coco / coco.py
lxu's picture
init
3f1212d
raw
history blame
5.2 kB
# Copyright 2022 Lance Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""COCO: Microsoft COCO Dataset.
https://cocodataset.org/#home
"""
import os
from typing import List
import datasets
import lance
import pyarrow as pa
import pyarrow.compute as pc
_CLASS_MAP = {
1: "person",
2: "bicycle",
3: "car",
4: "motorcycle",
5: "airplane",
6: "bus",
7: "train",
8: "truck",
9: "boat",
10: "traffic light",
11: "fire hydrant",
13: "stop sign",
14: "parking meter",
15: "bench",
16: "bird",
17: "cat",
18: "dog",
19: "horse",
20: "sheep",
21: "cow",
22: "elephant",
23: "bear",
24: "zebra",
25: "giraffe",
27: "backpack",
28: "umbrella",
31: "handbag",
32: "tie",
33: "suitcase",
34: "frisbee",
35: "skis",
36: "snowboard",
37: "sports ball",
38: "kite",
39: "baseball bat",
40: "baseball glove",
41: "skateboard",
42: "surfboard",
43: "tennis racket",
44: "bottle",
46: "wine glass",
47: "cup",
48: "fork",
49: "knife",
50: "spoon",
51: "bowl",
52: "banana",
53: "apple",
54: "sandwich",
55: "orange",
56: "broccoli",
57: "carrot",
58: "hot dog",
59: "pizza",
60: "donut",
61: "cake",
62: "chair",
63: "couch",
64: "potted plant",
65: "bed",
67: "dining table",
70: "toilet",
72: "tv",
73: "laptop",
74: "mouse",
75: "remote",
76: "keyboard",
77: "cell phone",
78: "microwave",
79: "oven",
80: "toaster",
81: "sink",
82: "refrigerator",
84: "book",
85: "clock",
86: "vase",
87: "scissors",
88: "teddy bear",
89: "hair drier",
90: "toothbrush",
}
_DATASET_URI = (
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/coco/coco.lance.tar.gz"
)
class Coco(datasets.ArrowBasedBuilder):
"""COCO: Microsoft common object in context dataset"""
def _info(self):
class_names = []
for i in range(0, max(_CLASS_MAP.keys()) + 1):
class_names.append(_CLASS_MAP.get(i, f"N/A-{i}"))
return datasets.DatasetInfo(
description="COCO: Microsoft object detection dataset",
features=datasets.Features(
{
"image": datasets.Image(),
"split": datasets.Value("string"),
"annotations": datasets.Sequence(
{
"bbox": datasets.Sequence(
datasets.Value("float32"), length=4
),
"category_id": datasets.ClassLabel(names=class_names),
}
),
}
),
supervised_keys=None,
homepage="https://github.com/eto-ai/lance/tree/main/python/benchmarks/coco",
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
extracted_dir = dl_manager.download_and_extract(_DATASET_URI)
base_uri = os.path.join(extracted_dir, "coco.lance")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"split": "train", "base_uri": base_uri},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"split": "val", "base_uri": base_uri},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"split": "test", "base_uri": base_uri},
),
]
def _generate_tables(self, split, base_uri):
idx = 0
dataset = lance.dataset(base_uri)
scanner = dataset.scanner(
filter=pc.field("split") == split,
)
for batch in scanner.to_batches(): # type: pa.RecordBatch
cols = []
names = []
annotations = batch.column("annotations")
if len(annotations) == 0:
continue
cols.append(annotations)
names.append("annotations")
# Decode split because Huggingface does not support dictionary yet.
split_arr = batch.column("split").dictionary_decode()
cols.append(split_arr)
names.append("split")
bytes_arr = batch.column("image").storage
arr = pa.StructArray.from_arrays([bytes_arr], ["bytes"])
cols.append(arr)
names.append("image")
yield idx, pa.Table.from_arrays(cols, names)
idx += 1