_root, "validated.tsv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"source_path": data_root,
"covost_tsv_path": covost_tsv_path,
"cv_tsv_path": cv_tsv_path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"source_path": data_root,
"covost_tsv_path": covost_tsv_path,
"cv_tsv_path": cv_tsv_path,
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"source_path": data_root,
"covost_tsv_path": covost_tsv_path,
"cv_tsv_path": cv_tsv_path,
"split": "test",
},
),
]
def _generate_examples(self, source_path, covost_tsv_path, cv_tsv_path, split):
covost_tsv = self._load_df_from_tsv(covost_tsv_path)
cv_tsv = self._load_df_from_tsv(cv_tsv_path)
df = pd.merge(
left=cv_tsv[["path", "sentence", "client_id"]],
right=covost_tsv[["path", "translation", "split"]],
how="inner",
on="path",
)
if split == "train":
df = df[(df["split"] == "train") | (df["split"] == "train_covost")]
else:
df = df[df["split"] == split]
for i, row in df.iterrows():
yield i, {
"id": row["path"].replace(".mp3", ""),
"client_id": row["client_id"],
"sentence": row["sentence"],
"translation": row["translation"],
"file": os.path.join(source_path, "clips", row["path"]),
"audio": os.path.join(source_path, "clips", row["path"]),
}
def _load_df_from_tsv(self, path):
return pd.read_csv(
path,
sep="\t",
header=0,
encoding="utf-8",
escapechar="\\",
quoting=csv.QUOTE_NONE,
na_filter=False,
)
|