|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""COCO: Microsoft COCO Dataset. |
|
|
|
https://cocodataset.org/#home |
|
""" |
|
|
|
import os |
|
from typing import List |
|
|
|
import datasets |
|
import lance |
|
import pyarrow as pa |
|
import pyarrow.compute as pc |
|
|
|
_CLASS_MAP = { |
|
1: "person", |
|
2: "bicycle", |
|
3: "car", |
|
4: "motorcycle", |
|
5: "airplane", |
|
6: "bus", |
|
7: "train", |
|
8: "truck", |
|
9: "boat", |
|
10: "traffic light", |
|
11: "fire hydrant", |
|
13: "stop sign", |
|
14: "parking meter", |
|
15: "bench", |
|
16: "bird", |
|
17: "cat", |
|
18: "dog", |
|
19: "horse", |
|
20: "sheep", |
|
21: "cow", |
|
22: "elephant", |
|
23: "bear", |
|
24: "zebra", |
|
25: "giraffe", |
|
27: "backpack", |
|
28: "umbrella", |
|
31: "handbag", |
|
32: "tie", |
|
33: "suitcase", |
|
34: "frisbee", |
|
35: "skis", |
|
36: "snowboard", |
|
37: "sports ball", |
|
38: "kite", |
|
39: "baseball bat", |
|
40: "baseball glove", |
|
41: "skateboard", |
|
42: "surfboard", |
|
43: "tennis racket", |
|
44: "bottle", |
|
46: "wine glass", |
|
47: "cup", |
|
48: "fork", |
|
49: "knife", |
|
50: "spoon", |
|
51: "bowl", |
|
52: "banana", |
|
53: "apple", |
|
54: "sandwich", |
|
55: "orange", |
|
56: "broccoli", |
|
57: "carrot", |
|
58: "hot dog", |
|
59: "pizza", |
|
60: "donut", |
|
61: "cake", |
|
62: "chair", |
|
63: "couch", |
|
64: "potted plant", |
|
65: "bed", |
|
67: "dining table", |
|
70: "toilet", |
|
72: "tv", |
|
73: "laptop", |
|
74: "mouse", |
|
75: "remote", |
|
76: "keyboard", |
|
77: "cell phone", |
|
78: "microwave", |
|
79: "oven", |
|
80: "toaster", |
|
81: "sink", |
|
82: "refrigerator", |
|
84: "book", |
|
85: "clock", |
|
86: "vase", |
|
87: "scissors", |
|
88: "teddy bear", |
|
89: "hair drier", |
|
90: "toothbrush", |
|
} |
|
_DATASET_URI = ( |
|
"https://eto-public.s3.us-west-2.amazonaws.com/datasets/coco/coco.lance.tar.gz" |
|
) |
|
|
|
|
|
class Coco(datasets.ArrowBasedBuilder): |
|
"""COCO: Microsoft common object in context dataset""" |
|
|
|
def _info(self): |
|
class_names = [] |
|
for i in range(0, max(_CLASS_MAP.keys()) + 1): |
|
class_names.append(_CLASS_MAP.get(i, f"N/A-{i}")) |
|
return datasets.DatasetInfo( |
|
description="COCO: Microsoft object detection dataset", |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"split": datasets.Value("string"), |
|
"annotations": datasets.Sequence( |
|
{ |
|
"bbox": datasets.Sequence( |
|
datasets.Value("float32"), length=4 |
|
), |
|
"category_id": datasets.ClassLabel(names=class_names), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/eto-ai/lance/tree/main/python/benchmarks/coco", |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
extracted_dir = dl_manager.download_and_extract(_DATASET_URI) |
|
base_uri = os.path.join(extracted_dir, "coco.lance") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"split": "train", "base_uri": base_uri}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"split": "val", "base_uri": base_uri}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"split": "test", "base_uri": base_uri}, |
|
), |
|
] |
|
|
|
def _generate_tables(self, split, base_uri): |
|
idx = 0 |
|
dataset = lance.dataset(base_uri) |
|
scanner = dataset.scanner( |
|
filter=pc.field("split") == split, |
|
) |
|
for batch in scanner.to_batches(): |
|
cols = [] |
|
names = [] |
|
|
|
annotations = batch.column("annotations") |
|
if len(annotations) == 0: |
|
continue |
|
cols.append(annotations) |
|
names.append("annotations") |
|
|
|
|
|
split_arr = batch.column("split").dictionary_decode() |
|
cols.append(split_arr) |
|
names.append("split") |
|
|
|
bytes_arr = batch.column("image").storage |
|
arr = pa.StructArray.from_arrays([bytes_arr], ["bytes"]) |
|
cols.append(arr) |
|
names.append("image") |
|
|
|
yield idx, pa.Table.from_arrays(cols, names) |
|
idx += 1 |
|
|